
1 Sobolev Spaces for Higher Orders

Definition: Given an integer m ≥ 2, we define the Sobolev space of order m by

Wm,p(I) = {u ∈ Lp(I) / u′, u”, ..., u(m) ∈ Lp(I)}
= {u ∈ Lp(I) / u′ ∈ Wm−1,p(I)}

The derivatives are in the weak sense. We then set Hm(I) = Wm,2(I).
Properties: 1) It is easy to verify that u ∈ W 1,p(I) if and only if there exists m
functions g1, g2, . . . , gm ∈ Lp(I) such that

∫

I
uϕ(j)(x)dx = (−1)j

∫

I
gjϕdx, ∀ ϕ ∈ C∞

0 (I).

2) The space W 1,p(I) equipped with the norm:

‖u‖m,p = ‖u‖p +
m∑

j=1

‖u(j)‖p

is a Banach space.
3) The space Hm(I) equipped with the inner product

< u, v >m,p=
∫

I
(uv + u′v′ + · · ·+ u(m)v(m))(x)dx

is a Hilbert space.
Theorem: Wm,p(I) is separable for 1 ≤ p < ∞ and reflexive for 1 < p < ∞.
Theorem: Wm,p(I) is continuously embedded in Cm−1(I).

2 The Space W 1,p
0 (I)

Definition: For 1 ≤ p < +∞, we define W 1,p
0 (I) to be the closure of C1

0(I) with
respect to the norm of W 1,p(I). We denote by H1

0 (I) = W 1,2
0 (I).

Properties:
1) It is clear that W 1,p

0 (I) is a Banach space if equipped with the norm of W 1,p(I).
2) H1

0 (I) is a Hilbert space with respect to the inner product

< u, v >=
∫

I
(uv + ou′v′)(x)dx.

3) W 1,p
0 (I) is separable for 1 ≤ p < ∞ and reflexive for 1 < p < +∞.

4) W 1,p
0 (IR) = W 1,p(IR) since C1

0(IR) is dense in Lp(IR), 1 ≤ p < ∞.
Remark: C1

0(I) (or C∞
0 (I)) is not dense in L∞(I); otherwise all L∞ functions are

continuous.
Theorem: Suppose that u ∈ W 1,p(I). Then u ∈ W 1,p

0 (I) if and only if u = 0 on ∂I
(boundary of I).
Proof : 1) Given u in W 1,p

0 (I), so u is in C(I). We know there exists a sequence (un)
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in C1
0(I) such that un → u in W 1,p(I), hence in L∞ norm. So ∀ ε > 0, there exists

n ∈ IN such that
|un(x)− u(x)| < ε, ∀ x ∈I,

in particular for x ∈ ∂I. Thus we have |u(x)| < ε since un(x) = 0, x ∈ ∂I. Since ε
is arbitrary then u = 0 on ∂I.

2) Let G be a C1 function on IR such that

G(s) =

{
0, |s| ≤ 1
s, |s| ≥ 2

Given u in W 1,p(I), such that u|∂I = 0, we define un = G(nu)/n. It is easy to
verify that |un| ≤ |u| and |u′n| ≤ |u′|; hence un ∈ W 1,p(I). Also supp un ⊂ {x ∈ I
/ |u(x)| ≥ 1/n}, which is a compact set of I since limx→∂I u(x) = 0. Thus un ∈
W 1,p(I) ∩ C0(I) =⇒ un ∈ W 1,p

0 (I).
Next, we prove that un → u in W 1,p(I). For this we use the dominated convergence

theorem.
a) First, note that

|un − u| ≤ 2|u| |u′n − u′| ≤ (k + 1)|u′|.

b) It is easy to verify that

|un − u| → 0, |u′n − u′| → 0

for almost every x ∈ I and since 2|u| ∈ Lp and (k + 1)|u′| ∈ Lp(I). Then

|un − u| → 0 |u′n − u| → 0 in Lp(I);

hence un → u in W 1,p(I). Since un ∈ W 1,p
0 (I), which is a closed subspace of W 1,p(I),

then u ∈ W 1,p
0 (I).

Theorem:
1) Let 1 < p < ∞ and u ∈ Lp(I). Then u ∈ W 1,p

0 (I) if and only if there exists a
constant C such that

|
∫

I
uϕ′| ≤ C‖ϕ‖Lp′ (I), ∀ ∈ ϕ ∈ C1

0(I),
1

p
+

1

p′
= 1.

2) Let 1 ≤ p < ∞ and u ∈ Lp(I). We define
˜
u by

˜
u (x) =

{
u(x), x ∈ I
0, x ∈ IR\I

Then u ∈ W 1,p
0 (I) if and only if

˜
u∈ W 1,p

0 (IR).
Proof : u ∈ W 1,p

0 (I) =⇒

|
∫

I
uϕ′| = | −

∫

I
u′ϕ| ≤ ‖u′‖Lp‖ϕ‖Lp′ , ∀ ϕ ∈ C1

0(I)
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where 1/p + 1/p
′
= 1.

Define the linear form on C1
0(I) by F (ϕ) = − ∫

i uϕ′.
It is clear that ‖F (ϕ)‖ ≤ C‖ϕ‖Lp′ =⇒ F is bounded on a subspace of Lp(I). So

it can be extended to Φ which is bounded by the same constant C on Lp′(I). Riesz
Representation Theorem implies the existence of g ∈ Lp(I) such that

Φ(ϕ) =
∫

I
gϕ′, ∀ ϕ ∈ Lp′(I).

Thus (by definition) g = u′ =⇒ u ∈ W 1,p(I). To prove that u ∈ W 1,p
0 (I), we use the

fact that
F (ϕ) = −

∫

I
uϕ′ =

∫

I
u′ϕ, ∀ϕ ∈ C1(I) ⊂ Lp′(I)

But

−
∫ b

a
u
′
ϕ = −u(b)ϕ(b) + u(a)ϕ(a) +

∫ b

a
uϕ

′

so
−u(b)ϕ(b) + u(a)ϕ(a) = 0, ∀ϕ ∈ C1(I)

=⇒ u(a) = u(b) = 0 =⇒ u ∈ W 1,p
0 (I).

Note that we needed 1 < p < ∞ for the reflexivity of Lp
′
(I) hence we could apply

the Riesz representation theorem.

2) u ∈ W 1,p(I) =⇒ u ∈ Lp(IR) since
∫
IR |

˜
u |p =

∫
I |u|p. Let ϕ ∈ C1

0(IR). So

∫

IR

˜
u ϕ

′
=

∫ b

a
uϕ

′
= u(b)ϕ(b)− u(a)ϕ(a)−

∫ b

a
u
′
ϕ = −

∫ b

a
u
′
ϕ

since u(a) = u(b) = 0. Thus

∫

IR

˜
u ϕ

′
= −

∫ b

a
u
′
ϕ =

∫

IR

˜
u
′

ϕ

where
˜
u
′

(x) =

{
u
′
(x), x ∈ I

0, x ∈ IR\I

and
˜
u
′

∈ Lp(IR).
To show that u ∈ W 1,p(I), we take ϕ ∈ C1

0(I) and compute

∫

I
uϕ′ =

∫

IR

˜
u

˜
ϕ
′
= −

∫ ′

IR

˜
u

˜
ϕ= −

∫

I
gϕ

where
˜
ϕ is the extension of ϕ, which belongs to C1

0(IR) since supp
˜
ϕ = suppϕ ⊂⊂ IR.

Next, since
˜
u ∈ W 1,p(IR) so

˜
u is continuous, hence u(a) =

˜
u (a) = u(b) =

˜
u (b) = 0.

Thus u ∈ W 1,p
0 (I).

Theorem: (Poincare
′
s inequality). Suppose that I is bounded. Then there exists a

constant C = C(I) > 0 such that
∫

I
|u|p ≤ C

∫

I
|u′|p, ∀ u ∈ W 1,p

0 (I).
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Proof : For u ∈ W 1,p
0 (I), we have

u(x) = u(a) +
∫ x

a
u
′
(t)dt =

∫ x

a
u
′
(t)dt

so

|u(x)|p ≤
(∫ x

a
|u′(t)|dt

)p

≤
[
(x− a)1/p

′
(
∫ b

a
|u′(t)|pdt)1/p

]p

≤ (x− a)p/p
′
||u′||pp,

1

p
+

1

p′
= 1

Integrate over(a, b) to get ∫
|u(x)|p ≤ |I|p

p
||u′||pp

hence

||u||p ≤ |I|
(p)1/p

||u′ ||p

Remark: 1) From the above inequality it is important that I be bounded.

2) For p = +∞, we have C = |I|, that is limp→∞ (p)1/p = 1.
3) Looking carefully into the proof, we easily see that Poincare

′
s inequality holds

for u ∈ W 1,p(I) with u(c) = 0, a ≤ c ≤ b
Corollary: The quantity ‖u′‖Lp define an equivalent norm on W 1,p

0 (I) and < u, v >=∫ b
a u′v′ define an equivalent inner product on H1

0 (I).

3 The Space Wm,p
0 (I)

Definition: Let 1 ≤ p < +∞, we define Wm,p
0 (I) to be the closure of Cm

0 (I) (or
C∞

0 (I)) with respect to the norm of Wm,p(I). We denote by Hm
0 (I) = Wm,2

0 (I).
Remark: All the properties of W 1,p

0 (I) hold for Wm,p
0 (I).

Proposition: For 1 ≤ p < ∞,

W 1,p
0 (I) = {u ∈ Wm,p(I) / u|∂I = u

′
|∂I = · · · = u

(m−1)
|∂I = 0}

Remark: There are 2 important spaces, namely

W 2,p
0 (I) = {u ∈ W 2,p(I) / u|∂I = u

′
|∂I = 0}

and
W 2,p(I) ∩W 1,p

0 (I) = {u ∈ W 2,p(I) / u|∂I = 0}
Example: On I = (0, π), let u(x) = sin x. It is clear that u ∈ Wm,p(I),∀ m ≥
2, p ≥ 1 and u(0) = u(π) = 0; but u′(0)u′(π) 6= 0. So u /∈ W 2,p

0 (I) however
u ∈ W 2,p(I) ∩W 1,p

0 (I).
Exercise: Show that if u ∈ W 1,p(I), for I bounded, and

∫ b
a u(x)dx = 0 (zero mean)

then Poincare
′
s inequality holds.
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