1 Trace Theory

Here, we consider $1 \leq p < +\infty$ and Ω be an open of \mathbb{R}^N . **Lemma.** Let $\Omega = \mathbb{R}^{N}_{+}$, there exists a constant C > 0 such that

$$\left(\int_{\mathbb{R}^{N-1}} |u(x^1,0)|^p dx^1\right)^{\frac{1}{p}} \le C ||u||_{w^{1,p}(\mathbb{R}^N)}, \quad \forall u \in C_0^1(\mathbb{R}^N)$$

Proof. Set $G(t) = |t|^{p-1}t$ and $u \in C_0^1(\mathbb{R}^N)$. We have

$$G(u(x',0)) = -\int_0^{+\infty} \frac{\partial}{\partial x_N} \left(G\left(u(x',x_N)\right) \right) dx_N$$
$$= -\int_0^{+\infty} G'(u(u',x_N)) \frac{\partial u}{\partial x_N} (x',x_N) dx_N$$

That is,

$$|u(x',0)|^p \le p \int_0^{+\infty} |u(x',x_N)|^{p-1} \left| \frac{\partial u}{\partial x_N}(x',x_N) \right| dx_N$$

So, we have by Young's inequality

$$|u(x',0)|^p \le C \left[\int_0^{+\infty} |u(x)|^p dx_N + \int_0^{+\infty} \left| \frac{\partial u}{\partial x_N}(x',x_N) \right|^p dx_N \right]$$

By integrating over \mathbb{R}^{N-1} , we arrive at

$$\int_{\mathbb{R}^{N-1}} |u(x',0)|^p dx' \le C \left[\|u\|_p^p + \left\| \frac{\partial u}{\partial x_N} \right\|_p^p \right].$$

This completes the proof.

We define the operator

$$G: C_0^1(\mathbb{R}^N) \longrightarrow L^p(\Gamma),$$

where $\Gamma : \{ (x', 0) / x' \in \mathbb{R}^{N-1} \} = \partial \Omega$. This operator, which takes $u \longrightarrow u_{|\partial\Omega}$ is linear continuous. Since $C_0^1(\mathbb{R}^N)$ is dense in $W^{1,p}(\mathbb{R}^N)$, we then extend it by continuity to $W^{1,p}(\mathbb{R}^N)$.

This operator is called, by definition, the trace operator.

Remark 1. It is clear, from the lemma, that the extension cannot be taken from $L^{P}(\mathbb{R}^{N}_{+})$ to $L^{p}(\Gamma)$. This shows that L^{P} functions do not necessarily have trace on Γ .

Remark 2. In the case Ω is bounded, we use the local coordinates to define the trace of $u \in W^{1,p}(\Omega)$ over $\Gamma = \partial \Omega$.

Theorem. Suppose that Ω is a domain of \mathbb{R}^N of class C^m . Suppose that there exists an extension operator

$$E: W^{m,P}(\Omega) \to W^{m,P}(\mathbb{R}^N).$$

Then

(i) If
$$mp < n$$
, $W^{M,p}(\Omega) \longrightarrow L^q(\partial\Omega)$, $\forall p \le q \le \frac{(N-1)p}{N-mp}$.
(ii) If $mp = N$, $W^{m,P}(\Omega) \longrightarrow (\partial\Omega)$, $\forall p \le q < +\infty$.

Proof. See Adams p. 114.

Corollary. Suppose that Ω is of class C^1 . Then we have

- (i) For p < N, $W^{1,p}(\Omega) \longrightarrow L^q(\partial \Omega), \forall p \le q < \frac{(N-1)p}{N-p}$
- (ii) For p = N, $W^{1,p}(\Omega) \longrightarrow L^q(\partial \Omega), \forall p \le q < +\infty$.

Remark. The above embeddings are continuous. That is $\exists C > 0$ such that

$$\|u_{|\partial\Omega}\|_{L^q(\partial\Omega)} \le C \|u\|_{W^{m,p}(\Omega)}.$$

Theorem. Suppose that Ω is a domain of class C^1 in \mathbb{R}^N .

- (i) If $u \in W^{1,P}(\Omega)$ then $u_{|_{\Gamma}} \in W^{1-\frac{1}{p},p}(\partial\Omega)$, with $\|u_{|_{\Gamma}}\|_{W^{1-\frac{1}{p},p}(\partial\Omega)} \leq C\|u\|_{W^{1,p}(\Omega)}$
- (ii) Conversely, if $v \in W^{1-\frac{1}{p},p}(\partial\Omega)$ then there exists $u \in W^{1,p}(\Omega)$ such that $u_{|_{\Gamma}} = v$ and

$$||u||_{W^{1,p}(\Omega)} \le C^1 ||v||_{W^{1-\frac{1}{p},p}(\partial\Omega)}$$

Remark. This last theorem has a generalization to functions of $W^{m,p}(\Omega)$. In this case, we have to assume the existence of an extension operator. See Adams p.215-217.

Definition. (Sobolev spaces of fractional orders)

Suppose that $s \in (0,1)$ and $1 \le p < +\infty$, we define

$$W^{s,p}(\Omega) = \left\{ u \ \epsilon \ L^p(\Omega) / \frac{|u(x) - u(y)|}{|x = y|^{s + \frac{N}{p}}} \ \in \ L^p(\Omega \times \Omega) \right\}$$

Example. Let

$$\Omega = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 < 1\}.$$

We define

$$u(x,y) = (x^2 + y^2)^{\alpha}, \ \alpha > 0$$

We easily see that $u \in H^2(\Omega)$, since $\frac{\partial u}{\partial x} = 2\alpha x (x^2 + y^2)^{\alpha - 1}$. So

$$\int_{\Omega} \left| \frac{\partial u}{\partial x} \right|^2 = 4\alpha^2 \int_0^{2\pi} \int_0^1 r^2 \cos^2 \theta (r^2)^{2\alpha - 2} r \, dx \, d\theta$$
$$= 4\alpha^2 \int_0^{2\pi} \cos^2 \theta \, d\theta \int_0^1 r^{4\alpha - 1} dr = \alpha \pi, \text{ a=if } \alpha > 0.$$

Similarly $\int_{\Omega} \left| \frac{\partial u}{\partial y} \right|^2 = \alpha \pi.$

$$v = u_{|_{\Gamma}} = 1 \in W^{\frac{1}{2},2}(\partial\Omega) = H^{\frac{1}{2}}(\partial\Omega),$$

where $\partial \Omega = \{x^2 + y^2 = 1\}$. It is clear $\int_{\partial \Omega} v^2 = 2\pi$. Also

$$\frac{|u(x) - u(y)|}{|x - y|^{\frac{1}{2} + \frac{2}{2}}} = 0 \in L^2(\Gamma \times \Gamma)$$