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SUMMARY

In this paper, we consider a one-dimensional non-linear system of thermoelasticity with second sound.
We establish an exponential decay result for solutions with small ‘enough’ initial data. This work
extends the result of Racke (Math. Methods Appl. Sci. 2002; 25:409—441) to a more general situation.
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1. INTRODUCTION

For a one-dimensional homogeneous body occupying, in its reference configuration, an interval
I the laws of balance of momentum, balance of energy, and growth of entropy have the forms

puy =0, + b (D

e+q. =08 +r 2)
r q

vey-(2) o

where the displacement u, the strain ¢ =u,, the stress o, the ‘absolute’ temperature 6, the heat
flux ¢, the internal energy e, the body force b, and the external heat supply » are all functions
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of (x,t) (t=0, x€l=(0,1)). Moreover, the strain and the temperature are required to satisfy
&> — 1 and 0>0. We then define the free energy by

Y=e—bhn 4)
For thermoelasticity with second sound, the constitutive relations are
Y=y (a0,9), n=n(0,9), o=0(:0,q), e=e(s0,q) (5)
and the heat conduction is given by Cattaneo’s law instead of Fourier’s law
(e, 0)q, + g = —k(e, 0)0, (6)

where Y ',5",6 e , 1, and k are smooth functions. We note here that 7 is the thermal relaxation
time and k is the thermal conductivity.
Using the second law of thermodynamics (see References [1-3]), one can show that

. 0
U .0.0) =P 0)+ 520 70 = 5
O-A(8> 97q) = WSA(SE 9>q)7 ’/IA(SJ 97(1): _l/J(; (89 97 ‘I) (7)
It then follows from (5) and (7) that
eA(gv H,q):[pA(g’ 656])_ Hlp(;(’ga 99Q) (8)

which gives, in turn,

7 "% _9 )
Oy

92): —9%03

In the absence of the body force b and the external heat supply r, assuming that the material
density p equal to one, and taking in consideration (7)—(9), Equations (1), (2), together with
Cattaneo’s law (6) take the form

uy — a(ey, 0, q e + b1y, 0,9)0, = o1 (14, 0)qq; (10)
Qt + g(ux’ 9> Q)Qx + d(”x; 97 q)utx = sz(ux, Q)qqt (1 1)
(ur, 0)g: + ¢ + k(u:,0)6, =0 (12)
where
. . -1 g, x — Oxo
a=0o, b=-0y, o=y, g=-—, d=-"L, wp=%2—
Oyg Yo o

Tarabek [3] treated problems related to (10)—(12) in both bounded and unbounded situations
and established global existence results for small initial data. He also showed that these
‘classical’ solutions tend to equilibrium as ¢ tends to infinity; however, no rate of decay has
been discussed. In his work, Tarabek used the usual energy argument and exploited some
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relations from the second law of thermodynamics§ to overcome the difficulty arising from
the lack of Poincare’s inequality in the unbounded domains. Saouli [4] used the non-linear
semigroup theory to prove a local existence result for a system similar to the one considered
by Tarabek.

Concerning the asymptotic behaviour, Racke [5] discussed lately (10)—(12) and established
exponential decay results for several linear and non-linear initial boundary value problems. In
particular he studied system (10)—(12), for a rigidly clamped medium with temperature hold
constant on the boundary, i.e.

u(t,0)=u(t,1)=0(1,0)=0(1,1)=0, (=0

and showed that, for small enough initial data and for o; = o, =0, classical solutions decay
exponentially to the equilibrium state. It is interesting to observe that taking «; = o, =0 makes
2(e,0)=co0, co>0, and consequently t=c¢0k, by virtue of (7). Although the dissipative
effects of heat conduction induced by Cattaneo’s law are usually weaker than those induced
by Fourier’s law, a global existence as well as exponential decay results for small initial data
have been established. For a discussion in this direction, see Reference [5].

For the multi-dimensional case (n=2,3), Racke [6] established an existence result for the
following n-dimensional problem

Uy — pAu — (u+ HVdivu + V=0
0,4+ ydivg+ddivu, =0
¢ +qg+kVO=0, x€Q, t>0 (13)
u(,0)=uo, u(,0)=u;, 06(,0)=0, ¢(,0)=gqp, x€Q
u=0=0, xed), t=0

where € is a bounded domain of R”, with a smooth boundary 0S), u=u(x,t), g=q(x,t) € R",
and p, 4, f,7,0,7,k are positive constants, where p, A are Lame moduli and 7 is the relaxation
time, a small parameter compared to the others. In particular if t=0, (13) reduces to the
system of classical thermoelasticity, in which the heat flux is given by Fourier’s law instead
of Cattaneo’s law. He also proved, under the conditions rot u =rot g =0, an exponential decay
result for (13). This result applies automatically to the radially symmetric solution, since it is
only a special case. Messaoudi [7] investigated the situation where a non-linear source term is
competing with the damping caused by the heat conduction and established a local existence
result. He also showed that solutions with negative energy blow up in finite time. His work
generalized an earlier one in References [8,9] to thermoelasticity with second sound.

For the classical thermoelasticity (t =0), results concerning existence, blow up, and asymp-
totic behaviours of smooth, as well as weak, solutions have been established by several authors
over the past two decades. See in this regard References [8—23]. In particular, we mention
here Slemrod [23] who studied a one-dimensional non-linear system and proved the global ex-
istence and the asymptotic stability of solution for boundary conditions of the form u, =0=0

§Relations from thermodynamics have been also used by Hrusa and Tarabek [11] to prove a global existence for
the Cauchy problem to a classical thermoelasticity system and then by Hrusa and Messaoudi [12] to establish a
blow up result for a thermoelastic system.
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or u=60,=0. For the global existence and asymptotic behaviour in the case of Dirichlet—
Dirichlet boundary conditions (x=6=0), the problem remained open for a long time. In
1993, Racke et al. [21] then solved it by using a tricky way¥ to deal with the boundary
terms. In fact this tricky way is due to Munoz Rivera [16] who considered the Dirichlet-
Dirichlet boundary value problem in linear thermoelasticity and proved the exponential decay
of solutions

In this paper, we consider (10)—(12), for a rigidly clamped medium with temperature hold
constant at the boundary, and show that a similar argument to the one in Reference [5] is
still valid to prove the exponential decay for classical solutions with small initial data. This
work is organized as follows. In Section 2, we state the problem and in Section 3, we prove
our main result.

2. STATEMENT OF THE PROBLEM

We consider the problem

Uy — Aty + b0y = 001qq, (14)

0 + 9q. + duy = 0299, (15)

19, +q+k0,=0 (16)

u(0,.)=uo, u(0,.)=uy, 000,.)=00, ¢(0,.)=qo (17)
u(t,0)=u(t,1)=0(1,0)=0(¢,1)=0 (18)

where
a=a(ux,0,q9), b=b(ux,0,q9), g=9(us,0,q), d=d(us,0,q)
T=1(ue,0), k=k(u,,0), or=01(uy,0), on=0(u,0)
We assume that there exists a positive constant >0 such that
p<a(u,0,q), P<g(uc0,q), Pp<k(u.,0), p<t(uy0) (19)
d(uy, 0,9)#0,  b(ux,0,9)7#0 (20)

In order to make this paper self contained we state, without proof, a local existence result.
The proof can be established by a classical energy argument [24]. For this purpose we set

uy = a(uoy, 0o, qo )uoxe — b(uox, 0o, qo)0ox + o1 (uox, 00)qoqox

9This way of dealing with boundary terms was also used by Racke in Reference [5] and it will be used in this
work.
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01 = —g(uox, 0o, 0)qgox — d(utox, 0o, qo)urx + a2 (ttox, 00)q0g1

-1 k(uy, 0)

7 T(uoyx, 0) 7o (o, 0p)

Proposition

Assume that a,b, o1, g,d, 0,1,k are C* functions satisfying (19) and (20). Then for any initial

data

uy € H¥(O)NHNI), w,00€ H()NHXI), qocH)

u, € Hi(I), 0,€H}I), 0y>0

problem (14)—(18) has a unique local solution (u,0,q), on a maximal time interval [0,7),

satisfying

ue ﬁ C"([0,T), H*>"(I)NnH (1)), uecC(0,T),L*(I))

m=0

0e rl] C™([0,T),H* "(I)NH{(I)), *0cC(0,T),L* 1))
m=0

q¢ h C([0,T), H* "(I)NHy (1)), g€ C([0,T),L*(1))
m=0

To state our main result, we denote by

1
A = [ b 1 4 4 0 4
0

+ 0+ 0+ 0+ O+ 0+ +q,+ .+ au+q,

+q* +4q*)dx

o(t)= sup

0<x<l

0] +10:] 4 10:] + ] + |ge| + lgx| + [ea] + Ju]
( | + [the| + [1ase| + [ue] )
and

E(t)=E\(1) + Ex(1) + E5(1)

where

1
Ei(t)= % /0 [kdu? + kdau? + kb0 + bgtq®1(t,x)dx = E\(t,u, 0, q)

21

(22)

(23)

(24)
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and
Ez(f) = El(ts u, 0y, q:), E(t)=E\(t,uy, O, qu)

Theorem
Assume that a,b,u;,g,d, 0,7,k are Cg functions satisfying (19) and (20). Then there exists
a small positive constant d such that if

Ao = [uollzs + llees 7 + 110oll72 + llgoll7> <9 (25)
the solution of (14)—(18) decays exponentially as ¢ — + oc.

Remark 2.1

C; denotes the set of bounded functions with bounded derivatives up to the third order. This
condition is only made for the simplicity of the proof. However, the decay result still holds if
(19) and (20) are satisfied only in a neighbourhood of the equilibrium state and the functions
are taken in C3. In this case a slight modification in the proof, as in References [24,25], is
needed.

3. PROOF

Given a local solution, we multiply (14) by kdu,, (15), by kb0 and (16) by gbq, integrate
over /, using integration by parts, and add equations, to obtain

dE\(2) _
de

!
/ bgq* dx + R, (26)
0

with
L 1 1
R, = / E(kd),u,2 — (akd)suu; + E(akd),uf + (bkd ) Ou; + 3 (kb),0?
0

1
+(kbg)eq0 + 5 (bgt)iq* + (kdoi )qq.u, + (kdon)qq,0) dx

By using (19) and (20), it is easy to see
Ry | <Ta(r)A(t) (27)

where I denotes a positive (possibly large) generic constant independent of u,6,q,¢. Then
(26) becomes

1
dEdlZ(z) <_ /0 bgq? dx + To(1)A(t) %)

Differentiating (14)—(16) with respect to ¢, we get

Uy — Allyyy — Ayl + DOy + b0, = 001q,q + 019G + 119G (29)

Copyright © 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. (in press)
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Ou + 99 + 91qx + dityx + d iy = 02G7 + 02,4, + %2Guq (30)

Tqu + g + g + kOy + k0, =0 (31)

In the same manner, multiplying (29) by kdu,, (30) by kb6,, and (31) by gbgq, we obtain

1
dEa() _ / bgq? dx + R (32)
dt 0

with
1
R, = / (kdasuyity — kdb,Ocuy + oikdqqeuty + 01kdqqyuy — kbg,q,0,
0

— kbd,utxgt + a]tkdqqxutt + Oﬂzkbqtzet + Otztkbq,qet + (xzkbqqﬂgt
— bgrtq,2 — k,bg0.q, — (akd)yuyuy + (bkd ) O,u, + (kbg).6,q,)dx

1 1
+3 [ )+ (akd )i + (k05 + (b)) dx
For additional estimates, we differentiate (29)—(31), with respect to ¢, to get

Uyt — AUy — 20Uy + D04y + 2b,0, — aytty + by 0y

=201,G1Gx + %1 quqx + 200G Qe + 201:9qn + 1G4 %1 Gx (33)

O + 99 + 29,9 + Autye + 2d Uy + guqx + d sy

= 20€thf + 30(2%61tt + 0nq:q + ZOCZthtq + 0 qmq (34)

qu + 2T qu + Tuqi + qu + KOy + 2k, 0, + ky0, =0 (35)

We then multiply (33) by kdu,,, (34) by kbO,, and (35) by bgq, to have, by similar calcu-
lations

1
dEgt(’) :f/ bgq? dx + Ry (36)
0

where

1 1
Ry = / [(bkd )xu1 0 + (kbg)xf)nqn — (adk)xuptty] + / kdu (2a,up,
0 0
—2b,0 + ayite — by, + 20011919x + A1 quqx + 200G, + 20019G

Copyright © 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. (in press)
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1
+019qux + Otmqqx) dx + / kb@n(*2gtth —2duyy — guqdx — dyuy + Zathtz
0
1
+3002q:9u + 0204919 + 200,quq + O(ZCImQ)dx - / bgq”(zft%t + Tuq:
0

1 1
+ 2k + ky6,)dx + 3 / [(kd),u,z,[ + (akd )y, + (kb)tef, + (bgr)tq,z,] dx (37)
0

By the same manner as in (28) and (32) we arrive at

dE5(1)
det

1

< - / bgq? dx + D(ot) + () + o> (¢))A(t) (38)
0

We then use (16) and (a + b)*<2(a® + b?), to get

1 5 121_2 ) 12 5
/Oﬁxdx</0 thdx—i—/o 24 dx (39)

A differentiation of (16) with respect to ¢ then leads to
Tqu + g + kOy + 1,9; + k0, =0 (40)
Multiply (40) by 6,, and integrate over / to find

1 1
/ k02, dx = — / (tqu + q: + 71 + k:0,)0,, dx (41)
0 0

and thanks to Young’s inequality and (19), we obtain

1 1 .
/k@ﬁ,dx<C/ (¢> +¢>)dx + R, (42)
0 0

where
N 1
R = / (7905 + k,0,0,,) dx
0

Then from (39) and (42) we can write

1 1 N
/0(9§+0§,)dx<c/0 (¢ + ¢+ ¢*)dx + R, (43)

Multiplying Equation (14) by (1/a)u,, integrating over / and using integration by parts, we

have
1 1 1 1
1 1 1
/ uixdx:—i/ fu,xuxdx—f—/ () u,xuxdx—i—/ fufxdx
0 dt J, a 0o \a/, 0 a
1 1 1
—/ (1> u,tuxdx—l—/ é(9xuxxdx—/ ﬂqqxuxxdx
0o \a4/; 0o a 0o @

Copyright © 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. (in press)
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Young’s inequality then gives
1 1 1 2 1
/ uﬁxdxg—g/ 1u,,cuxdx%—/ 1uﬁvdx%—/ &chd + = / u?, dx
0 0o a 0o 4 o 4a’ 3 Jo

dt

g 71 Lo
+/ () Up Uy dx—/ () ut,uxdx—/ — Gl dx
o \a4/; 0o \a4/, 0o a

which implies
" "
/u dx + — /futxuxxdx</ —u? dx
3 0 a 0 a
2 1 1 |
1 1
'3b 6 dx +/ () utxuxdx—/ () u,,uxdx—/ ﬂqqxuxxdx
o \4/; 0o \a4/; 0o 4a

] Gt

Multiplying (15) by (3/ad )u,, integrating over / and using integration by parts, we get
3 > 0.u, dx
t

3 d '3 !
>9tu,dx—|—dt/0 E@,cu,dx—/o (ad

1 1
3 5
/Oau,xdx—/o (adt
—/139u dx—l—/l%@zdx— 1&9 —3—gu
, d o . ad * y ad T | gqg M

' (3g ' (3g ‘39
[ 8 [ (i [ Zras

ad ),
3g 3gb 3gu
quutt—ﬁ— 2d Q_azd q}dx

(44)

x=1

x=0

+/13°‘2 d+i/
y ad 1M T g

Then we obtain, with the help of (16) and Young’s inequality,
3gbt 3gu 5, 3gb 2} d
a

1 1
3, d 3 3¢
e < - _

/Oa”’de\dz/o {adgx”L 2g T 4% = Gagg 440 dx = ~ag

b3 b3 5
-I—/O (ad)xetutdx_/o <m{)t6xu,dx—|—/ —9 dx—/

1
3g>u\,qux+ 112/ u? dx

39 1 ['(3 !
I ] X - X d -
qu“’]xﬁ/o (ad)x“” At
27g° 7 2 '3,
+/ 2d2 v dx +— u dx+/ ﬁexd x4+ ; dqq,utxdx (45)
Math. Meth. Appl. Sci. (in press)
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A combination of (44) and (45) then yields

1
1
/fu,xdx—f—/ fu dx + — /(autxux—;gdqundx

3gbt n 3gb L3 3 "+ 3t d
2dk 19 Gar T ara et g 9 )9

L/3p o 3b 27N o, 274% 3g =l
< =+ = — | =5 quu
/0 <4a2+ d+d2>9xdx+/0 2d2 q; dx {adqut,LO—i—Rzl (46)

+

where

e e Do
R4:/ — ) gty dx—/ - unuxdx—/ — QU dx
0o \4/, 0 \4/x 0o 4a
+/l 3 oudx/1 3 O dx — H3a
o \ad )" o \ad )" o ad 1%
1
37g 3g d 3goc|
JICIETACI e
130(2
+ [ 22 qa ds (47)

Similarly, multiplying Equation (29) by (1/a)u,, we get, after integration over / and use of
Young’s inequality,

1 1 1 2 1
d 1 1 3b 1
2 < 9 1 ) 2 2
/0 Uy, dx < dt/o ) Ul dx+/0 au"xdx+/0 a7 05, dx + 3/0 ui, dx
1 1 1
+/ <1> Upllyy dX — / (1) Uyelhyy dx — / e Uy Uy dX
o \4/, 0o \a4/; 0o 4

1 1 1

bt 061 Oﬂ]

*gxxxd_ xxxd_ xrxd
+/0a Uyxs AX /antqutx /anqtu'tx

! o
- / — qQxUx dx (48)
0o a

Also multiply (30) by (3/ad)u,, to get, by the same manner,

1 1 1 1
3 3 3g 3g
/0 5 utztx dx=-— /0 E Gttunx dx — /O E Ui xt dx — /0 Té qxUrx dx

Copyright © 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. (in press)
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'3d ' 30, '3y
- A dt UpcUyge dX + A d q, U dx + ; T;’[ qiqUy dx
1
3u
—I—/O a—dz Gu QU dx (49)

By multiplying (29) by (3/ad)0,, and integrating over /, we have

'3 73 d ('3 i
_/0 Eef’”"xdx_/o (ad)x 0,,uttdx—|—$/0 a@,xuttdx—/o <ad)t Opcuty dx

1

3a 3b
/ d Htxuxxt dx — / = etx Uyex dx + A E thx d

3b '3y '3y
/ =1 0,0, dx — dl 0nqiq dx — / aidl 0xqqx dx

0

! 3oy,

- A W@x‘]%dx (50)

Using integration by parts, we easily see

1 x=1 1
3 3 3
- /0 ﬁ Ut xe dx = — |:(J(QZQtunx:| o + /0 <aZ’>x Unx gt dx
d ('3 b3 '3
+a /0 ﬁ Unxqt dx — /0 (CZZ) Upnxq: dx — A ﬁ Unxqu dx

Again multiply (29) by (3g/a’d)q, and integrate over I to obtain

x=1 1 3q
/ d Uyl xt dx = |: dqzunx} - + /0 <ad)x Uyuxd: dx
1 1
3g 3g
- /0 (a v )t Uperqr dx — /0 g Yol dx

d ['/ 3¢ 3gb 309
+ a/o <azd gy — %qtext - W 4199 x:

3ga 3gb 3a 3u
gdt qt XX + gdt - Zl(jg zq - az]ctlgqtqqx> d.x (51)

Copyright © 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. (in press)
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Combining (49)—(51) we arrive at

1 1 1 1
3, - 3 d 3 3
/0 p Uy dx = /0 (ad)x Oty dx + @ /0 d Oty dx — /0 (ad)t Oty dx

1 3 3at 2
7/0 7 Oty dx — | d Oty dx +/ d 0, dx
3b, ' 3y ' 30,
/ 000 /O o 0q.qx dx — /0 d 0qqx dx

30 3 = 173
/ 3o 0xqq.d — ng%uttx] » + /0 (acgi)x Upeqr dX
'3y '3y ' 3¢,
- /O ad t”txx‘]t dx — /0 g Hecdln dx — /0 g Tt dx

34, '3y ''3a
) ad Uty dX + /0 af;qtzumdwr /0 T;tqzqumdx

1 1
R d 3 3gb 3u
+/0 d quqUux dx + — dz / (azi, gy — % thxt - aTldg q:99x:

3ga, 3gb, 3oug 5 3o1,g
- a2d Qt xx+ d %Hx_ a2d qth - azd qtqqx dx

Using Equation (31) we can write

"3gb ' 3gbt "3gbt,
I L e - T

' 3gb 3gbk,
_/O —azilkqfdx—/o gdktqtg dx

Young’s inequality gives

'3 1, 127
— — < — J—
/0 dOMumdx\lz/O umdx—l—/o Ve 0; dx

1 1 1972
39 1 ’ 2797 ,
7/0 g o dxgﬁ/o u, dx +/0 a2 i dx

and

(52)

(53)

(54)

(55)

Copyright © 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. (in press)
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Taking into account (53)—(55), estimate (52) becomes

1 1
S e [ (L s et (T3 e (3 g, - 2
/0 aumc dx - ~/O (6 ulxx azdz tt d + dz 0 (ld A QL‘cutt ad glxuxx

+ thgtx

3o 3o 3a 3
Hx 1 HtquQ‘c dl Htxqqxt - T(,}t Htxqqx + <(,l(,gi)x uttht

<aégi )t Upxqr — i’t Txllaex dx — 76; Hths + dz qtzuttx

x=1
3oy,

+—qqu +& Upy | dx — 39 u
ad qiqUsx ad qiuqUix ad% ttx

x=0
+d/1 —iu —&u —iu 3ku9+3g u
dr Jy adk w1t adk gt adk wqt — adk 2d qilUn

B 3gbt B 3gbty , B 3gb , B 3gbk, B 3019
2dk 19" a1 2ar U T ak 1T geq 1199

3gat 3gb, 3oug . 3009
74 +th9 — g 99— g 199 dx (56)

Combining (48) and (56) we obtain

1 1 1
2 1 d 1 3
/o P utztx dx + 5 /0 e dX + — i / <au[[xuxt dx — %%”m

3gbt 3bg 37 3
+ 2arx 114 qu + deq, +Mutt%t+mun%

_ 3 0 _3m u ELIL dx
2q 1197 — 7 99¥exe — = 50 41d qu

3g =hoortapr o 3p 27N
<le%uttx]x_o+/o (4az+ d+d2)0 dx

127 2
+/ 232 ¢ dx + Rs (57)
0

where

1 1 1 1
1 1 b
Rs = / () Urglhyg A — / () Uil dX — / et dx + / 0ty dx
0o \4/; 0o \4/ 0o 4a 0o 4a

1 1 1
oy d o d Oy d
- - quIxuxxt X — - qCIxtu,txl X — - qqx”xxt X
0o 4a 0o 4 0o a
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1 3 361; 3bt 30(1
*/0 <ad>t Oty dx — ; ud Oty dx + A ud 010, dx — A ud 0ixq:qx dx

304 ! 30, ' (3g
/ 0xqqx dx — /0 d 0qq. dx + /0 o xunxqtdx

1 3 1 3 3d

3o 13 ' 3y
+ /0 dzq,zunx dx + /O T;qtquttx dx + /0 qutfqutzx dx

d [t/ 31 3k, 3bgt, ,  3bgk,
+E/O < adk "~ a0~ aar 4 gy 1

3ga, 3gb, 309 . 309

2d Gy + 2d q Td 19x 2d q:99x

3o 3o
+ ﬁ q:9 (—gth —dy + 02q7 + 02qiq — aTZC’Zg qtqqx> dx

Now we multiply (14) by u,, integrate over / and use Young’s inequality to arrive at

1 1 1 1

/ uftdx<2/ azu)zmdx—l—Z/ b20fdx+2/ o gty dx

0 0 0 0
and use (16) together with Poincare’s inequality for u, and 6 to obtain
1 1 2
/0 (uf +ul +0%)dx < 2/0 azuﬁxdx—F/ Qv +1) ( 3 g+ kzqz)dx
1 1
—|—2/ 01q Gty dx +/ u?. dx (58)
0 0

Similar treatment to (29) and (31) yields
1 1 2
2 2 2 2 2
/()(uttt+utt+0t)dx<2/() xxtdx+/(2b +1)<k2 q”"’kz%)dx

1 1
+/ utztx dx + 2/ (@sttcttsyr — beOxttyy + 01 GGl
0 0

T k
+ 01 Gthant + 01 GGt — i qi0i — ;’ 0,0, ) dx (59)
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Therefore (58) together with (59) give

1
/(ufﬂ—i—u,z,—i—u,z—i—@z—f—@z)dx
0
1
<C/ (P 12, + it + ¢+ ¢+ ¢7)dx + R (60)
0

where C is a constant and

1
R¢= 2/ (alq%“n + gttty — DOty + 01q1GxUn + A1 Gt Uhss
0
T k
+ 0 QG — ;tqtetx - ktexgzx> dx

Multiplying (14) by u using Poincaré’s inequality and Young’s inequality we easily arrive at

i 1
/ uidng/(u,z,—l—Hi)dx—i-]h (61)
0 0

where
1
Ry = / (—ayuuy, + o1qq u) dx
0

Also multiplication of (14) by 6, integration over /, and use of Young’s inequality leads to
1 /2
/dex\*/ 6]0 dx+/ (gz + = 62+iutx
1
+5 08 = 010, + 0,00 + 0.0, ) d (62)

A similar treatment to (30) gives

! d? 1
/ 07 dx < —/ 90,q, dx +/ (—gt(%xqt +9:0uqi + = up + 5 0z

2 1
+ % szt + 5 thx - gﬁnqx —dOyuy, + 0‘261,29:: + 0‘2:4%&:) dx (63)
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From (62), (63), (19), and (20) we obtain

1 d 1
| @+ oirax= 5 [ @oq0. + 2000, ax
0 dr J,
1 1
<C/(ﬁ+¢£+q§+9@dx+/‘fwg+u@dx+R8
0 0

where

1
Ry = 2/ (—g:q9x + gxﬁzq + azqqﬁf —d Oy + fxzq,an
0

—90xq: + 9:04q: — 9,04qx + 02,9q,0,) dx

(64)

(65)

The boundary terms in (46) and (56) are treated as in Reference [5]. In fact, by Young’s

inequality we have

992 2 ! 2 =1
{WQ} » + |[eau, [\=o

C —
< ;‘(qz(l) +¢%(0)) + |[eaui =)

39 ! 99> 2 !

~ ~
x=0 x=0

where

94> 9g>
=M
c o { |:4a3d2:|x0’ [4‘13‘12 x=1

By the imbedding of W' in L> we have
1
1P < [ (@ +@dx 0sr<l
0
We exploit Young’s inequality to get

1 1
lg(x)> <2 <1—|—812)/0 qzdx+282/0 ¢ dx, 0<x<l

Therefore,

1 1
St (1+5) [ darrace [ das
0 0

g g2
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Using (15) to obtain

c 5 4C, 1 /1 5
—_ 1 < — 1 —
o)< (14 ) [P
! 1 d o
+4Ct6/0 (—gﬁth — gutquwL ;qqth)dx

Again Young’s inequality allows us to write

39 17" 4cq A 136Ce ,
[adqu,x]x_o < 8—3(14—8 )/0 q dx—l—/o 2 0; dx

1 ]2 2 32
+/0 36658 u,zxdx+/0 7@89(1 d g dx

1
4C e

+ /0 g 2 9quq. + [eaut]eo| + |[cau ]|

By the same manner we can estimate the boundary term in (56) as follows:

39 17 _[ 9 e -
o] < g e, <SG+ GO+ a1

then we obtain

C 1 /! 1
T o<t (145 [(@axrace [ g

Using (30) and Young’s inequality, we get

3¢ = 5 36C¢ 2 4 36Ce 2
|:adqtuttx:| S 7(1 +¢& )/ d +/0 2d2 Htt /0 (l ttxd
' 2C ea’d?
b [ 2 i lsand ool + [fsand i
0

1
d o
+4C[8/0 (_ggt qqu[ - j u[qux + 52 qlzth

oL o
+ % q99:9: + 52 qq::Csz> dx

(66)

(67)
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Addition of (66) and (67) leads to

x=1

x=0

3
’ [az (qUee + Grtta )]

2C, !
<8—3f(1 +82)/ (¢* + ¢*)dx
0

x0|

1'36C 36C,
# [ 30G @rarr [ 2058 ik + )]

4Ce0ip

2Cea’d?
+ | [eauz, + saufx]lef + / L( qa +q2)dx + / 99:9x dx
0

1
d o o o
+4C,e? /0 (—‘Z Gt — j UG + j 9 qn + f 99190 + j qqnq;x> dx
Using (15) and Young’s inequality we find

1 272 22 2
2Cea*d” , 4Cead b de 5,
_— < _ 9 + — ' X
/0 9 & dx /0 9 gz Uiy P 99:9: |d

By the same manner using Equation (30) we obtain

1 2 72 2 72 2
2Cea*d” , / 4C,ea°d ( o, d° 2 g:
——q;dx < — 05 + v~ QG
/0 9 9 0 9 g tt g Uy g qx9:

d o o o
- j UnGie + 52 Pqu + f 4qqn + j qttCIQZx) dx

Then, we conclude

x=1

3
‘ [aZ’ (que + Gt )} .

2€, ! '36C
<8—3’(1+82)/ (q2+q,2)dx+/ 7’28(03,+9,2)dx
0 0o @

36C,
+ / 8 2 + 2) dx + |[saidy, + card] o] + [[ca, + cariZ] |
0
4C e d> > 4C,ea’d? d?
+/ ’89“( 0% + u,x>d +/ ’89“( 02 + um>dx+R9 (68)
0 g g? 0 g°
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where

1 1
4C, e d,
Ry = /0 ; 2 4q.qx dx + 4C,& /O (—“;’qqut g el +2 p 2 i
1 2 72
o o 4Ciea*d? (o
+ f 49190 + j qqnqm) dx + /O ’T (gz q9:9: — %QXQM

d o o o
- j UnGi + j @ qn + f 99qn + j qnqth) dx (69)

As in Reference [5], we multiply (29) by ¢u,, for ¢(x)=1 — 2x, and integrate by parts to
obtain

d ! a ,
T / utt¢”tx dx + > (un(l) + ”zt(o)) + [ Mtx:| —o + [2 ut'ci| —
1 1 1 1
- /0 ”tzt dx + /0 (7aut2x + b0y Ppuy ) dx = /0 (2 axd)utzx + aU Pl

— b0, puy + 001G g Puiye + 01 qG PUiy + ocnqqxqbutx) dx (70)

If we multiply (15) by (—b/d)¢0,; and integrate by parts we get

bl gl a9 [ (b
[Zde} {Zde,]xo—/odetdx—dt/o 9 94,0, ) dx
/b
(% a0, — o0, ) a
o \ d
! b 1 b b
= [ (2 dq00s - 5 () 60— (%) a0, ) e
0 d x d t
which implies, using equation resulting from differentiation of (16) with respect to x,
! b byg bgk
) b » D Y9 _
{Me] [Zde} +/0 ( 2 02dx— 20 g0, ,xd)HZX)dx

d [!'/bg bgk ,, bgk .,
“af, (Foeo)o [55e] - |35l
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Y7 1 (bg ,  bgr, bgk
= [ (-3 (@) o0+ 7 o0 )

g I

Combining (70), (71) and using Young’s inequality for fol(bg/dr)(,beqx dx, we arrive at

(ft/ol(un(lbutx - %(] ¢qx0x)dx + {%ufoZO + [;M?X} -

! b bgk b g?
< 2 2 Dm 2 2
/0 (u,,+au,x+ det + < P 4d212) 9x+qx> dx + A (72)
where

1
1
A= / (2 A QU + A Puiy, — b0, Puire + 011G, Gy Ptty + 019G Plhsy
0

bgk

bygr,
+ 001G P — ( >¢>92 gr $0.q,

_ &b baa0n — - (2)}( $0? — (l’dg) ¢>9qu> dx (73)

Next, we multiply (15) by ¢, and use Young’s inequality to get
: b2 2d> 20
idxs/ (62—|—u2x—|—2 x)dx
/O q s \g2 't g g 999
Thus (72) takes the form

a ,

d [! byg
a/o (utt¢uzx - 7 ¢qxex) dx + {2 utx} o —+ [i uthzl
‘ 2d° b 2 bgk g
<) (o (an B )i (g ) (50 + s )

2
4 quq,qx)dx +A (74)
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Similarly, multiplying (33) by ¢u,,, we obtain, after some manipulations,

d /! a 1
a/ Ugr DUl AX + [2 uttx] + [2 zzzx} » + i(uftt(l) +u?tt(0))

. 1
1
+/ (_autztx - utztt + b0y Puiy ) dx = Ay + 5 / axqﬁu?tx dx
0 0
where
1
A, = / [2astt Priee — 25,05 Pt + Aty Pty — by Ox Ptirey + Pt (%191 Gx
0

+ 200G G + 20016G:Gx + GG + 201,90 + 14qqx)] dx

The multiplication of (30) by —(b/d)¢0,, yields, by similar computations,
/ 04 ax _E % $0rqrdx + {20[9,2,} {26193,}

b 1 ' /b
+ / 29 Qttx¢9tx b¢uttx0ttx dx=—> / 5 ¢0t2t dx
0 2 0 d x

b
_/ ( dg> th¢0tx dx / d ¢uttx( gth — dtutx + O(th + O‘Zt%q + “thtq)dx
0

(75)

which implies, using equation resulting from differentiation of (31) with respect to x and

integration by parts,

b b
2 - 2 Y2
/ d Hﬂ d de 0 d)etxqﬂ dx * |:2d 0”:| x=1 * |:2d Htt:| x=0

bgk bgk bgk .,

! bg 2 2
/0 (—bp0 ity — T GOnqy — T 0.)dx + Ld 0; ] + [MQ,X} » =A; (76)

where

1
A3 :/ {; (Zi> ¢02 bth ¢9tx% bgkt ¢01x6xx + — bgTX d)etxqtt
0 x

b‘l:A bgk, bkY 1 /b b
0 gt e 0%+ P 0.0~ 3 (5) - (%) gut fa

1
b
+/ 4 Ouu(—gigx — dittye + O‘ZQ? + 02:q:q + 02quq) dx
0
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Combining (75) and (76) we obtain

a ,

d /! b
a‘/o (uttt¢utzx - jg ¢01qut> dx + |:2 uttx] o + [2 ”tzx:| . — (A + Aj)

1 b bgk b g? 1 /!
</0 (u,zt,+au,2,x+d9,2,+d9 + 17 S 0% +q,x>dx+2/0 aydug, dx

Also multiplying (30) by —(1/g)q., and exploiting Young’s inequality gives

1 1 2d2
Z dx < / ( 02 + uzx) dx
/0 q; 0 \ i 7 1t

1
d o o o
+ /0 2 (i’qxth - jumqm + j P+ f 4199 + j qnqth> dx

Therefore (77) becomes

(;1[/01 (uttt(i)uttx d)et'cqxt) dx + [2%&} o + [;M,Z,XLZI

77

! 2d? b 2 bgk = bg
</0 <uft,+<a+g2)u,2,x+<d+g2)9,2,+(d +4d2 2)02>dx+A4 (78)

where

1
29, 2d
Ag=N0y + Ay + / ( G Ut — = Gy — — Un gy
0 g g

20 200 20
+ 72 Cn + = q:9qn + 72 qnqth> dx

Adding (74) and (78) we obtain, after multiplication by 2,

d /! b
P / 28(”tt¢utx + uttt¢”ttx - (d)@qu + (,betqut)) dx
dr J, d

+elauy, + up)]e—o + ela(ug, + 13,

I I 2
<28/ (uft+u,2,,)dx+28/ <a—|—232> (up, + ul,)dx
0 0
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Y7/b 2 o
+2g/0 (d+g2>(0,+9,,)dx

bgk  b*g?
+2g/0 (d + 17 2>(92 +60?)dx + Ry (79)
where
' 260,
Riyo= 7 q9:qn + 26(A1 + Ay) (80)
0

A combination of (68) and (79) yields

x=1

3
‘ [az, (quun + qt”ttx):| Y

2C, ! 136Ce
<8—3’(1+82)/0 (q2+q,2)dx+/0 az—d’z(egwf)dx

36C,8 5 / 4Cea’d? 42 2
[ 20 g [ (L i )an
4C,ea*d? d2 d !
+A IT <g 6121 g ttx) dx dl‘/ 28 <u”¢u[x
bg ! 2 2
+ Uy Pty — " (p0:qy + P04qy) | dx + 2¢ | (uy; + uz,)dx

1 AT L(b 2 2
+28/0 <a—|—2gz> (utx—l—um)dx—i-28/0 (d + g2> (07 + 0,)dx

bgk b
+28/ <dq + dzgz>(02+02)dx+Rg+R10 (81)
0

Combining (46), (57), (81) and using (19) and (20) we obtain for sufficiently small e:

'2 "1 d
| Seiridgan+ [ S0+ de+ 560

L3 3b 27 ' 2747
</o <4a2+ad+d2> (0§+92,x)dx+/0 a232 (47 + qz) dx

2C : '36C;e
+—f(1+82)/0 (q2+q,2)dx+/0 gz (On+07)dx
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1 2 32 2 1 2 32 2
+/ 4C,eard (1 o d? >dx+/ 4C,ea*d (1 0 d? ix)dx
0 9 9° 9° 0 9 g° g°

36C,
+[} tg( Uy + Lx)dx+28/ (utt+uttt)dx

1 1
+2.9/ <a+2d) (ufx—i-u,z,x)dx—l-%/ <2+§]22>(6,2+9t2,)dx
0

bk
+2¢ / < g dz2)(92+6;)dx+R4+R5+R9+R10

where

1 3g 3gbt
Gi(t)= /O [a (Upetty + Upcttye) — 2d (quu + qrtte) + 2dk (99: + 9:94)

3bg 37 3
+ 2dk (qz + %2) + adk (uq; + unqu) + adk (g + uuq:)

30(1 0 30(1 u _30(10(2 2
d%q T q1qUux “2d q9:9 qn

b
+ 26(uy Puipe + U Pty — gg (¢9x%r + ¢>9tquz)

Then we have, by (19) and (20),
1 1 d
cl/ (u,2x+ut2,x)dx+cz/ (ufm%—uﬁxt)dx%—aGl(t)
0 0
: 2 2 : 2 2 cs [ 2 2
<6 (Hx + Htx)dx+c4 (q; +qtt)dx+ = (g +%)dx
0 0 > Jo
1 1
+c(,8/ (9?,+9t2)dx+078/ (uftx+ufx)dx
0 0

Adding ¢ (64) to (82) we get

1 1 d 1
cl/ (ufr+u,2,x)dx+cz/ (uiv—l—uix,)dx—i-aGl(t)—l-a/ (0> 4 0?)dx
0 0 0

(82)
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d 1
—0'—/ 2g9(q0, + q,0,)dx
dr J,
1 1 I
<o [(@+@ydxre [ @@y S [ (@ g
0 0 0
1 1 1
+c68/ (9,2,+6t2)dx+078/ (uftx+uﬁr)dx—|—088/ (u,zz—l—u,z,,)dx
0 0 0

1 1 1
+cgs/(9§+9,§)dx+cm/(q?+q?,+9,%+9§)dx+a/ d*(uj, + up,) dx
0 0 0

+ R4+ Rs + c1oRs + Ro + Ryg
where c¢;—cjp are constants depending on f and the upper of the functions a,b,g,d,t,k, o1,

oy and their derivatives only. Using (43), (57), (63), (81) and choosing ¢ small and ¢ such
that ¢; — a||d||%, >0, we have

1 1 1
d
en [ G+ id)dren [+l drben [ (@4 0+ G0
0 0 0

1
<014/ (¢*+q +q5)dx +c15(Ry + Rs + Ry + Ro + Ryig + Ry) (83)
0

where
G(t)=Gi(t)—0a /01 29(q0y + q:0y)dx
For y>0 we define the Lyaponov function
F(t)= SE(0)+ Ga(0) (84)

Lemma 3.1
There exists a constant ¢ >0 such that

(3~ ewlt 420+ 200 ) BP0 < (5 + el +a0) 420} ) B0 65)

Proof
It suffices to show, for a constant c¢;¢ >0, that

Ga(t) <crs(1 4 o) + o (1))E(1) (86)

To do this, we estimate all the terms of G,(¢), making use of Young’s inequality, Schwarz
inequality, and Poincare’s inequality as in, for instance,

1 1
30 oo
| Ziadiaar<s|| 55| e G0l [ laads<c2oE0)
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where C depends only on a,b,g,d,t,k,01,0, and their derivatives. Hence, by carrying all

calculations (86) is established hence the assertion of the lemma is proved. |
Lemma 3.2
There exist ¢17,c13>0, such that

crE() A1) <cig (1+ at) + o (1) + (1) + o (1) E(1) (87)
Proof

The first inequality in (87) is obvious, the second is established by estimating all the terms
as in Lemma 3.1. For instance we multiply (30) by ¢, to get

1
/ gadx= / E (0, — gige — ity — ditte + 022 + %2qeq + 02quq) dx
0 0

and by the same manner, using (19), (20), and Young’s inequality, we obtain

/ qr dx < ( / 07 + c()qr + uz, + oy, + (t)g; + ¥ (1)g” + a(f)%%)

< C(1 + a(t) + o2(1))E(t)
By carrying all the calculations, we arrive at
A< Crg(1 + () + o (1) + (1) + o* (1)) E(2) (88)

This completes the proof of Lemma 3.2.
Next using (26), (32), (36), (43), (60), (61), and (83) we obtain

d —_—
3 FOS —cwE@) + [Ri+ Ry + -+ Rio + Ri| (89)

Lemma 3.3

[Ri +Ry+ -+ Rio+ kvﬂ <eoa(t) + o7(1) + o (1))A(2) (90)

Proof
The proof is also similar to the one of Lemma 3.1. We only consider those of highest order;

namely fol oy kdqq ey, dx, fol o2 kbgq,0,; dx. We first compute

2 2
1t = Oy, Uy T At Unsr + zaux(?etuxt + 061009t + %y, Oy

By using the fact that o;,k,d € C}, we obtain

1 1
<C {/ |qquu,| dx +/ |qQqxthstin| dx
0 0
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1 1 1
+/ |q‘Ixutttux16t| dx + / |qqxum9,2| dx + / |q(]xum8tt| dx}
0 0 0
< C{3(t) + (1) }E(1)

Similarly the other integral is treated. By carrying all calculations, the proof of the lemma is
completed. |

By combining (85), (87), and (89) we have

d
aF(f) < —yeiof (1)

cis(1 4 a(t) + o2(1) + o (¢) + o () (o(t) + o2(2) + (1))

* (1) — ens(1 + o0) + 22(1))

F(t)  (91)

At this point, we choose y so that (1/y)>2cs. Once is fixed we pick J, in (25), small that
enough so that

cis(1 + 2(0) + &?(0) 4 o*(0) + a*(0))((0) + 0*(0) + #°(0)) _1

i (1/y) — c16(1 + a(0) + 22(0)) Sgve

hence (91) yields, for some #, >0,

d

aF(r) < —cs5F(t) Vte[0,4)
Direct integration then leads to

F(t)<F(0)e " Vte[0,t) (92)

Since F(¢t)<F(0) we extend (92) beyond #. By repeating the same procedure, taking é even
smaller if necessary, and using the continuity of F, (92) is established for all #>0. This
completes the proof of the theorem. |

Remark 3.1

The proof shows that the initial data can be taken in a neighbourhood of the equilibrium
state (0,0,0), in which the solution remains for ever. Therefore the result is also valid for
a,b,g,d,t,k, 1,00 in C* instead in C; as mentioned in Remark 2.1.
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