
1 Iterated Derivatives

In this section X and Y are Banach spaces over k, U = U (u) ⊂ X is an
open neighbourhood of u. Suppose f : U → Y is differentiable on U. Then
f 0 (·) : U → L (X,Y ) and hence, f 0 (u) ∈ L (X,Y ) , i.e., f 0 (u) : X → Y and
f 0 (u)h ∈ Y for every element h ∈ X. If f 0 (·) is also differentiable on U,
then (f 0 (·))0 : U → L (X,L (X,Y )) . In particuluar, (f 0 (u))0 ∈ L (X,L (X,Y )) ,
i.e., (f 0 (u))0 : X → L (X,Y ) and (f 0 (u))0 h ∈ L (X,Y ) for each h ∈ X, i.e.,
(f 0 (u))0 h : X → Y and (f 0 (u))0 hk ∈ Y for every element k ∈ X. This
consideration shows the hierarchical order of structure of higher derivatives.
This is in contrast to the previoiusly defined derivatives as multilinear operators.
Clearly it is much easier to think of higher derivatives as multilinear operators
than operators on operator spaces. In this section we show the equivalence of
the two definitions. This equivalence will be shown here for second derivatives
but the ideas can easily be carried over to higher derivatives.

Proposition 1 Suppose f : U → Y is differentiable on U.

1. f 00 (u) exists if and only if (f 0 (u))0 exists. In this case

f 00 (u)hk = (f 0 (u))0 hk ∀h, k ∈ X

2. f 00 (·) is continuous at u if and only if (f 0 (·))0 is continuous at u.
Proof.

1. Suppose (f 0 (u))0 exists. Define the operator

B : X ×X → Y

by
B (h, k) = (f 0 (u))0 hk

Clearly B is bilinear and

kB (h, k)k =
°°°(f 0 (u))0 hk°°° ≤ °°°(f 0 (u))0 h°°° kkk

≤
°°°(f 0 (u))0°°° khk kkk .

Therefor, B is also bounded. Now

f 0 (u+ h)− f 0 (u) = (f 0 (u))0 h+ r (u;h)

with kr (u;h)k = o (h) as h → 0. The above equation means that r (u;h)
is also a bounded linear operator from X to Y because the other terms of
the equation are. Evaluating at k ∈ X gives

f 0 (u+ h) k − f 0 (u) k = (f 0 (u))0 hk + r (u;h) k

= B (h, k) + r (u;h) k
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An since
sup
kkk≤1

kr (u;h) kk = kr (u;h)k = o (h)

as h→ 0, it follows that f 00 (u) and

f 00 (u)hk = B (h, k) = (f 0 (u))0 hk.

The other direction can be proved similarly.

2. This statement follows form the equality

kf 00 (u)− f 00 (v)k =
°°°(f 0 (u))0 − (f 0 (v))0°°°

which follows from the equality

kf 00 (u)hk − f 00 (v)hkk =
°°°(f 0 (u))0 hk − (f 0 (v))0 hk°°° .

Indeed this last equality can be used to show the inequality of the operator
norms both ways. For example°°°(f 0 (u))0 hk − (f 0 (v))0 hk°°° = kf 00 (u)hk − f 00 (v)hkk

= k(f 00 (u)− f 00 (v))hkk
≤ kf 00 (u)− f 00 (v)k khk kkk

gives °°°(f 0 (u))0 h− (f 0 (v))0 h°°° ≤ kf 00 (u)− f 00 (v)k khk
which, in turn, gives°°°(f 0 (u))0 − (f 0 (v))0°°° ≤ kf 00 (u)− f 00 (v)k .

Remark 2 Notice the meaning of the notation in the above proposition. With
full notation we may restate part 1 of the proposition as

f 00 (u) (h, k) = (f 0 (u))0 (h) (k) .

Both sides represent elements of Y.

2 Chain Rules

We have proved before the chain rule theorem:

If f : U ⊂ X → Y and g : V ⊂ Y → Z such that f (U) ⊂ V and
if f is differentiable at u ∈ U and g is differentiable at v = f (u),
then g ◦ f is differentiable at u and (g ◦ f)0 (u) = g0 ◦ f (u) f 0 (u)
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In this section we wish to extend this result and discuss the computation of
higher derivatives for composite functions.

Proposition 3 Suppose f : U ⊂ X → Y and g : V ⊂ Y → Z such that
f (U) ⊂ V.If f is Cm on U and g is Cm on V then g ◦ f is Cm on U.

Proof. The proof follows in the same way as that of the theorem qouted above,
together with induction.
We now wish to justify the formula

(g ◦ f)00 (u)hk = g00 ◦ f (u) f 0 (u)hf 0 (uh) k + g0 ◦ f (u) f 00 (u)hk
For this we use the usual technique

(g ◦ f)00 (u)hk =
d

dt
(g ◦ f)0 (u+ th) k

¯̄
t=0

=
d

dt
g0 ◦ f (u+ th) f 0 (u+ th) k|t=0

= g00 ◦ f (u+ th) f 0 (u+ th)hf 0 (u+ th) k

+ g0 ◦ f (u+ th) f 00 (u+ th)hk|t=0
= g00 ◦ f (u) f 0 (u)hf 0 (uh) k + g0 ◦ f (u) f 00 (u)hk

where in this derivation we used the formula for differentiating bilinear operators
and the chain rule.

Example 4 (The product rule) Suppose B : Y × Y → Z is a bilinear operator
and f, g : U ⊂ X → Y . Set

H (u) = B (f (u) , g (u)) .

Then

H 0 (u)h =
d

dt
B (f (u+ th) , g (u+ th))|t=0

= B (f 0 (u+ th)h, g (u+ th)) +B (f (u+ th) , g0 (u+ th)h)|t=0
= B (f 0 (u)h, g (u)) +B (f (u) , g0 (u)h) .

We can use this pattern to compute the second derivative:

H 00 (u)hk = B (f 00 (u)hk, g (u)) +B (f 0 (u)h, g0 (u) k)
+B (f 0 (u) k, g0 (u)h) +B (f (u) , g00 (u)hk) .

3 The Implicit Function Theorem

In this section we assume that F : U ⊂ X × Y → Z and (u0, v0) ∈ U such that

F (u0, v0) = 0.
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We are concerned with solving the equation

F (u, v) = 0

for u a neighbourhood BX (u0, ρ) ⊂ X and v in a neighbourhood BY (v0, r) ⊂ Y.
The implicit function theorem states that under certain assumptions on F, this
equation has a unique solution. The proof of the theorem is based on a variant
of Newton’s method which we will motivate now in a formal manner.
Solving the equation

G (u) = 0

is equivalent to finding the fixed points of the operator

H (u) = u−G0−1 (u0)G (u) .

For equations in two variables

F (u, v) = 0

we fix a value u and find the solution v = v (u) corresponding to that u. This
leads us to define the function

Gu (·) = F (u, ·) .
Then the problem reduces to solving

Gu (v) = 0

The Newton’s method corresponding to this equation is

Hu (v) = v −G0−1u (v0)G (v) .

Noting that G0u (v0) = Fv (u, v) (the subscript u is used as a parameter, while
the subscript v is used to denote the partial derivative of F with respect to its
second variable) we may rewrite Newton’s method as

Hu (v) = v − F−1v (u0, v0)F (u, v) . (1)

Theorem 5 (The Implicit Function Theorem) Suppose F : U ⊂ X×Y → Z is
Cm on U, 1 ≤ m ≤∞.Suppose further that (u0, v0) ∈ U satisfies

1. F (u0, v0) = 0,

2. Fv (u0, v0) : Y → Z is bijective.

Then there exist ρ > 0, r > 0 such that

1. for each u ∈ BX (u0, ρ) the equation

F (u, v) = 0

has a unique solution v = v (u) ∈ BY (v0, r) ,
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2. the function u 7→ v (u) is Cm on BX (u0, ρ) . In particular

v0 (u) = −F−1v (u, v (u))F (u, v) ∀ u ∈ BX (u0, ρ) .

Proof. For simplicity, assume u0 = 0, v0 = 0. The bijectivity of Fv (0, 0) and
the closed graph theorem mean that Fv (0, 0) has a continuous inverse. The
continuity of Fv (u, v) on U and the vonNoemann theorem imply that Fv (u, v)
is continuously invertible for (u, v) in a neighbourhood V ⊂ U of (0, 0) . Let
ρ > 0, r > 0 be small enough that the the mapping Hu (·) of equation (1) is
well defined for u fixed but arbitry in BX (0, ρ) and all v ∈ BY (0, r) . We will
show that for sufficiently samll ρ > 0, r > 0 the mapping Hu (·) is a contraction.
Since F is Cm, m ≥ 1, we may write

F (u, v) = F (0, 0) + F 0 (0, 0)uv + o ((u, v))

= Fu (0, 0)u+ Fv (0, 0) v + o ((u, v)) .

Hence,
Hu (v) = −F−1v (0, 0)Fu (0, 0)u+ o ((u, v))

and

kHu (v)k ≤ °°F−1v (0, 0)
°° kFu (0, 0)k kuk+ o (k(u, v)k)

≤ °°F−1v (0, 0)
°° kFu (0, 0)kρ+ o (k(u, v)k) .

Also,

kHu (v)−Hu (w)k ≤ °°F−1v (0, 0)
°° kFv (0, 0) (v −w)− (F (u, v)− F (u,w))k

≤ °°F−1v (0, 0)
°° k(Fv (0, 0)− Fv (u, v)) (v −w)k+ o (kv −wk)

≤ °°F−1v (0, 0)
°° kFv (0, 0)− Fv (u, v)k kv −wk+ o (kv −wk) .

Therefore, for sufficiently small ρ > 0, r > 0 we get

1. kHu (v)k ≤ r,

2. kHu (v)−Hu (w)k ≤ 1
2 kv −wk .

It follows that Hu is a contraction on BY (0, r) for any u ∈ BX (0, ρ) . Thus
the equation F (u, v) = 0 has a unique solution v = v (u) ∈ BY (0, r) for every
u ∈ BX (0, ρ) . Next, we show continuity of the map u 7→ v (u) . Let u1, u2 ∈
BX (0, ρ) and set v1 = v (u1) , v2 = v (u2) . Then

kv1 − v2k = kHu1 (v1)−Hu2 (v2)k
≤ kHu1 (v1)−Hu1 (v2)k+ kHu1 (v2)−Hu2 (v2)k
≤ 1

2
kv1 − v2k+

°°F−1v (0, 0) (F (u1, v2)− F (u2, v2))
°° .
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Hence

kv1 − v2k ≤ 2
°°F−1v (0, 0) (F (u1, v2)− F (u2, v2))

°°
≤ 2

°°F−1v (0, 0)
°° sup
0<θ<1

kFu (u1 + θ (u2 − u1) , v2)k ku2 − u1k

≤ 2M
°°F−1v (0, 0)

°° ku2 − u1k (2)

where
M = sup

v∈BY (0,r),
u∈BX(0,ρ)

kFu (u, v)k .

Note that M <∞ because of the assumption that F is Cm on U ⊃ BX (0, ρ)×
BY (0, r) . Therefore, kv1 − v2k→ 0 as ku2 − u1k→ 0.We then proceed to show
the differentiability of u 7→ v (u) . For this we consider

F (u+ h, v (u+ h)) = F (u, v (u)) + Fu (u, v (u))h+ Fv (u, v (u)) (v (u+ h)− v (u)) + o (h, k)

= Fu (u, v (u))h+ Fv (u, v (u)) (v (u+ h)− v (u)) + o (h, k)

where k = v (u+ h)−v (u) . Since F−1v (u, v) is uniformly bounded on BX (0, ρ)×
BY (0, r) , and F (u+ h, v (u+ h)) = F (u, v (u)) = 0, we get

v (u+ h)− v (u) = −F−1v (u, v (u))Fu (u, v (u))h+ o (h, k)

By equation (2) we see that k = O (h) as h → 0. It follows that o (k(h, k)k) =
o (khk) . Therefore, v0 (u) exists and

v0 (u)h = −F−1v (u, v (u))Fu (u, v (u))h

for all h ∈ Y.
Higher derivatives of u 7→ v (u) can be shown similarly.

4 Application to Differential Equations

We want to investigate the solvability and continuous dependence on the initial
data for the differential equaion

x0 (t) = f (t, x (t)) ,
x (τ) = y

¾
(3)

for t ∈ [τ − a, τ + a] , a > 0 and (τ, y) vary around some nominal value (t0, x0) .
Here f : R×X → X is a C1 function, τ, a ∈ R, y, x0 ∈ X.

Proposition 6 Under the above assumptions, there exist ρ > 0, r > 0 such that
for

a, |τ − t0| , ky − x0kX < ρ

the system (3) has a unique solution x = x (·, a, τ, y) ∈ B (x0, r) Moreover, the
mapping (a, τ , y) 7−→ x (a, τ, y) is C1 on B ((0, t0, x0) , ρ) .
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Proof. The proof consists of two steps: 1- a rescaling, and 2- use of the implicit
function theorem
Rescaling
Set t = τ + sa, s ∈ J = [−1, 1] , v (s) = x (t) − y. Then the system (3) is

transformed into
v0 (s) = af (µ (s) , v (s) + y)

v (0) = 0

¾
(4)

where, µ (s) = τ + sa. Define the spaces

Y = C10 (J ;X) =
©
v ∈ C1 (J ;X) : v (0) = 0

ª
with the norm

kvk1 = maxs∈J
kv (s)kX +maxs∈J

kv0 (s)kX
and

Z = C (J ;X)

with the norm
kvk0 = maxs∈J

kv (s)kX
Also, define the function

F : R×R×X × Y → Z

by
F (a, τ , y, v) = v0 − af (µ, v − y) .

Then equation (3) reduces to

F (a, τ , y, v) = 0 (5)

Now notice that

Fa (a, τ, y, v) = −f (µ, v − y) ,

Fτ (a, τ, y, v) = −aft (µ, v − y) ,

Fy (a, τ, y, v) = afx (µ, v − y) ,

Fv (a, τ , y, v)h = h0 − afx (µ, v − y)h

( where the last equation is obtained by doing the formal evaluation Fv (a, τ , y, v)h =
d
dt F (a, τ , y, v + th)|t=0). These equations mean that F is C1. Furthermore,

F (0, t0, x0, 0) = 0

and Fv (0, t0, x0, 0) : Y → Z is bijective since the equation

Fv (0, t0, x0, 0)h = w

or

h0 = w,

h (0) = 0
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has the unique solution

h (s) =

Z s

0

w (σ) dσ.

Therefore, by the implicit function theorem, there exist ρ1 > 0, r1 > 0 such
that, for (a, τ, y) ∈ B ((0, t0, x0) , ρ1) , the equation (5) has a unique solution
v = v (·, (a, τ , y)) ∈ B (0, r1) . The conclusions of the theorem follows from this.
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