1. Integration in Banach Spaces

In this section, $(\Omega, \mathcal{A}, \mu)$ is a finite measure space, X is a Banach space over \Bbbk with norm $\|\cdot\|$. We will develop the threory of integration in Banach spaces in parallel to that of classical analysis.

Definition 1. Let $E \subset \Omega$ be a measurable set. A function $\chi_E : \Omega \to X$ is called a step function if there exists a $b \in X$ such that

$$\chi_E(t) = \begin{cases} b, t \in E\\ 0, t \notin E \end{cases}$$

A function $u: \Omega \to X$ is called a simple function if there exists a finite sequence of pairwise disjoint measurable sets $E_1, E_2, \dots, E_n \subset \Omega$ and a sequence of scalers $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{k}$ such that

$$u(t) = \sum_{i=1}^{n} \alpha_i \chi_{E_i}(t) \ \forall t \in \Omega.$$

Definition 2. A function $u: \Omega \to X$ is called μ -measurable if it is the pointwise limit of a sequence of simple functions. i.e., if there exists a sequence $\{u_n\}_{n=1}^{\infty}$ of simple functions such that $||u_n(t) - u(t)|| \to 0$ for almost all $t \in \Omega$.

All functions to be considered from this point on are μ -measurable.

Definition 3. Let $u : \Omega \to X$ be a simple function. The integral of u with respect to the measure μ is defined to be

$$\int_{\Omega} u(t) d\mu = \sum_{i=1}^{n} \alpha_i b_i \mu(E_i)$$

Notice that the integral of a simple function is an element of the Banach space \boldsymbol{X} .

Definition 4. A function $u: \Omega \to X$ is called "Bochner" integrable if there exists a sequence of simple functions $\{u_n\}_{n=1}^{\infty}$ such that $||u_n(t) - u(t)|| \to 0$ for almost all $t \in \Omega$ and

$$\lim_{n \to \infty} \int_{\Omega} u_n\left(t\right) d\mu$$

exists in X. In this case the limit is denoted by

$$\int_{\Omega} u(t) \, d\mu$$

Proposition 5.

- 1. If $u: \Omega \to X$ is integrable, then $\int_{\Omega} u(t) d\mu$ is independent of the choice of the sequence of simple functions converging to u.
- 2. $\int_{\Omega} u(t) d\mu$ exists if and only if $\int_{\Omega} \|u(t)\| d\mu$ exists.

The following examples are direct generalizations of the classical L^p spaces, $1 \le p \le \infty$ and C^k spaces, ... etc.

Example 6. Let $\Omega = I = [a, b]$ be a finite integral and μ the Lebesgue measure. (we will write dt for $d\mu$)

1. The spaces $L^{p}(I; X), 1 \leq p < \infty$ is defined to be

$$L^{p}(I;X) = \left\{ u: I \to X: \int_{a}^{b} \|u(t)\|^{p} dt < \infty \right\}.$$

This space is a Banach space with the norm

$$||u||_{L^{p}(I;X)} = \left(\int_{a}^{b} ||u(t)||^{p} dt\right)^{1/p}.$$

In particular, if X is a Hilbert space, the space $L^{2}(I;X)$ is also a Hilbert space with the inner product

$$\langle u, v \rangle_{L^{p}(I;X)} = \int_{a}^{b} \langle u(t), v(t) \rangle dt$$

The dual space $(L^p(I;X))^*$ can be identified with $L^q(I;X^*)$. The space $L^{\infty}(I;X)$ is defined to be

$$L^{\infty}(I;X) = \left\{ u: I \to X : \operatorname{essup}_{t \in I} \left\{ \|u(t)\| \right\} < \infty \right\}.$$

It is a Banach space under the essential sup norm.

2. Recall that the Frechet derivative of a function $u : U \subseteq Y \to X$ is a continuous linear operator on Y inro X. In the case Y is the space of real numbers and U = I, u'(t) is a linear operator on real numbers into X. This is simply multiplication of an element of X by the real number. Hnece,

u'(t) can be identified with an element of X. It follows that the dervative can be regarded as a function $u': I \to X$. In this sense $C^m(I; X)$ is defined to be the set of functions that are continuous together with their first m derivatives from I into X. It becomes a Banach space in the norm

$$||u||_{C^{m}(I;X)} = \sum_{k=0}^{m} \sup_{t \in I} ||u^{(k)}(t)||.$$

2. Application to the Taylor Theorem

In this section we show that the classical Taylor Theorem with remainder takes essentially the same form in Banach spaces. In the following theorem X, Y are Banach spaces over \Bbbk and $U \subseteq X$ is open and convex. Before stating the theorem we note that if $g : I \to Y$ is continuous and I is compact then we can get a sequence of simple functions g_n which converges uniformly to g. i.e., $\max_{t\in I} ||g_n(t) - g(t)||_Y \to 0$ as $n \to \infty$. Furthermore, each g_n is supported (i.e., nonzero) on a finite set of pair-wise disjoint subintervals of I. (see the comment after the theorem.

Theorem 7. Suppose $f: U \subseteq X \to Y$ is C^{n+1} on U. Then, for every $x \in U$ and every $h \in X$ such that $x + h \in X$, the Taylor formula

$$f(x+h) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x) h^{k} + R_{n}(x)$$
(1)

holds, where

$$f^{(k)}(x) h^{k} = f^{(k)}(x) hh \cdots h,$$

$$f^{(0)}(x) h^{0} = f(x)$$

and

$$R_n(x) = \int_0^1 \frac{(1-\tau)^n}{n!} f^{(n+1)}(x+\tau h) h^{n+1} d\tau.$$
 (2)

Proof. For $\eta \in Y^*$ set

$$\varphi(t) = \langle \eta, f(x+th) \rangle, \ t \in [0,1].$$

Then

$$\varphi^{(k)}(t) = \langle \eta, f^{(k)}(x+th)h^k \rangle, \ k = 0, 1, 2, \cdots, n+1, \ t \in [0, 1].$$

Applying the classical Taylor Theorem to the function φ we get

$$\varphi(1) = \sum_{k=0}^{n} \frac{1}{k!} \varphi^{(k)}(0) + \int_{0}^{1} \frac{(1-\tau)^{n}}{n!} \varphi^{(n+1)}(\tau) d\tau.$$

Hence,

$$\langle \eta, f(x+h) \rangle = \left\langle \eta, \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x) + \int_{0}^{1} \frac{(1-\tau)^{n}}{n!} f^{(n+1)}(x+\tau h) h^{n+1} d\tau \right\rangle.$$

Since $\eta \in Y^*$ is arbitrary, we get (1), (2).

Corollary 8. $||R_n(x)|| \le \frac{1}{(n+1)!} \sup_{\tau \in [0,1]} ||f^{(n+1)}(x+\tau h)h^{n+1}||.$

Some comments are now in order. Notice that in the proof of the Taylor formula (1) above we needed to switch the integration with the pairing with η . To justify this let's define the function $g: [0,1] \to Y$ by $g(t) = f^{(n+1)}(x+th)$ and let g_n be a sequence of simple functions uniformly converging to g. For each n we have

$$g_n(t) = \sum_{i=1}^n b_{n,i} \chi_{\Delta_{n,i}}$$
$$\int_0^1 g_n(t) dt = \sum_{i=1}^n b_{n,i} m(\Delta_{n,i})$$

then

<

$$\left\langle \eta, \int_{0}^{1} g_{n}(t) dt \right\rangle = \left\langle \eta, \sum_{i=1}^{n} b_{n,i} m\left(\Delta_{n,i}\right) \right\rangle$$

$$= \sum_{i=1}^{n} m\left(\Delta_{n,i}\right) \left\langle \eta, b_{n,i} \right\rangle = \sum_{i=1}^{n} \int_{\Delta_{i}} \left\langle \eta, b_{n,i} \right\rangle dt$$

$$= \sum_{i=1}^{n} \int_{\Delta_{i}} \left\langle \eta, \chi_{\Delta_{i}}(t) \right\rangle dt = \sum_{i=1}^{n} \int_{0}^{1} \left\langle \eta, \chi_{\Delta_{i}}(t) \right\rangle dt$$

$$= \int_{0}^{1} \left\langle \eta, \sum_{i=1}^{n} \chi_{\Delta_{i}}(t) \right\rangle dt = \int_{\Omega} \left\langle \eta, g_{n}(t) \right\rangle dt.$$

Then

$$\left\langle \eta, \int_{\Omega} g(t) dt \right\rangle = \left\langle \eta, \lim \int_{0}^{1} g_{n}(t) dt \right\rangle$$
$$= \lim \left\langle \eta, \int_{0}^{1} g_{n}(t) dt \right\rangle = \lim \int_{0}^{1} \left\langle \eta, g_{n}(t) \right\rangle dt$$
$$= \int_{0}^{1} \lim \left\langle \eta, g_{n}(t) \right\rangle dt = \int_{0}^{1} \left\langle \eta, g(t) \right\rangle dt.$$

In the above string of equations switching the limit with the pairing with η is justified by the continuity of η . Switching the limit with the integration can be seen as follows

$$\left| \int_{0}^{1} \left(\langle \eta, g_{n}(t) \rangle - \langle \eta, g(t) \rangle \right) dt \right|$$

$$\leq \int_{0}^{1} \left| \langle \eta, g_{n}(t) \rangle - \langle \eta, g(t) \rangle \right| dt$$

$$\leq \|\eta\| \int_{0}^{1} \|g_{n}(t) - g(t)\| dt$$

$$\leq \|\eta\| \max_{t \in I} \|g_{n}(t) - g(t)\| \to 0.$$