
1 Optimization Algorithms

Suppose X; Y are Banach spaces, U � X is open and F : U � X ! R is
di¤erentiable on U: If F has a local minimum at x 2 U then F 0 (x) = 0: There
are two approaches to �ninding local minima of F: By creating a minimizing
sequence or by locating the roots of F 0 (x) : We brei�y give an overview of both
approaches. We start by locating the roots of F 0 (x) : The method that we have
in mind is, of course, Newtoon�s method. In what follows we study a class of
generalized Newton methods:For this purpose we suppose that F : U � X ! Y
and x 2 U is a solution of the equation

F (x) = 0: (1)

The classical Newton method uses the iterations

xk+1 = xk � F 0 (xk)�1 F (xk) ;

starting with an initial guess x0 to approximate x: A generalization of this
method is the following iterations

xk+1 = xk �A�1k F (xk) ; (2)

where fAkg is a sequence of operators in L (X;Y ) such thatAk 2 BL(X;Y ) (F 0 (x) ; �)
for some � > 0 and all k: For simplicity, we will set A = F 0 (x) : If A is bijec-
tive and � is su¢ ciently small then one can show, using Neumann�s series, that
A�1k 2 L (Y;X) and A�1k �A�1

 � �
A�12

1� � kA�1k : (3)

In particular the sequence
�
A�1k

	
is uniformly bounded. Furthermore, the as-

sumption that A is bijective implies that x is an isolated solution of (1). Thus,
there exists a r > 0 such that x is the unique solution of (1) in BX (x; r).

Exercise 1 Prove formula 3.

Proposition 2 Under the foregoing assumptions, if r > 0; � > 0 are su¢ -
ciently small then all the elelments xk produced by the iterations (2) are in
BX (x; r) : Moreover, xk ! x and

kxk � xk �
�
1

2

�k
kx0 � xk

Proof. Subtracting x from both sides of (2) we get

xk+1 � x = xk � x�A�1k F (xk)

= xk � x�A�1k A (xk � x) + o ((xk � x))
= xk � x�

�
A�1 +4k

�
A (xk � x) + o ((xk � x))

= �4kA (xk � x) + o ((xk � x)) ;
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where 4k = A
�1
k �A�1: Then

kxk+1 � xk � k4kk kAk kxk � xk+ o (kxk � xk)
�  kAk kxk � xk+ o (kxk � xk)

where  =
�kA�1k2
1��kA�1k : We will show by induction that for su¢ ciently small

r > 0; � > 0; we have xk 2 BX (x; r) :

kx1 � xk �  kAk kx0 � xk+ o (kx0 � xk)

�
�
 kAk+ o (kx0 � xk)kx0 � xk

�
r

Since o(ky�xk)
ky�xk ! 0 as r ! 0; for su¢ ciently small r > 0 we get o(kx0�xk)

kx0�xk � 1
4 :

Since  ! 0 as � ! 0; for su¢ ciently small � > 0 we get  kAk � 1
4 : Hence,

kx1 � xk � 1
2r: i.e., x1 2 BX (x; r) : A similar argument then shows that if xk 2

BX (x; r) then xk+1 2 BX (x; r) for the same values of r; � above. Furthermore,

kxk+1 � xk
kxk � xk

�  kAk+ o (kxk � xk)kxk � xk

� 1

2
:

This gives

kxk � xk �
�
1

2

�k
kx0 � xk ;

which implies that xk ! x as k !1:

Remark 3 In the proof of the above proposition, the value of � is explicitly
available. The value of r however depends on the behaviour of the derivative of
F at x: For example, if F is C1 on U then the remainder term o (�) takes the
form

o (xk � x) =
Z 1

0

(F 0 (x+ t(xk � x)� F 0 (x)) (xk � x) dt

from which we obtain the estimate

o (kxk � xk)
kxk � xk

�
Z 1

0

kF 0 (x+ t(xk � x)� F 0 (x)k dt

and, in this case, r is the � needed in the de�nition on the continuity of F 0 when
" = 1

4 :

Recall that if F : U � X ! R has two derivatives then F 0 (x) : V � X ! X�

and F 00 (x) 2 L (X;X�) : As a consequence to this proposition we get
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Corollary 4 If F : U � X ! R is twice di¤erentiable at x; has a local mini-
mum at x 2 U and F 00 (x) is bijective then there exist r > 0; � > 0 such that,
for any choice of x0 2 BX (x; r) and any choice of a sequence fAkg 2 BL(X;X�)

(F 00 (x) ; �) ; the sequence

xk+1 = xk �A�1k F 0 (xk)

belongs to BX (x; r) and converges to x greometrically. i.e.,

kxk � xk �
�
1

2

�k
kx0 � xk :

2 Descent Methods

In this section we assume that F : U � X ! R has a Gateaux derivative on all
of U: Suppose F has a minimum x 2 U: An algorithm to �nd the minimizer x
consists of generating a sequence fxkg in U such that xk ! x. Descent methods
generate xk+1 from xk by moving a distance �k in a direction wk in which
F decreases at xk: The direction of maximum descent at xk is the direction
opposite to the gradient F 0 (xk) : i.e., we may take wk = F 0 (xk) = kF 0 (xk)k
provided that F 0 (xk) 6= 0: We may then �nd xk+1 by moving in this direction
as far as possible. In other words we set �k to be the value at which

inf
�>0

F (xk � �wk)

is attained and then de�ne xk+1 by

xk+1 = xk � �kwk

This method is called the maximum the method of maximum descent with
optimal choice of parameters. Evidently this strategy generates a sequence
fxkg such that F (xk+1) � F (xk) : As for the convergenc of this method, we
have the following theorem.

Theorem 5 Suppose H is a Hilbert space and F : H ! R is coercive, contin-
uous with a continuous Gateaux derivative. Then the sequence fxkg generated
by the method of maximum descent with optimal choice of papameters is a min-
imizing sequence. i.e., xk ! x where x is a local minimum of F:

Proof. Omitted.
A variant of this method is called the method of conjugate gradients. To

describe the method we assume H is a Hilbert space and F : H ! R has a
positive de�nite second Gateaux derivative. Let x0 2 H be arbitrary and set
w0 = F 0 (x0) = kF 0 (x0)k provided that F 0 (x0) 6= 0 (otherwise F has a local
minimum at x0:) Suppose that xk; wk have been determined. Set �k > 0 to be
a point of minimum of F (xk � �wk) : i.e.,

F (xk � �kwk) = inf
�>0

F (xk � �wk)
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This occures at the point �k such that

d

d�
F (xk � �wk) j�=�k = 0:

Set
xk+1 = xk � �kwk:

Then
(F 0 (xk+1) ; wk) = 0:

De�ne a vector ewk+1 2 H by

ewk+1 = F 0 (xk+1) + �k+1wk
where �k+1 2 R is chosen such that

(F 00 (xk+1) ewk+1; wk) = 0:
Hence, �k+1 is given by

�k+1 = �
(F 00 (xk+1)F

0 (xk+1) ; wk)

(F 00 (xk+1)wk; wk)

Notice that the positive de�niteness of F 00 means that the denominator above
is nonzero. The direction wk+1 is de�ned by

wk+1 = ewk+1= k ewk+1k :
Theorem 6 If F : H ! R is coercive and has a positive de�nite second Gateaux
derivative then the conjugate gradient method converges to the unique point of
minimum x.

Exercise 7 Prove Thoerems 5, 6 for the case

F (x) =
1

2
a (x; x)� h�; xi

where a (�; �) is a coercive continuous symetric bilinear form on H and � 2 H:

4


