Theorem. Let $u \in L^p(\Omega)$, 1 , the following properties are equivalent:

- (i) $u \in W^{1,p}(\Omega)$
- (ii) There exists a constant c > 0 such that

$$\left| \int_{\Omega} u \frac{\partial \phi}{\partial x_i} \right| \le C ||\phi||_{L^{p'}(\Omega)}, \quad \forall \phi \in C_0^{\infty}(\Omega),$$
$$i = 1, 2, \dots N. \qquad \frac{1}{p'} + \frac{1}{P} = 1.$$

(iii) There exists a constant C > 0, such that for any open $w \subset \Omega$ and any $h \in \mathbb{R}^N$, with $dis(\omega, \Omega^c) > |h|$, we have $||\tau_h u - u||_{L^p(\omega)} \leq C|h|$

Remarks:

- 1. In (ii) and (iii), C can be taken to be equal to $||\nabla_u||_{L^p(\Omega)}$
- 2. When p = 1, (*ii*) does not imply necessarily (*i*), since functions satisfying (*ii*) and (*iii*) are functions of bounded variations, for which the derivatives, in the distributional sens, may be bounded measures. This class of functions is larger that $W^{1,1}(\Omega)$.
- 3. The proof of this theorem goes exactly like the one in dimension N = 1.
- 4. If Ω is an open and convex. Then for $u \in W^{1,+\infty}(\Omega)$ we have for almost every $(x,y) \in \Omega$:

$$|u(x) - u(y)| \le ||\nabla u||_{\infty} \operatorname{dist}(x, y); \qquad (1)$$

hence u has a continuous representative satisfying (1) for all $(x, y) \in \Omega$.

5. If Ω is connected and $\nabla u = 0$ on Ω , then u is constant in Ω .

Theorem (derivative of a product)

Suppose that $u, v \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$, $1 \leq p \leq +\infty$. Then $u v \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ such that

$$\frac{\partial}{\partial x_i}(uv) = u\frac{\partial v}{\partial x_i} + v\frac{\partial u}{\partial x_i}$$

Proof. We only repeat the proof of a similar theorem in the case of N = 1 by considering $1 \le p < +\infty$ first. In this case we have $(u_n), (v_n)$ in $C_0^{\infty}(\mathbb{R}^N)$ such that

- 1. $u_n \longrightarrow u$ and $v_n \longrightarrow v$ in $L^p(\Omega)$ and hence a.e. in Ω
- 2. $\nabla u_n \longrightarrow \nabla u$ and $\nabla v_n \longrightarrow \nabla u$ in $L^p(\omega)$, $\forall w \subset \subset \Omega$
- 3. $||u_n||_{\infty} \le ||u||_{\infty}, \quad ||v_n||_{\infty} \le ||v||_{\infty}.$

$$\int_{\Omega} u_n v_n \frac{\partial \phi}{\partial x_i} = -\int_{\Omega} \left(u_n \frac{\partial v_n}{\partial x_i} + v_n \frac{\partial u_n}{\partial x_i} \right) \phi, \quad \forall \phi \in C_0^{\infty}(\Omega), \quad \forall i = 1, 2, \dots, N.$$

By letting $n \longrightarrow \infty$ and noting that $supp \phi \subset \subset \Omega$ we easily see that

$$\int_{\Omega} u_n v_n \frac{\partial \phi}{\partial x_i} = -\int_{\Omega} \left(u \frac{\partial v}{\partial x_i} + v \frac{\partial u}{\partial x_i} \right) \phi, \quad \forall \phi \in C_0^{\infty}(\Omega), \quad \forall i = 1, 2, \dots, N.$$

hence $uv \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$.

For $p = +\infty$, $u, v \in W^{1,p}(\omega)$, $\forall p < \infty$, $w \subset \subset \Omega$ and hence we repeat the same calculations.

Remark. It is necessary that u and v are in $L^{\infty}(\Omega)$. So that $u v \in L^{\infty}(\Omega)$, since u, vin $W^{1,p}(\Omega)$ are not necessarily bounded in higher dimension spaces. Example. Let

$$u = (x, y, z) = \begin{cases} \frac{x}{(x^2 + y^2 + z^2)} &, (x, y, z) \neq (0, 0, 0) \\ 0 &, (x, y, z) = (0, 0, 0) \end{cases}$$
$$v = \begin{cases} \frac{y}{x^2 + y^2 + z^2} &, (x, y, z) \neq (0, 0, 0) \\ 0 &, (x, y, z) = (0, 0, 0) \end{cases}$$

One can easily verify that $u, v \in W^{1,1}(\Omega)$, where $\Omega = \{(u, y, z) / x^2 + y^2 + z^2 < 1\}$. However

$$uv = \begin{cases} \frac{xy}{(x^2 + y^2 + z^2)^2} &, (x, y, z) \neq (0, 0, 0) \\ 0 &, (x, y, z) = (0, 0, 0) \end{cases}$$

is not in $L^{\infty}(\Omega)$. In fact $uv \notin W^{1,1}(\Omega)$.

Theorem. (Derivative of a composition)

Suppose that $G \in C^1(\mathbb{R})$ such that G(0) = 0 and $|G'(s)| \leq M \quad \forall s \in \mathbb{R}$. Let $u \in W^{1,p}(\Omega)$, then $Gou \in W^{1,p}(\Omega)$ with

$$\frac{\partial}{\partial x_i}(Gou) = (G'ou)\frac{\partial u}{\partial x_i}, \quad 1 \le i \le N, \quad (ii)$$

Proof. Since $|G'(s)| \leq M$ and $G(0) = 0, \forall s \in \mathbb{R}$, then $|Gou| \leq M|u|$. this implies that $Gou \in L^p(\Omega)$. and

$$\left| (G'ou) \frac{\partial u}{\partial x_i} \right| \le M \left| \frac{\partial u}{\partial x_i} \right|, \quad 1 \le i \le N$$

with $(G'ou)\frac{\partial u}{\partial x_i} \in L^p(\Omega), \quad \forall i = 1, 2, ..., N.$ To verify (*ii*) in the weak sense, we first take $1 \le p < \infty$. So we know that there exists a sequence (u_n) in $C_0^{\infty}(\mathbb{R}^N)$ such that $u_n \longrightarrow u$ in $L^p(\Omega)$ and $\nabla u_n \longrightarrow \nabla u$ in $L^p(\omega)$, $\forall w \subset \subset \Omega$. So for $\phi \in C_0^1(\Omega)$ we have

$$\int_{\Omega} (Gou_n) \frac{\partial \phi}{\partial x_i} = -\int_{\Omega} (G'ou_n) \phi \frac{\partial u_n}{\partial x_i}, \quad \forall i = 1, 2, \dots, N.$$
2

So

By taking n to ∞ and using the Dominated Convergence Theorem, we obtain

$$\int_{\Omega} (Gou) \frac{\partial \phi}{\partial x_i} = -\int_{\Omega} (G'ou) \frac{\partial u}{\partial x_i} \phi, \quad \forall i = 1, 2, \dots, N.$$

Thus we have $Gou \in W^{1,p}(\Omega)$ and (*ii*) holds.

For $p = +\infty$, we use the fact that $v \in L^{\infty}(\Omega)$ then $v \in L^{p}(\Omega')$, $\forall p < \infty$, $\forall \Omega' \subset \subset \Omega$. We then repeat the above "usual" analysis.

Remark. If Ω is bounded then G(0) = 0 is not necessary. Also if $p = +\infty$, we repeat the same analysis for $\Omega' = \Omega$.

1 The Space $W^{m,p}(\Omega)$

Notation: Let $\alpha = (\alpha_1, \ldots, \alpha_N)$ with $\alpha_i \in \mathbb{N}, \forall i = 1, 2, \ldots N$, be a multi-index. We denote by

$$D^{\alpha}u = \frac{\partial^{|\alpha|}u}{\partial x_1^{\alpha_1}\dots\partial x_N^{\alpha_N}}, \text{ where } |\alpha| = \alpha_1 + \dots + \alpha_N.$$

Definition. We define the Sobolev space, for $m \ge 2$,

 $W^{m,p}(\Omega) = \left\{ u \in L^p(\Omega) \text{ such that } D^{\alpha} u \in L^p(\Omega), \quad \forall \alpha : |\alpha| \le m \right\}.$

This is the set of all L^p functions, whose derivatives up to order m are L^p functions.

It is easy to see that

$$W^{m,p}(\Omega) = \left\{ u \in L^p(\Omega) : \frac{\partial u}{\partial x_i} \in W^{m-1,p}(\Omega), \quad \forall i = 1, 2, \dots, N \right\}$$

Remark. $D^{\alpha}u$ is a weak derivative of u; that is

$$\int_{\Omega} u D^{\alpha} \phi = (-1)^{|\alpha|} \int_{\Omega} \phi D^{\alpha} u$$

Proposition. $W^{m,p}(\Omega)$ equipped with the norm

$$||u||_{m,p} = ||u||_p + \sum_{1 \le |\alpha| \le m} ||D^{\alpha}u||_p$$

is a Banach space.

Proposition. $W^{m,p}(\Omega)$ is separable, for $1 \le p < \infty$, and reflexive, for 1 . $If we denote by <math>H^m(\Omega) = W^{m,2}(\Omega)$, then we have

Proposition. $H^m(\Omega)$ equipped with the scalar product

$$\langle u, v \rangle = \int_{\Omega} uv + \sum_{1 \le |\alpha| \le m} \int_{\Omega} D^{\alpha} u D^{\alpha} v$$

is a Hilbert space.

Remark. (Adams) For Ω sufficiently regular with a bounded boundary $\partial \Omega$, we have, $\forall \varepsilon > 0$ and $1 \le |\alpha| \le m - 1$ there exists C > 0 such that

$$||D^{\alpha}u||_{p} \leq \varepsilon \sum_{|\alpha|=m} ||D^{\alpha}u||_{p} + C||u||_{p}, \quad \forall u \in W^{m,p}(\Omega)$$

Consequently, we have in this case,

$$||u||_{m,p} = ||u||_p + \sum_{1\alpha|=m} ||D^{\alpha}u||_p$$

is an equivalent norm for $W^{m,p}(\Omega)$.

2 Extension Operator

Suppose that $u \in W^{1,p}(\Omega)$. Sometimes it is more convenient to establish some properties by extending u to \mathbb{R}^N by a $W^{1,p}(\mathbb{R}^N)$ function. This is, unfortunately, not always possible. However if Ω is regular this is may be possible.

Notations: Let $x = (x_1, x_2, \ldots, x_{N-1}, x_N) \in \mathbb{R}^N$. We write

$$x = (x', x_N)$$
 with $x' = (x_1, \dots, x_{N-1}) \in \mathbb{R}^{N-1}$

We put

$$|x'| = \left(\sum_{i=1}^{N-1} x_i^2\right)^{\frac{1}{2}}$$

and denote by

$$\begin{aligned} \mathbb{R}^{N}_{+} &= \{x = (x', x_{N}) : x_{N} > 0\}, \text{ the upper hyperplane} \\ Q &= \{x = (x', x_{N}) : |x'| < 1 \text{ and } |x_{N}| < 1\}, \text{ A square or cylinder} \\ Q_{+} &= Q \cap \mathbb{R}^{N}_{+} \\ Q_{0} &= \{x = (x', x_{N}) : |x'| < 1 \text{ and } x_{N} = 0\} \text{ unit disk} \end{aligned}$$

Definition. An open subset $\Omega \subset \mathbb{R}^N$ is said to be of class C^1 if for each $x \in \Gamma = \partial \Omega$, there exists a neighbourhood U of x in \mathbb{R}^N and a bijection $H: Q \longrightarrow U$ such that

$$H \in C^1(\overline{Q}), \quad H^{-1} \in C^1(\overline{U}), \quad H(Q_+) = U \cap \Omega, \text{ and } H(Q_0) = U \cap \Gamma.$$

Notations. Let $f: Q_+ \longrightarrow \mathbb{R}$, we denote by f^* the extension by reflexion of f on Q

$$f^*(x', x_N) = \begin{cases} f(x', x_N), & x_N > 0\\ f(x', -x_N), & x_N < 0 \end{cases}$$

and

$$f^{\#}(x', x_N) = \begin{cases} f(x', x_N), & x_N > 0\\ -f(x', -x_N), & x_N < 0 \end{cases}$$

Lemma. Let $u \in W^{1,p}(Q_+)$. Then the extension u^* is in $W^{1,p}(Q)$ with

$$||u^*||_p \le 2||u||_p, \quad ||u^*||_{W^{1,p}(Q)} \le 2||u||_{W^{1,p}(Q_+)}$$

Proof. We have to verify that

$$\frac{\partial u^*}{\partial x_i} = \left(\frac{\partial u}{\partial x_i}\right)^*, \quad \forall i = 1, 2, \dots, N-1$$
$$\frac{\partial u^*}{\partial x_N} = \left(\frac{\partial u}{\partial x_N}\right)^\#$$

Let η be a $C^{\infty}(\mathbb{R})$ function such that

$$\eta(t) = \begin{cases} 0, & t < \frac{1}{2} \\ 1, & t > 1 \end{cases}$$

Define the sequence $\eta_k(t) = \eta(kt)$, $k = 1, 2, 3, \dots$ Let $\phi \in C_0^1(Q)$; so for $i = 1, 2, \dots, N-1$ we have

$$\int_{Q} u^* \frac{\partial \phi}{\partial x_i} = \int_{Q_+} u \frac{\partial \psi}{\partial x_i}, \quad (iii)$$

where

$$\psi\left(x', x_N\right) = \phi\left(x', x_N\right) + \phi\left(x', -x_N\right)$$

 ψ is not necessarily in $C_0^1(Q_+)$ but $\eta_k(x_N)\psi(x',x_N)$ is in $C_0^1(Q_+)$ and

$$\frac{\partial}{\partial x_i} (\eta_k \psi) = \eta_k \frac{\partial \psi}{\partial x_i}, \quad \forall i = 1, 2, \dots, N-1.$$

Hence

$$\int_{Q_+} \eta_k \, u \frac{\partial \psi}{\partial x_i} = -\int_{Q_+} \frac{\partial u}{\partial x_i} \eta_k \psi, \quad \forall i = 1, 2, \dots, N-1$$

By using the dominated convergence theorem we get, as $k \longrightarrow \infty$,

$$\int_{Q_+} u \frac{\partial \psi}{\partial x_i} = -\int_{Q_+} \frac{\partial u}{\partial x_i} \psi \quad (iv)$$

By combining (iii) and (iv) we arrive at

$$\int_{Q} u^* \frac{\partial \phi}{\partial x_i} = -\int_{Q} \left(\frac{\partial u}{\partial x_i}\right)^* \phi.$$

Therefore

$$\left(\frac{\partial u}{\partial x_i}\right)^*, \ 1 \le i \le N-1$$

are the derivatives of u^* . Also, for $\phi \in C_0^1(Q)$, we have

$$\int_{Q} u^* \frac{\partial \phi}{\partial x_N} = \int_{Q_+} u \frac{\partial \chi}{\partial x_N},$$

where

$$\chi(x', x_N) = \phi(x', x_N) - \phi(x', -x_N)$$

It is clear that $\chi(x',0) = 0$, so there exists M > 0 such that

$$|\chi(x', x_N)| \le M |x_N|, \quad \forall (x', x_N) \in Q.$$

Since $\eta_k \chi \in C_0^1(Q_+)$, we have

$$\int_{Q_+} u \frac{\partial}{\partial x_N} \left(\eta_k \chi \right) = - \int_{Q_+} \frac{\partial u}{\partial x_N} \eta_k \chi$$

but

$$\frac{\partial}{\partial x_N} \left(\eta_k \, \chi \right) = \eta_k \, \frac{\partial \chi}{\partial x_N} + k \eta'(k x_N) \chi$$

$$\begin{aligned} \left| \int_{Q_{+}} uk\eta'(kx_{N})\chi \, dx \right| &\leq MCk \left| \int_{0 < x_{N} < \frac{1}{k}} x_{N}u \, dx \right| \\ &\leq MC \int_{0 < x_{N} < \frac{1}{k}} |u| dx \longrightarrow 0 \text{ as } k \longrightarrow \infty \end{aligned}$$

Hence

$$\int_{Q_+} u \frac{\partial \chi}{\partial x_N} = -\int_{Q_+} \frac{\partial u}{\partial x_N} \chi$$

By noting that

$$\int_{Q_+} \frac{\partial u}{\partial x_N} \chi = \int_Q \left(\frac{\partial u}{\partial x_N}\right)^{\#} \phi$$

we arrive at

$$\int_{Q} u^* \frac{\partial \phi}{\partial x_N} = - \int_{Q} \left(\frac{\partial u}{\partial x_N} \right)^{\#} \phi$$

Hence $\left(\frac{\partial u}{\partial x_N}\right)^{\#}$ is the weak derivative of u^* with respect to x_N . Finally it is easy to verify that

$$||u^*||_{L^p(Q)} \leq 2||u||_{L^p(Q_+)}$$
$$||u^*||_{W^{1,p}(Q)} \leq 2||u||_{W^{1,p}(Q_+)}$$

Remark. The above lemma holds if Q_+ is replaced by \mathbb{R}^N_+ ; with no change in the proof.