1 Optimization Algorithms

Suppose X, Y are Banach spaces, $U \subset X$ is open and $F: U \subset X \rightarrow \mathbb{R}$ is differentiable on U. If F has a local minimum at $x \in U$ then $F^{\prime}(x)=0$. There are two approaches to fininding local minima of F. By creating a minimizing sequence or by locating the roots of $F^{\prime}(x)$. We breifly give an overview of both approaches. We start by locating the roots of $F^{\prime}(x)$. The method that we have in mind is, of course, Newtoon's method. In what follows we study a class of generalized Newton methods.For this purpose we suppose that $F: U \subset X \rightarrow Y$ and $x \in U$ is a solution of the equation

$$
\begin{equation*}
F(x)=0 . \tag{1}
\end{equation*}
$$

The classical Newton method uses the iterations

$$
x_{k+1}=x_{k}-F^{\prime}\left(x_{k}\right)^{-1} F\left(x_{k}\right),
$$

starting with an initial guess x_{0} to approximate x. A generalization of this method is the following iterations

$$
\begin{equation*}
x_{k+1}=x_{k}-A_{k}^{-1} F\left(x_{k}\right) \tag{2}
\end{equation*}
$$

where $\left\{A_{k}\right\}$ is a sequence of operators in $\mathcal{L}(X, Y)$ such that $A_{k} \in B_{\mathcal{L}(X, Y)}\left(F^{\prime}(x), \rho\right)$ for some $\rho>0$ and all k. For simplicity, we will set $A=F^{\prime}(x)$. If A is bijective and ρ is sufficiently small then one can show, using Neumann's series, that $A_{k}^{-1} \in \mathcal{L}(Y, X)$ and

$$
\begin{equation*}
\left\|A_{k}^{-1}-A^{-1}\right\| \leq \frac{\rho\left\|A^{-1}\right\|^{2}}{1-\rho\left\|A^{-1}\right\|} \tag{3}
\end{equation*}
$$

In particular the sequence $\left\{A_{k}^{-1}\right\}$ is uniformly bounded. Furthermore, the assumption that A is bijective implies that x is an isolated solution of (1). Thus, there exists a $r>0$ such that x is the unique solution of (1) in $B_{X}(x, r)$.

Exercise 1 Prove formula 3.
Proposition 2 Under the foregoing assumptions, if $r>0, \rho>0$ are sufficiently small then all the elelments x_{k} produced by the iterations (2) are in $B_{X}(x, r)$. Moreover, $x_{k} \rightarrow x$ and

$$
\left\|x_{k}-x\right\| \leq\left(\frac{1}{2}\right)^{k}\left\|x_{0}-x\right\|
$$

Proof. Subtracting x from both sides of (2) we get

$$
\begin{aligned}
x_{k+1}-x & =x_{k}-x-A_{k}^{-1} F\left(x_{k}\right) \\
& =x_{k}-x-A_{k}^{-1} A\left(x_{k}-x\right)+o\left(\left(x_{k}-x\right)\right) \\
& =x_{k}-x-\left(A^{-1}+\triangle_{k}\right) A\left(x_{k}-x\right)+o\left(\left(x_{k}-x\right)\right) \\
& =-\triangle_{k} A\left(x_{k}-x\right)+o\left(\left(x_{k}-x\right)\right)
\end{aligned}
$$

where $\triangle_{k}=A_{k}^{-1}-A^{-1}$. Then

$$
\begin{aligned}
\left\|x_{k+1}-x\right\| & \leq\left\|\triangle_{k}\right\|\|A\|\left\|x_{k}-x\right\|+o\left(\left\|x_{k}-x\right\|\right) \\
& \leq \gamma\|A\|\left\|x_{k}-x\right\|+o\left(\left\|x_{k}-x\right\|\right)
\end{aligned}
$$

where $\gamma=\frac{\rho\left\|A^{-1}\right\|^{2}}{1-\rho\left\|A^{-1}\right\|}$. We will show by induction that for sufficiently small $r>0, \rho>0$, we have $x_{k} \in B_{X}(x, r)$.

$$
\begin{aligned}
\left\|x_{1}-x\right\| & \leq \gamma\|A\|\left\|x_{0}-x\right\|+o\left(\left\|x_{0}-x\right\|\right) \\
& \leq\left(\gamma\|A\|+\frac{o\left(\left\|x_{0}-x\right\|\right)}{\left\|x_{0}-x\right\|}\right) r
\end{aligned}
$$

Since $\frac{o(\|y-x\|)}{\|y-x\|} \rightarrow 0$ as $r \rightarrow 0$, for sufficiently small $r>0$ we get $\frac{o\left(\left\|x_{0}-x\right\|\right)}{\left\|x_{0}-x\right\|} \leq \frac{1}{4}$. Since $\gamma \rightarrow 0$ as $\rho \rightarrow 0$, for sufficiently small $\rho>0$ we get $\gamma\|A\| \leq \frac{1}{4}$. Hence, $\left\|x_{1}-x\right\| \leq \frac{1}{2} r$. i.e., $x_{1} \in B_{X}(x, r)$. A similar argument then shows that if $x_{k} \in$ $B_{X}(x, r)$ then $x_{k+1} \in B_{X}(x, r)$ for the same values of r, ρ above. Furthermore,

$$
\begin{aligned}
\frac{\left\|x_{k+1}-x\right\|}{\left\|x_{k}-x\right\|} & \leq \gamma\|A\|+\frac{o\left(\left\|x_{k}-x\right\|\right)}{\left\|x_{k}-x\right\|} \\
& \leq \frac{1}{2}
\end{aligned}
$$

This gives

$$
\left\|x_{k}-x\right\| \leq\left(\frac{1}{2}\right)^{k}\left\|x_{0}-x\right\|
$$

which implies that $x_{k} \rightarrow x$ as $k \rightarrow \infty$.
Remark 3 In the proof of the above proposition, the value of ρ is explicitly available. The value of r however depends on the behaviour of the derivative of F at x. For example, if F is C^{1} on U then the remainder term $o(\cdot)$ takes the form

$$
o\left(x_{k}-x\right)=\int_{0}^{1}\left(F^{\prime}\left(x+t\left(x_{k}-x\right)-F^{\prime}(x)\right)\left(x_{k}-x\right) d t\right.
$$

from which we obtain the estimate

$$
\frac{o\left(\left\|x_{k}-x\right\|\right)}{\left\|x_{k}-x\right\|} \leq \int_{0}^{1} \| F^{\prime}\left(x+t\left(x_{k}-x\right)-F^{\prime}(x) \| d t\right.
$$

and, in this case, r is the δ needed in the definition on the continuity of F^{\prime} when $\varepsilon=\frac{1}{4}$.

Recall that if $F: U \subset X \rightarrow \mathbb{R}$ has two derivatives then $F^{\prime}(x): V \subset X \rightarrow X^{*}$ and $F^{\prime \prime}(x) \in \mathcal{L}\left(X, X^{*}\right)$. As a consequence to this proposition we get

Corollary 4 If $F: U \subset X \rightarrow \mathbb{R}$ is twice differentiable at x, has a local minimum at $x \in U$ and $F^{\prime \prime}(x)$ is bijective then there exist $r>0, \rho>0$ such that, for any choice of $x_{0} \in B_{X}(x, r)$ and any choice of a sequence $\left\{A_{k}\right\} \in B_{\mathcal{L}\left(X, X^{*}\right)}$ $\left(F^{\prime \prime}(x), \rho\right)$, the sequence

$$
x_{k+1}=x_{k}-A_{k}^{-1} F^{\prime}\left(x_{k}\right)
$$

belongs to $B_{X}(x, r)$ and converges to x greometrically. i.e.,

$$
\left\|x_{k}-x\right\| \leq\left(\frac{1}{2}\right)^{k}\left\|x_{0}-x\right\|
$$

2 Descent Methods

In this section we assume that $F: U \subset X \rightarrow \mathbb{R}$ has a Gateaux derivative on all of U. Suppose F has a minimum $x \in U$. An algorithm to find the minimizer x consists of generating a sequence $\left\{x_{k}\right\}$ in U such that $x_{k} \rightarrow x$. Descent methods generate x_{k+1} from x_{k} by moving a distance ρ_{k} in a direction w_{k} in which F decreases at x_{k}. The direction of maximum descent at x_{k} is the direction opposite to the gradient $F^{\prime}\left(x_{k}\right)$. i.e., we may take $w_{k}=F^{\prime}\left(x_{k}\right) /\left\|F^{\prime}\left(x_{k}\right)\right\|$ provided that $F^{\prime}\left(x_{k}\right) \neq 0$. We may then find x_{k+1} by moving in this direction as far as possible. In other words we set ρ_{k} to be the value at which

$$
\inf _{\rho>0} F\left(x_{k}-\rho w_{k}\right)
$$

is attained and then define x_{k+1} by

$$
x_{k+1}=x_{k}-\rho_{k} w_{k}
$$

This method is called the maximum the method of maximum descent with optimal choice of parameters. Evidently this strategy generates a sequence $\left\{x_{k}\right\}$ such that $F\left(x_{k+1}\right) \leq F\left(x_{k}\right)$. As for the convergenc of this method, we have the following theorem.

Theorem 5 Suppose H is a Hilbert space and $F: H \rightarrow \mathbb{R}$ is coercive, continuous with a continuous Gateaux derivative. Then the sequence $\left\{x_{k}\right\}$ generated by the method of maximum descent with optimal choice of papameters is a minimizing sequence. i.e., $x_{k} \rightarrow x$ where x is a local minimum of F.

Proof. Omitted.
A variant of this method is called the method of conjugate gradients. To describe the method we assume H is a Hilbert space and $F: H \rightarrow \mathbb{R}$ has a positive definite second Gateaux derivative. Let $x_{0} \in H$ be arbitrary and set $w_{0}=F^{\prime}\left(x_{0}\right) /\left\|F^{\prime}\left(x_{0}\right)\right\|$ provided that $F^{\prime}\left(x_{0}\right) \neq 0$ (otherwise F has a local minimum at x_{0}.) Suppose that x_{k}, w_{k} have been determined. Set $\rho_{k}>0$ to be a point of minimum of $F\left(x_{k}-\rho w_{k}\right)$. i.e.,

$$
F\left(x_{k}-\rho_{k} w_{k}\right)=\inf _{\rho>0} F\left(x_{k}-\rho w_{k}\right)
$$

This occures at the point ρ_{k} such that

$$
\left.\frac{d}{d \rho} F\left(x_{k}-\rho w_{k}\right)\right|_{\rho=\rho_{k}}=0
$$

Set

$$
x_{k+1}=x_{k}-\rho_{k} w_{k}
$$

Then

$$
\left(F^{\prime}\left(x_{k+1}\right), w_{k}\right)=0
$$

Define a vector $\widetilde{w}_{k+1} \in H$ by

$$
\widetilde{w}_{k+1}=F^{\prime}\left(x_{k+1}\right)+\lambda_{k+1} w_{k}
$$

where $\lambda_{k+1} \in \mathbb{R}$ is chosen such that

$$
\left(F^{\prime \prime}\left(x_{k+1}\right) \widetilde{w}_{k+1}, w_{k}\right)=0
$$

Hence, λ_{k+1} is given by

$$
\lambda_{k+1}=-\frac{\left(F^{\prime \prime}\left(x_{k+1}\right) F^{\prime}\left(x_{k+1}\right), w_{k}\right)}{\left(F^{\prime \prime}\left(x_{k+1}\right) w_{k}, w_{k}\right)}
$$

Notice that the positive definiteness of $F^{\prime \prime}$ means that the denominator above is nonzero. The direction w_{k+1} is defined by

$$
w_{k+1}=\widetilde{w}_{k+1} /\left\|\widetilde{w}_{k+1}\right\|
$$

Theorem 6 If $F: H \rightarrow \mathbb{R}$ is coercive and has a positive definite second Gateaux derivative then the conjugate gradient method converges to the unique point of minimum x.

Exercise 7 Prove Thoerems 5, 6 for the case

$$
F(x)=\frac{1}{2} a(x, x)-\langle\eta, x\rangle
$$

where $a(\cdot, \cdot)$ is a coercive continuous symetric bilinear form on H and $\eta \in H$.

