1 Trace Theory

Here, we consider $1 \leq p<+\infty$ and Ω be an open of \mathbb{R}^{N}.
Lemma. Let $\Omega=\mathbb{R}_{+}^{N}$, there exists a constant $C>0$ such that

$$
\left(\int_{\mathbb{R}^{N-1}}\left|u\left(x^{1}, 0\right)\right|^{p} d x^{1}\right)^{\frac{1}{p}} \leq C\|u\|_{w^{1, p}\left(\mathbb{R}^{N}\right)}, \quad \forall u \in C_{0}^{1}\left(\mathbb{R}^{N}\right)
$$

Proof. Set $G(t)=|t|^{p-1} t$ and $u \in C_{0}^{1}\left(\mathbb{R}^{N}\right)$. We have

$$
\begin{aligned}
G\left(u\left(x^{\prime}, 0\right)\right) & =-\int_{0}^{+\infty} \frac{\partial}{\partial x_{N}}\left(G\left(u\left(x^{\prime}, x_{N}\right)\right)\right) d x_{N} \\
& =-\int_{0}^{+\infty} G^{\prime}\left(u\left(u^{\prime}, x_{N}\right)\right) \frac{\partial u}{\partial x_{N}}\left(x^{\prime}, x_{N}\right) d x_{N}
\end{aligned}
$$

That is,

$$
\left|u\left(x^{\prime}, 0\right)\right|^{p} \leq p \int_{0}^{+\infty}\left|u\left(x^{\prime}, x_{N}\right)\right|^{p-1}\left|\frac{\partial u}{\partial x_{N}}\left(x^{\prime}, x_{N}\right)\right| d x_{N}
$$

So, we have by Young's inequality

$$
\left|u\left(x^{\prime}, 0\right)\right|^{p} \leq C\left[\int_{0}^{+\infty}|u(x)|^{p} d x_{N}+\int_{0}^{+\infty}\left|\frac{\partial u}{\partial x_{N}}\left(x^{\prime}, x_{N}\right)\right|^{p} d x_{N}\right]
$$

By integrating over \mathbb{R}^{N-1}, we arrive at

$$
\int_{\mathbb{R}^{N-1}}\left|u\left(x^{\prime}, 0\right)\right|^{p} d x^{\prime} \leq C\left[\|u\|_{p}^{p}+\left\|\frac{\partial u}{\partial x_{N}}\right\|_{p}^{p}\right]
$$

This completes the proof.
We define the operator

$$
G: C_{0}^{1}\left(\mathbb{R}^{N}\right) \longrightarrow L^{p}(\Gamma),
$$

where $\Gamma:\left\{\left(x^{\prime}, 0\right) / x^{\prime} \in \mathbb{R}^{N-1}\right\}=\partial \Omega$.
This operator, which takes $u \longrightarrow u_{\partial \Omega}$ is linear continuous. Since $C_{0}^{1}\left(\mathbb{R}^{N}\right)$ is dense in $W^{1, p}\left(\mathbb{R}^{N}\right)$, we then extend it by continuity to $W^{1, p}\left(\mathbb{R}^{N}\right)$.

This operator is called, by definition, the trace operator.
Remark 1. It is clear, from the lemma, that the extension cannot be taken from $L^{P}\left(\mathbb{R}_{+}^{N}\right)$ to $L^{p}(\Gamma)$. This shows that L^{P} functions do not necessarily have trace on Γ.

Remark 2. In the case Ω is bounded, we use the local coordinates to define the trace of $u \in W^{1, p}(\Omega)$ over $\Gamma=\partial \Omega$.
Theorem. Suppose that Ω is a domain of \mathbb{R}^{N} of class C^{m}. Suppose that there exists an extension operator

$$
E: W^{m, P}(\Omega) \rightarrow W^{m, P}\left(\mathbb{R}^{N}\right)
$$

Then
(i) If $m p<n, \quad W^{M, p}(\Omega) \longrightarrow L^{q}(\partial \Omega), \quad \forall p \leq q \leq \frac{(N-1) p}{N-m p}$.
(ii) If $m p=N, \quad W^{m, P}(\Omega) \longrightarrow(\partial \Omega), \quad \forall p \leq q<+\infty$.

Proof. See Adams p. 114.
Corollary. Suppose that Ω is of class C^{1}. Then we have
(i) For $p<N, W^{1, p}(\Omega) \longrightarrow L^{q}(\partial \Omega), \forall p \leq q<\frac{(N-1) p}{N-p}$
(ii) For $p=N, W^{1, p}(\Omega) \longrightarrow L^{q}(\partial \Omega), \forall p \leq q<+\infty$.

Remark. The above embeddings are continuous. That is $\exists C>0$ such that

$$
\left\|u_{\partial \Omega}\right\|_{L^{q}(\partial \Omega)} \leq C\|u\|_{W^{m, p}(\Omega)} .
$$

Theorem. Suppose that Ω is a domain of class C^{1} in \mathbb{R}^{N}.
(i) If $u \in W^{1, P}(\Omega)$ then $u_{\left.\right|_{\Gamma}} \in W^{1-\frac{1}{p}, p}(\partial \Omega)$, with

$$
\left\|u_{\mid \Gamma}\right\|_{W^{1-\frac{1}{p}, p}(\partial \Omega)} \leq C\|u\|_{W^{1, p}(\Omega)}
$$

(ii) Conversely, if $v \in W^{1-\frac{1}{p}, p}(\partial \Omega)$ then there exists $u \in W^{1, p}(\Omega)$ such that $u_{\left.\right|_{\Gamma}}=v$ and

$$
\|u\|_{W^{1, p}(\Omega)} \leq C^{1}\|v\|_{W^{1-\frac{1}{p}, p}(\partial \Omega)}
$$

Remark. This last theorem has a generalization to functions of $W^{m, p}(\Omega)$. In this case, we have to assume the existence of an extension operator. See Adams p.215-217.
Definition. (Sobolev spaces of fractional orders)

Suppose that $s \in(0,1)$ and $1 \leq p<+\infty$, we define

$$
W^{s, p}(\Omega)=\left\{u \in L^{p}(\Omega) / \frac{|u(x)-u(y)|}{|x=y|^{s+\frac{N}{p}}} \in L^{p}(\Omega \times \Omega)\right\}
$$

Example. Let

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2} / x^{2}+y^{2}<1\right\} .
$$

We define

$$
u(x, y)=\left(x^{2}+y^{2}\right)^{\alpha}, \alpha>0
$$

We easily see that $u \in H^{2}(\Omega)$, since $\frac{\partial u}{\partial x}=2 \alpha x\left(x^{2}+y^{2}\right)^{\alpha-1}$.
So

$$
\begin{aligned}
\int_{\Omega}\left|\frac{\partial u}{\partial x}\right|^{2} & =4 \alpha^{2} \int_{0}^{2 \pi} \int_{0}^{1} r^{2} \cos ^{2} \theta\left(r^{2}\right)^{2 \alpha-2} r d x d \theta \\
& =4 \alpha^{2} \int_{0}^{2 \pi} \cos ^{2} \theta d \theta \int_{0}^{1} r^{4 \alpha-1} d r=\alpha \pi, \quad \mathrm{a}=\text { if } \alpha>0
\end{aligned}
$$

Similarly $\int_{\Omega}\left|\frac{\partial u}{\partial y}\right|^{2}=\alpha \pi$.

$$
v=u_{\mid \Gamma}=1 \in W^{\frac{1}{2}, 2}(\partial \Omega)=H^{\frac{1}{2}}(\partial \Omega),
$$

where $\partial \Omega=\left\{x^{2}+y^{2}=1\right\}$. It is clear $\int_{\partial \Omega} v^{2}=2 \pi$. Also

$$
\frac{|u(x)-u(y)|}{|x-y|^{\frac{1}{2}+\frac{2}{2}}}=0 \in L^{2}(\Gamma \times \Gamma)
$$

