1 Sobolev Spaces for Higher Orders

Definition: Given an integer m > 2, we define the Sobolev space of order m by

WmP(I) = {ueLP(I) | o, .., u™ e LP(I)}
{uec LP(I) | o e W™ te(I)}

The derivatives are in the weak sense. We then set H™(I) = W™?2(I).
Properties: 1) It is easy to verify that « € WP(I) if and only if there exists m
functions ¢1, go, . . ., gm € LP(I) such that

[ ueV@)dr = (1) [ gipdr, Vo€ CEU).

2) The space W1P(I) equipped with the norm:

[l = el + - a1,

is a Banach space.
3) The space H™(I) equipped with the inner product

< UV > p= /(uv +u'v 4 -+ u™o™) (2)da
I

is a Hilbert space.
Theorem: W™P(]) is separable for 1 < p < oo and reflexive for 1 < p < 0.
Theorem: W™P(I) is continuously embedded in C™1(J).

2 The Space W,"(I)

Definition: For 1 < p < 400, we define Wy (I) to be the closure of C3(I) with
respect to the norm of W'?(I). We denote by HE(I) = Wy*(I).

Properties:

1) It is clear that W,?(I) is a Banach space if equipped with the norm of W'2(I).
2) Hy(I) is a Hilbert space with respect to the inner product

<u,v >= /(uv + ou'v')(z)dz.
I

3) W, ?(I) is separable for 1 < p < oo and reflexive for 1 < p < +o0.

4) WyP(IR) = WP(R) since C3(IR) is dense in LP(IR), 1< p < oo.

Remark: C}(I) (or C5°(1)) is not dense in L>®(I); otherwise all L functions are
continuous.

Theorem: Suppose that v € W?(I). Then u € W,*(I) if and only if u = 0 on 0T
(boundary of I).

Proof: 1) Given u in W, ?(I), so u is in C(I). We know there exists a sequence (u,,)
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in C}(I) such that u, — u in WHP(I), hence in L> norm. So V & > 0, there exists
n € IN such that
|un(z) —u(z)| <&, Vel

in particular for x € 1. Thus we have |u(z)| < € since u,(z) =0, x € 9. Since ¢
is arbitrary then v = 0 on 01I.
2) Let G be a C'*' function on IR such that

Given w in W'P(I), such that wy; = 0, we define u,, = G(nu)/n. It is easy to
verify that |u,| < |u| and |u,| < |u'|; hence u,, € W'P(I). Also supp u, C {x € I
/ |u(z)] > 1/n}, which is a compact set of I since lim,_s;u(z) = 0. Thus u, €
W (I) N Co(I) = u,, € Wy(I).

Next, we prove that u,, — win WP(I). For this we use the dominated convergence
theorem.

a) First, note that

Jun —u <20u fuy, — | < (B + 1)),
b) It is easy to verify that
|un, — ul — 0, lul, —u'| =0
for almost every = € I and since 2|u| € LP and (k + 1)|v/| € LP(I). Then
|y, — u| — 0 |ul, — u| — 0 in LP(I);

hence u, — u in WP(I). Since u, € Wy (I), which is a closed subspace of W(I),
then u € Wy (I).
Theorem:

1) Let 1 < p < oo and u € LP(I). Then u € Wy (I) if and only if there exists a
constant C' such that

1 1
| [ue| < Cllelly, ¥ epe i), S+ =1

2) Let 1 <p < oo and u € LP(I). We define u by

- ] u(z), xel
“(x){o, z € R\I

Then u € W2P(I) if and only if ue WP(IR).
Proof: u € W, ?(I) =

| fuel=1= [l < lllusliglr, ¥ o€ Co)
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where 1/p+1/p = 1.

Define the linear form on C}(I) by F(¢) = — [; uy'.

It is clear that |[F(p)| < C||¢||,»» = F is bounded on a subspace of LP(I). So
it can be extended to ® which is bounded by the same constant C' on L (I). Riesz
Representation Theorem implies the existence of g € LP(I) such that

= /Igw’, Y o€ L (I).

Thus (by definition) g = v/ = u € W'?(I). To prove that u € W, ?(I), we use the
fact that

F(gp)z—/jugp':/lu'gp, VQOECI(j>CLp/(])

= [ = —ulbrel®) + ute)ola + [

—u(b)p(b) +ula)p(a) =0, Vo e CHI)
— u(a) = u(b) = 0 = u € W *(I).
Note that we needed 1 < p < oo for the reflexivity of LP (I) hence we could apply
the Riesz representation theorem.

2) ue WP(I) = u € LP(IR) since [ | u ? = [, |ulP. Let ¢ € C}(IR). So

But

SO

[ue = [[ug = ut)e®) —wiaela) - [(w'o=- [(u'p

since u(a) = u(b) = 0. Thus
- ’ b ’ ~
/ugp:—/ugo:/ng
R a R

- (), rel
0, r e R\I

where

and u € LP(IR).
To show that u € W'P(I), we take ¢ € C3(I) and compute

-~/
Jpué' = fme == fme= = fos
1 R

where 90 is the extens1on of p, Wthh belongs to C}(IR) since supp® = suppy CC R.

Next, since u € WP(IR) so u is continuous, hence u(a) = u (a) = u(b) = u (b) = 0.
Thus u € Wy (I).
Theorem: (Poincare's inequality). Suppose that I is bounded. Then there exists a
constant C' = C'(I) > 0 such that

/I|u|p < o/I WP, Ve WER(D).
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Proof: For u € Wy*(I), we have

’

u(z) = u(a) + / " (4)dt = / " (6)dt

SO

lu(z)[P < (/j |u/(t)|dt)p < l(m _ a)l/p'(/: |u’(t)’pdt)1/pr
< @il =t

Integrate over(a,b) to get
L
J ) < =S

hence

/

BN
(p)"”
Remark: 1) From the above inequality it is important that I be bounded.

2) For p = 400, we have C' = |I|, that is lim,_., (p)"/” = 1.

3) Looking carefully into the proof, we easily see that Poincare’s inequality holds
for u € WIP(I) withu(c) =0, a<c<b
Corollary: The quantity ||| » define an equivalent norm on Wy (I) and < u,v >=
JPu'v" define an equivalent inner product on H} ([).

[lull, < I

Iy

3 The Space Wy""(I)

Definition: Let 1 < p < 400, we define Wy""(I) to be the closure of CJ*(I) (or
C$°(I)) with respect to the norm of W™?(I). We denote by H™(I) = W§™*(I).
Remark: All the properties of W, ?(I) hold for W™"(I).

Proposition: For 1 < p < oo,

Wo (1) = {u € W™(I) [ ujpr =y, = -+ = ufz; " =0}
Remark: There are 2 important spaces, namely
WP (1) = {u € W*P(I) | ujor = ujy; = 0}
and
WD) NWeP (1) = {u € W) / ujor = 0}

Example: On I = (0,7), let u(x) = sinz. It is clear that u € W™P(I),¥V m >
2, p > 1 and u(0) = u(r) = 0; but «/(0)u/(7) # 0. So u ¢ WP(I) however
we W2 (I)nWyP(I).

Exercise: Show that if u € W'?(I), for I bounded, and [’ u(z)dz = 0 (zero mean)
then Poincare’s inequality holds.



