
1. Integration in Banach Spaces

In this section, (Ω,A, µ) is a finite measure space, X is a Banach space over k
with norm k·k . We will develop the threory of integration in Banach spaces in
parallel to that of classical analysis.

Definition 1. Let E ⊂ Ω be a measurable set. A function χE : Ω→ X is called
a step function if there exists a b ∈ X such that

χE (t) =

½
b, t ∈ E
0, t /∈ E

.

A function u : Ω→ X is called a simple function if there exists a finite sequence
of pairwise disjoint measurable sets E1, E2, · · · , En ⊂ Ω and a sequence of scalers
α1, α2, · · · , αn ∈ k such that

u (t) =
nX
i=1

αiχEi (t) ∀t ∈ Ω.

Definition 2. A function u : Ω→ X is called µ-measurable if it is the pointwise
limit of a sequence of simple functions. i.e., if there exists a sequence {un}∞n=1 of
simple functions such that kun (t)− u (t)k→ 0 for almost all t ∈ Ω.

All functions to be considered from this point on are µ-measurable.

Definition 3. Let u : Ω → X be a simple function.. The integral of u with
respect to the measure µ is defined to beZ

Ω

u (t) dµ =
nX
i=1

αibiµ (Ei) .

Notice that the integral of a simple function is an element of the Banach space
X .

Definition 4. A function u : Ω→ X is called "Bochner" integrable if there exists
a sequence of simple functions {un}∞n=1 such that kun (t)− u (t)k → 0 for almost
all t ∈ Ω and

lim
n→∞

Z
Ω

un (t) dµ

exists in X. In this case the limit is denoted byZ
Ω

u (t) dµ.



Proposition 5.

1. If u : Ω → X is integrable, then
R
Ω
u (t) dµ is independent of the choice of

the sequence of simple functions converging to u.

2.
R
Ω
u (t) dµ exists if and only if

R
Ω
ku (t)k dµ exists.

The following examples are direct generalizations of the classical Lp spaces,
1 ≤ p ≤ ∞ and Ck spaces, ... etc.

Example 6. Let Ω = I = [a, b] be a finite integral and µ the Lebesgue measure.
(we will write dt for dµ)

1. The spaces Lp (I;X), 1 ≤ p <∞ is defined to be

Lp (I;X) =

½
u : I → X :

Z b

a

ku (t)kp dt <∞
¾
.

This space is a Banach space with the norm

kukLp(I;X) =
µZ b

a

ku (t)kp dt
¶1/p

.

In particular, if X is a Hilbert space, the space L2 (I;X) is also a Hilbert
space with the inner product

hu, viLp(I;X) =
Z b

a

hu (t) , v (t)i dt.

The dual space (Lp (I;X))∗ can be identified with Lq (I;X∗) . The space
L∞ (I;X) is defined to be

L∞ (I;X) =
½
u : I → X : essup

t∈I
{ku (t)k} <∞

¾
.

It is a Banach space under the essential sup norm.

2. Recall that the Frechet derivative of a function u : U ⊆ Y → X is a
continuous linear operator on Y inro X. In the case Y is the space of real
numbers and U = I, u0 (t) is a linear operator on real numbers into X. This
is simply multiplication of an element of X by the real number. Hnece,



u0 (t) can be identified with an element of X. It follows that the dervative
can be regarded as a function u0 : I → X. In this sense Cm (I;X) is defined
to be the set of functions that are continuous together with their first m
derivatives from I into X. It becomes a Banach space in the norm

kukCm(I;X) =
mX
k=0

sup
t∈I

°°u(k) (t)°° .
2. Application to the Taylor Theorem

In this section we show that the classical Taylor Theorem with remainder takes
essentially the same form in Banach spaces. In the following theorem X, Y are
Banach spaces over k and U ⊆ X is open and convex. Before stating the the-
orem we note that if g : I → Y is continuous and I is compact then we
can get a sequence of simple functions gn which converges uniformly to g. i.e.,
maxt∈I kgn (t)− g (t)kY → 0 as n → ∞. Furthermore, each gn is supported (i.e.,
nonzero) on a finite set of pair-wise disjoint subintervals of I. (see the comment
after the theorem.

Theorem 7. Suppose f : U ⊆ X → Y is Cn+1 on U. Then, for every x ∈ U and
every h ∈ X such that x+ h ∈ X, the Taylor formula

f (x+ h) =
nX

k=0

1

k!
f (k) (x)hk +Rn (x) (1)

holds, where

f (k) (x) hk = f (k) (x)hh · · ·h,
f (0) (x)h0 = f (x)

and

Rn (x) =

Z 1

0

(1− τ )n

n!
f (n+1) (x+ τh) hn+1dτ. (2)

Proof. For η ∈ Y ∗ set

ϕ (t) = hη, f (x+ th)i , t ∈ [0, 1] .



Then

ϕ(k) (t) =
­
η, f (k) (x+ th)hk

®
, k = 0, 1, 2, · · · , n+ 1, t ∈ [0, 1] .

Applying the classical Taylor Theorem to the function ϕ we get

ϕ (1) =
nX

k=0

1

k!
ϕ(k) (0) +

Z 1

0

(1− τ )n

n!
ϕ(n+1) (τ ) dτ.

Hence,

hη, f (x+ h)i =
*
η,

nX
k=0

1

k!
f (k) (x) +

Z 1

0

(1− τ)n

n!
f (n+1) (x+ τh)hn+1dτ

+
.

Since η ∈ Y ∗ is arbitrary, we get (1), (2).

Corollary 8. kRn (x)k ≤ 1
(n+1)!

supτ∈[0,1]
°°f (n+1) (x+ τh) hn+1

°° .
Some comments are now in order. Notice that in the proof of the Taylor

formula (1) above we needed to switch the integration with the pairing with η. To
justify this let’s define the function g : [0, 1] → Y by g (t) = f (n+1) (x+ th) and
let gn be a sequence of simple functions uniformly converging to g. For each n we
have

gn (t) =
nX
i=1

bn,iχ4n,iZ 1

0

gn (t) dt =
nX
i=1

bn,im (4n,i)

then ¿
η,

Z 1

0

gn (t) dt

À
=

*
η,

nX
i=1

bn,im (4n,i)

+

=
nX
i=1

m (4n,i) hη, bn,ii =
nX
i=1

Z
4i

hη, bn,ii dt

=
nX
i=1

Z
4i

­
η, χ4i

(t)
®
dt =

nX
i=1

Z 1

0

­
η, χ4i

(t)
®
dt

=

Z 1

0

*
η,

nX
i=1

χ4i
(t)

+
dt =

Z
Ω

hη, gn (t)i dt.



Then ¿
η,

Z
Ω

g (t) dt

À
=

¿
η, lim

Z 1

0

gn (t) dt

À
= lim

¿
η,

Z 1

0

gn (t) dt

À
= lim

Z 1

0

hη, gn (t)i dt

=

Z 1

0

lim hη, gn (t)i dt =
Z 1

0

hη, g (t)i dt.

In the above string of equations switching the limit with the pairing with η is
justified by the continuity of η. Switching the limit with the integration can be
seen as follows ¯̄̄̄Z 1

0

(hη, gn (t)i− hη, g (t)i) dt
¯̄̄̄

≤
Z 1

0

|hη, gn (t)i− hη, g (t)i| dt

≤ kηk
Z 1

0

kgn (t)− g (t)k dt
≤ kηkmax

t∈I
kgn (t)− g (t)k→ 0.


