1 Sobolev Spaces

1.1 Motivation

Let us consider the problem

$$-u''(x) + u(x) = f(x), \qquad 0 < x < 1 \\ u(0) = u(1) = 0.$$
 (1)

The objective is to find a solution $u \in C^2([0,1])$ for $f \in C([0,1])$. This problem is solvable by standard calculus methods.

Suppose that $\varphi \in C_0^1((0,1))$; that φ is continuously differentiable and $\varphi(0) = \varphi(1) = 0$. So

$$\int_0^1 (-u'' + u)\varphi(x)dx = \int_0^1 f\varphi dx$$

Using integration by parts, we obtain

$$\int_0^1 u'\varphi' + u\varphi = \int_0^1 f\varphi dx.$$
 (2)

We notice here that (2) is valid if u and $u' \in L^1((0,1))$ or "simply" $u \in C^1([0,1])$. In this case, we say that u is a weak solution of (1). It satisfies (1) in the weak or in the variational sense (2).

(2) is the variational equation for (1).

Theorem: If $f \in C^0$, then any weak solution $u \in C^1$ is C^2 .

Proof: It suffices to note that $u'' = u - f \in C$. So $u \in C^2$.

Theorem: If $u \in C^1((0,1))$ with u(0) = u(1) = 0 satisfying (2) for all $\varphi \in C_0^{\infty}((0,1))$. Then u is a classical solution; that u satisfies (1).

Remark In some instance, we can show that a weak solution is in fact a classical solution. This is called the regularity theory. It will be a part of our course.

1.2 Sobolev Space $W^{1,p}(I)$

Definition: Given an open interval I and $1 \le p \le +\infty$ (bounded or not). We define the Sobolev space $W^{1,p}(I) = \{u \in L^p(I) \text{ such that there exists } g \in L^p(I), \text{ for which we have } \int_I u\varphi' = -\int_I g\varphi, \quad \forall \varphi \in C_0^1(I)\}.$

Remark : For p = 2, we denote $W^{1,2}(I) = H^1(I)$.

Remark : In such a case, we write u' = g in the weak sense; that is

$$\int_{I} (u' - g)\varphi dx = 0, \quad \forall \ \varphi \in C_0^1(I).$$

Example: Let I = (-1, 1) and $u(x) = \frac{1}{2}(x+|x|)$. It is clear that u is not differentiable at x = 0 (hence on I). Let $\varphi \in C_0^1(I)$, then

$$\int_{-1}^{1} u\varphi' = \int_{-1}^{0} 0.\varphi' dx + \int_{0}^{1} x\varphi' dx = \int_{0}^{1} x\varphi' dx$$
$$= x\varphi|_{0}^{1} - \int_{0}^{1} \varphi(x) dx = -\int_{0}^{1} \varphi(x) dx = -\int_{-1}^{1} g\varphi(x) dx$$

where

$$g(x) = \begin{cases} 0, & -1 \le x < 0\\ 1, & 0 \le x \le 1. \end{cases}$$

This is the Heavyside function denoted by H. So u' = H in the weak sense.

Note that $u, H \in L^p(I)$, $\forall p \ge 1 \Rightarrow u \in W^{1,p}(I)$, $\forall 1 \le p \le \infty$.

Now let us consider H(x) and test if it is a $W^{1,p}(I)$ function. For this we take $\varphi \in C_0^1(I)$ as a test function

$$\int_{-1}^{1} H\varphi' dx = \int_{0}^{1} \varphi'(x) = \varphi(1) - \varphi(0) = -\varphi(0) = -\delta(\varphi).$$

In this case, we cannot find $g \in L^p(I)$ such that

$$\int_{-1}^{1} g\varphi dx = -\varphi(0), \quad \forall \ \varphi \in C_0^1(I).$$

Remark: In this latter case, we say that $H' = \delta$ in the distributional sense. δ is a distribution. This also motivates us to define $W^{1,p}(I)$ by using distributions.

Definition: We say that $u \in W^{1,p}(I)$ if $u \in L^p(I)$ and its distribution derivative u' coincides with an $L^p(I)$ function g.

Theorem: The Sobolev space $W^{1,p}(I)$ equipped with the norm

$$||W||_{1,p} = ||u||_p + ||u'||_p$$

is a Banach space.

Proof: Let (u_n) be a Cauchy sequence in $W^{1,p}(I)$. So (u_n) and (u'_n) are Cauchy in $L^p \Rightarrow$

$$u_n \to u$$
 and $u'_n \to g$ in $L^p(I)$.

Now

$$\int_{I} u_{n} \varphi' = - \int_{I} u'_{n} \varphi, \quad \forall \ n, \quad \varphi \in C_{0}^{1}(I).$$

As $n \to \infty$,

$$\int_{I} u\varphi' = -\int_{I} g\varphi, \quad \forall \ \varphi \in C_0^1(I)$$

 $\Rightarrow u \in W^{1,p}(I)$ with u' = g (Definition) and $||u_n - u||_{1,p} \to 0$ as $n \to \infty$. **Theorem:** The space $W^{1,p}(I)$ is reflexive for $1 and separable for <math>1 \le p < \infty$.

Proof: We define the operator

$$T: W^{1,p}(I) \to L^p(I) \times L^p(I)$$
$$u \to (u, u').$$

This is an isometry. So $T(W^{1,p}(I))$ is a closed subspace of $L^p(I) \times L^p(I)$; hence $T(W^{1,p}(I))$ is reflexive for $1 since <math>L^p \times L^p$ is reflexive for 1 .The same thing holds for separability.

Theorem: Given $u \in W^{1,p}(I)$. There exists $\tilde{u} \in C(\overline{I})$ such that $\tilde{u} = u$ a.e. in I and

$$\tilde{u}(y) - \tilde{u}(x) = \int_x^y u'(t)dt, \quad \forall x, y \in I.$$

Proof: It is clear that

$$\tilde{u}(x) = u(x_0) + \int_{x_0}^x u'(t)dt, \quad x_0 \in I,$$

is absolutely continuous $\Rightarrow \tilde{u} \in C(\overline{I})$. Moreover, $\tilde{u}' = u'$ a.e. in $I \Rightarrow \tilde{u} = u + c$ a.e. in I. But c = 0 since $\tilde{u}(x_0) = u(x_0)$

Remark: This theorem shows that $W^{1,p}(I)$ functions can be represented by absolutely continuous functions defined on \overline{I} . This is why we usually say that if $u \in W^{1,p}(I)$ then $u \in C(\overline{I})$.

Remark: If u is absolutely continuous with $u' \in L^p(I)$, this does not mean that $u \in W^{1,p}(I)$ unless I is bounded.

Let

$$g(t) = \frac{1}{1+t^2} \in L^1($$

but

$$u(x) = \int_0^x g(t)dt = \tan^{-1} x \notin L^1(t)$$

since

$$\int_0^R \tan^{-1} x dx = R \left[\tan^{-1} R - \frac{\log(1+R^2)}{2R} \right].$$

which gives

$$\int_0^\infty \tan^{-1} x dx = \infty.$$

Definition: Let u be defined in I; for x and h such that $x + h \in I$, we denote by

$$\tau_h f(x) = f(x+h)$$

Theorem: Let $u \in L^p(I)$, 1 . The following properties are equivalent: $(i) <math>u \in W^{1,p}(I)$.

(ii) There exists a constant C > 0 such that

$$\left|\int_{I} u\varphi'\right| \le C \|\varphi\|_{p'}, \quad \forall \ \varphi \in C^{\infty_0}(I), \quad \frac{1}{p'} + \frac{1}{p} = 1.$$

(iii) There exists a constant C' > 0 such that for each open $\omega \subset I$ ($\overline{\omega} \subset I$) and for each h with $|h| < \text{distance } (\omega, \partial I)$, we have

$$\|\tau_h u - u\|_p \le C'|h|.$$

Proof: (i) \Rightarrow (ii) by Holder's inequality with $c = ||u||_p$. (ii) \Rightarrow (i) why? We define $F : C(I) \to R$ by

$$F(\varphi) = \int_{I} u\varphi'$$

which is bounded and continuous. By Hahn Banach theorem this form is extended to $L^{p'}(I)$. So

$$|F(\varphi)| \le C \|\varphi\|_{L^{p'}}, \quad \forall \ \varphi \in L^{p'}.$$

By Riesz representation theorem, there exists $g \in L^p(I)$ such that

$$\int_{I} u\varphi' = \int_{I} g\varphi, \quad \forall \ \varphi \in L^{p'}(I);$$

in particular, we have

$$\int_{I} u\varphi' = \int_{I} g\varphi, \quad \forall \ \varphi \in C_0^{\infty}(I).$$

So, $u \in W^{1,p}(I)$ with u' = -g(i) \Rightarrow (iii) why ?

$$u(x+h) - u(x) = \int_{x}^{x+h} u'(t)dt.$$

Now for $p = +\infty$ we have

$$|u(x+h) - u(x)|_{\infty} \le \left| \int_{x}^{x+h} |u'|_{\infty} dt \right| \ \|\tau_{n}u\|_{\infty} \le \|u\|_{\infty} |h|.$$

Next 1 . We write

$$u(x+h) - u(x) = \int_0^1 h u'(x+sh) ds,$$

which implies

$$|u(x+h) - u(x)|^p \le |h|^p \int_0^1 |u'(x+sh)|^p ds$$

Integrations over ω :

$$\int_{\omega} |u(x+h) - u(x)|^p dx \leq |h|^p \int_{\omega} \int_0^1 |u'(x+sh)|^p ds dx$$
$$\leq |h|^p \int_0^1 ||u'||_p^p ds = |h|^p ||u'||_p^p$$

Therefore

$$\|\tau_h u - u\|_p \le |h| \|u\|_{1,p}.$$

(iii) \Rightarrow (ii) why? Let $\varphi \in C_0^{\infty}(I) \Rightarrow$ supp $\varphi \subset \omega \subset I$. Take *h* such that |h| < distance $(\omega, \partial I)$, so $\int_I [u(x+h) - u(x)]\varphi(x)dx = \int_I [\varphi(x) - \varphi(x-h)]u(x)dx$

This leads to

$$\left| \int_{I} [\varphi(x) - \varphi(x-h)] u(x) dx \right| \le ||\tau_h u||_p ||\varphi||_{p'} \le C|h|||\varphi||_p$$

Divide by h and let $h \to 0$ to obtain

$$\left\|\int_{I} u(x)\varphi'(x)dx\right\| \le C\|\varphi\|_{p'}.$$

This completes the proof.

Remark: For p = 1, we only have (i) \Rightarrow (ii) \Leftrightarrow (iii). **Remark**: (ii) \Rightarrow (i) is in general false because of the nonseparability of $L^{\infty}(I)$.