1 Maximum Principle

Let $I=(0,1)$ and consider the problem

$$
(P)\left\{\begin{array}{c}
-u^{\prime \prime}(x)+u(x)=f(x), \quad x \in I \\
u(0)=\alpha, \quad u) 1)=\beta
\end{array}\right.
$$

It is well-known that if $f \in L^{2}(I)$ then P has a unique solution $u \Omega H^{2}(I)$, which satisfies

$$
\int_{0}^{1}\left(u^{\prime} \phi^{\prime}+u \phi\right) d x=\int_{0}^{1} f d x, \quad \forall \varphi \in H_{0}^{1}(I) .
$$

Theorem: The solution $u \in H^{2}(I)$ of (P) satisfies

$$
\min \left\{\alpha, \beta, \inf _{I} f\right\} \leq u(x) \leq \max \left\{\alpha, \beta, \sup _{I} f\right\}, \quad \forall x \in I .
$$

Proof: Define a C^{1}-function G such that
(i) G is strictly increasing on $(0,+\infty)$
(ii) $G(x)=0$ on $(-\infty, 0]$.

Let

$$
k=\max \left\{\alpha, \beta, \sup _{I} f\right\}
$$

If $k=+\infty$ then $u(x) \leq k$.
If $k<+\infty$. Then, Let $v(x)=G(u-K)$.
Since $u-k \in H^{1}, G$ is C^{1}, and $G(0)=0$ then $v \in H^{1}(I)$. Moreover,

$$
u(0)-\kappa \leq 0 \Rightarrow v(0)
$$

and

$$
u(1)-\kappa \leq 0 \Rightarrow v(1)=0
$$

So $v \in H_{0}^{1}(I)$; hence, we have

$$
\begin{gathered}
\int_{0}^{1} u^{\prime} v^{\prime}+u v=\int_{0}^{1} f v \\
\int_{0}^{1} u^{\prime 2} G^{\prime}(u-k)+\int_{0}^{1} u G(u-k)=\int_{0}^{1} f G(u-k) .
\end{gathered}
$$

This gives

$$
\int_{0}^{1} u^{\prime 2} G^{\prime}(u-k)+\int_{0}^{1}(u-k) G(u-k)=\int_{0}^{1}(f-k) G(u-k)
$$

But $f-k \leq 0$ and $G(u-k) \geq 0$. So,

$$
\int_{0}^{1}(u-k) G(u-k)=-\int u^{\prime 2} G^{\prime}(u-k)+\int(f-k) G(u-k) \leq 0
$$

But

$$
T=t G(t) \geq 0, \forall t \in \mathbb{R}
$$

(G is nondecreasing). This yields

$$
(u-k) G(u-k)=0, \quad \text { a.e. } x \in I
$$

Consequently

$$
(u-k) \leq 0, \quad \text { a.e. } x \in I
$$

The continuously of $u(u \in C(\bar{I})) \Rightarrow$

$$
u \leq k, \quad \forall x \in I
$$

To obtain the other part of the inequality, consider $-u$ to be a solution of

$$
\left(P^{\prime}\right)\left\{\begin{array}{c}
-w^{\prime \prime}+w=-f \\
w(0)=-\alpha, w(1)=-\beta
\end{array}\right.
$$

Corollary: Suppose that $u \in H^{2}$ satisfies (P). Then
(i) If $\alpha \geq 0, \beta \geq 0$, and $f(x) \geq 0, \forall x \in I$. Then $u(x) \geq 0$ over I.
(ii) If $\alpha=\beta=0$. Then $\|u\|_{L^{\infty}(I)} \leq\|f\|_{L^{\infty}(I)}$.
(iii) If $f=0$. Then $\|u\|_{L^{\infty}(I)} \leq \max \{|\alpha|,|\beta|\}$.

Exercise: Show that $u \equiv 0$ is the only solution of

$$
\left\{\begin{array}{c}
-u^{\prime \prime}+u=0, \quad \text { on } I \\
u(0)=u(1)=0
\end{array}\right.
$$

Theorem: Let $f \in L^{2}(I)$ and suppose $u \in H^{2}(I)$ is the solution of

$$
\left\{\begin{array}{c}
-u^{\prime \prime}+u=f, \quad x \in I \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

Then

$$
\inf _{I} f \leq u(x) \leq \sup _{I} f, \quad \forall x \in I
$$

Proof: We know that

$$
\int u^{\prime} v^{\prime}+u v=\int f v, \quad \forall v \in H^{1}(I)
$$

We set $k=\sup _{I} f \quad$ and let $v=G(u-k)$. By repeating the steps of the previous theorem, The result is established.
Exercise: If $f \in C(\bar{I})$ and $u \in C^{2}(\bar{I})$ is the solution of (P). Use the equation to show that if x_{0} is the maximum point of u on \bar{I}. Then

$$
u\left(x_{0}\right) \leq k=\max \left\{\alpha_{1} \beta, \max _{\bar{I}} f\right\}
$$

Theorem: If $f \in L^{2}(\mathbb{R})$ and $u \in H^{2}(\mathbb{R})$ is the solution of $-u^{\prime \prime}+u=f$, over \mathbb{R} Then

$$
\inf _{\mathbb{R}} f \leq u(x) \sup _{\mathbb{R}} f
$$

