
1 Dual Space of W 1,p
0 (I)

We denote by W−1,p′(I) the dual space of W 1,p
0 (I), 1 ≤ p < ∞ and by H−1(I) the

dual of H1
0 (I).

Remark: By identifying L2(I) with its dual, we obtain

H1
0 (I) ⊂ L2(I) ⊂ H−1(I)

with continuous and dense embedding.
Theorem: Let F be in W−1,p′(I). Then there exist f0, f1 in Lp′(I) such that

〈F, v〉 =
∫

f0v +
∫

f1v
′, ∀ v ∈ W 1,p

0 (I).

Moreover, if I is bounded, f0 can be taken zero.
Proof : Define the Banach space E = Lp × Lp equipped with the norm

‖h‖E = ‖h0‖p + ‖h1‖p, h = (h0, h1) ∈ E.

T : W 1,p
0 (I) → E given by T (u) = (u, u′) is an isometry.

Let G = T (W 1,p
0 (I)) equipped with the norm of E. We define the linear form

γ : G → IR by
γ(h) = 〈F, T−1h〉.

It is easy to see that γ is continuous. So, it can be extended to E by Hahn-Banach
theorem. Call Φ the extension; hence ‖Φ‖ = ‖γ‖ = ‖F‖. So by Riesz Representation
Theorem, there exists f0, f1 ∈ Lp′(I), such that

Φ(h0, h1) =
∫

f0h0 + f1h1, ∀(h0, h1) ∈ E.

In particular, if u ∈ W 1,p
0 (I), then

F (u) = 〈F, T−1(u, u′)〉
= Φ(u, u′) =

∫
f0u + f1u

′.

When I is bounded, W 1,p
0 (I) is equipped with the norm ‖u‖w1,p = ‖u′‖p. We then

repeat a similar reasoning with T : W 1,p
0 (I) → Lp(I) given by T (u) = u′.

Remark: f0 and f1 are not unique.
Remark: If v ∈ C∞

0 (I), then

〈F, v〉 =
∫

f0v + f1v
′ =

∫
f0v − f ′1v =

∫
(f0 − f ′1)v.

Therefore
F = f0 − f ′1 in D′(I).

Exercise: Verify that Φ given in the above proof satisfies

‖Φ‖E′ = max{‖f0‖p′ , ‖f1‖p′}.
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1.1 Bilinear forms and Lax-Milgram Lemma

Definition: Let B : H ×H → IR be a bilinear form on a Hilbert space H. We say
that

1) B is continuous if there exists M > 0 such that

|B(u, v)| ≤ M‖u‖ ‖v‖.
2) B is coercive (or elliptic) if there exists α > 0 such that

B(u, u) ≥ α‖u‖2, ∀ u ∈ H.

Theorem: (Lax-Milgram Lemma). Given a Hilbert space H, let B : H×H → IR be
a continuous and coercive bilinear form and g : h → IR be a continuous (bdd) linear
form. Then there exists a unique u in H such that

g(v) = B(u, v), ∀ v ∈ H.

Application: Consider the problem
{
−u′′ + u = f in I = (0, 1)

u(0) = u(1) = 0.
(1.1)

For f smooth enough (continuous). This problem can be solved by standard calculus
methods. In this case the solution is of class C2(I). It is called a classical solution.
Suppose that f is not regular; say f ∈ L2(I) or f ∈ H−1(I) = dual of H1

0 (I). Is there
any solution for (1.1)?

Let ϕ ∈ C1
0(I). Multiply ϕ by equation (1.1) and integrate over I, assuming u to

be regular, ∫ 1

0
u′ϕ′ + uϕ =

∫ 1

0
fϕ. (1.2)

Question; Is it possible to find u such that (1.2) is satisfied for all ϕ ∈ C1
0(I)?

Answer: Define the bilinear form B : H1
0 (I)×H1

0 (I) → IR by

B(u, v) =
∫ 1

0
u′v′ + uv.

It is easy to verify that B is continuous and coercive. If f ∈ H−1(I), we then define
the linear form

F : H1
0 (I) → by F (v) = 〈f, v〉.

This is continuous such that ‖F‖ = ‖f‖−1. Lax-Milgram lemma guarantees the
existence of a unique u ∈ H1

0 (I) such that

B(u, v) = F (v), ∀ v ∈ H1
0 (I).

That is,
∫ 1

0
u′v′ + uv = 〈f, v〉

(
or

∫ 1

0
fv, if f ∈ L2(I)

)
, ∀ v ∈ H1

0 (I).
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Definition: We call the weak formulation of (1): find u in H1
0 (I):

∫ 1

0
u′v′ + uv = 〈f, v〉H−1×H1

0 (I), ∀ v ∈ H1
0 (I). (1.3)

Definition: We call u ∈ H1
0 (I) satisfying (1.3), the weak solution of (1).

Remark: Since u ∈ H1
0 (I), therefore u is in C(I); hence u(0) = u(1) = 0.

Proposition: If f ∈ L2(I), then u′′ = u− f ∈ L2(I). Thus u ∈ H2(I) ∩H1
0 (I). So,

we have more regularity that is u ∈ C1(I).
Proof : ϕ ∈ C1

0(I) ⇒ ∫ 1

0
u′ϕ′ = −

∫ 1

0
(u− f)ϕ,

so by definition, u′ has a weak derivative u − f ∈ L2(I) ⇒ u′ ∈ H1(I), with u′′ =
u− f ∈ L2(I). ⇒

u ∈ H1
0 (I) ∩H2(I).

The embedding theorem gives u′ ∈ C(I); hence u ∈ C1(I).
Exercise: 1) Show that

−u′′ = δ in I = (−1, 1),

u(−1) = u(1) = 0

has a solution.
2) Solve

−u′′ + u = f in I = (0, 1)

u(0) = α u(1) = β.

for f ∈ L2(I); α, β ∈IR.

1.2 Neumann Problem

Consider the homogeneous Neumann-condition problem

{
−u′′ + u = f, 0 < x < 1
u′(0) = u′(1) = 0.

(1.4)

If u is a classical solution of (1.4), then for each v ∈ H1(I), we have

∫ 1

0
u′v′ + uv =

∫ 1

0
fv. (1.5)

Again by Lax-Millgram lemma, we have a solution u in H1(I).
If f ∈ L2(I), then u is in H2(I) since, for each ϕ ∈ C1

0(I), we have

∫ 1

0
u′ϕ′ = −

∫ 1

0
(f − u)ϕ,
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then u′ ∈ H1(I) with u′′ = f − u. From (1.5), we obtain

∫ 1

0
(−u′′ + u− f)v + u′(1)v(1)− u′(0)v(0) = 0, ∀ v ∈ H1. (1.6)

First, for v ∈ H1
0 (I), we have

∫ 1

0
(−u′′ + u− f)v = 0.

So −u′′ + u− f = 0 in L2(I), hence for almost each x ∈ I. Thus (1.6) is reduced to

u′(1)v(1)− u′(0)v(0) = 0, ∀ v ∈ H1(I).

Since v is arbitrary, then u′(1) = u′(0) = 0.

4


