1 Sobolev Spaces

1.1 Motivation

Let us consider the problem

$$
\left.\begin{array}{l}
-u^{\prime \prime}(x)+u(x)=f(x), \quad 0<x<1 \tag{1}\\
u(0)=u(1)=0
\end{array}\right\}
$$

The objective is to find a solution $u \in C^{2}([0,1])$ for $f \in C([0,1])$. This problem is solvable by standard calculus methods.

Suppose that $\varphi \in C_{0}^{1}((0,1))$; that φ is continuously differentiable and $\varphi(0)=$ $\varphi(1)=0$. So

$$
\int_{0}^{1}\left(-u^{\prime \prime}+u\right) \varphi(x) d x=\int_{0}^{1} f \varphi d x
$$

Using integration by parts, we obtain

$$
\begin{equation*}
\int_{0}^{1} u^{\prime} \varphi^{\prime}+u \varphi=\int_{0}^{1} f \varphi d x \tag{2}
\end{equation*}
$$

We notice here that (2) is valid if u and $u^{\prime} \in L^{1}((0,1))$ or "simply" $u \in C^{1}([0,1])$. In this case, we say that u is a weak solution of (1). It satisfies (1) in the weak or in the variational sense (2).
(2) is the variational equation for (1).

Theorem: If $f \in C^{0}$, then any weak solution $u \in C^{1}$ is C^{2}.
Proof: It suffices to note that $u^{\prime \prime}=u-f \in C$. So $u \in C^{2}$.
Theorem: If $u \in C^{1}((0,1))$ with $u(0)=u(1)=0$ satisfying (2) for all $\varphi \in$ $C_{0}^{\infty}((0,1))$. Then u is a classical solution; that u satisfies (1).
Remark In some instance, we can show that a weak solution is in fact a classical solution. This is called the regularity theory. It will be a part of our course.

1.2 Sobolev Space $W^{1, p}(I)$

Definition: Given an open interval I and $1 \leq p \leq+\infty$ (bounded or not). We define the Sobolev space $W^{1, p}(I)=\left\{u \in L^{p}(I)\right.$ such that there exists $g \in L^{p}(I)$, for which we have $\left.\int_{I} u \varphi^{\prime}=-\int_{I} g \varphi, \quad \forall \varphi \in C_{0}^{1}(I)\right\}$.
Remark : For $p=2$, we denote $W^{1,2}(I)=H^{1}(I)$.
Remark: In such a case, we write $u^{\prime}=g$ in the weak sense; that is

$$
\int_{I}\left(u^{\prime}-g\right) \varphi d x=0, \quad \forall \varphi \in C_{0}^{1}(I)
$$

Example: Let $I=(-1,1)$ and $u(x)=\frac{1}{2}(x+|x|)$. It is clear that u is not differentiable at $x=0$ (hence on I). Let $\varphi \in C_{0}^{1}(I)$, then

$$
\begin{aligned}
\int_{-1}^{1} u \varphi^{\prime} & =\int_{-1}^{0} 0 . \varphi^{\prime} d x+\int_{0}^{1} x \varphi^{\prime} d x=\int_{0}^{1} x \varphi^{\prime} d x \\
& =\left.x \varphi\right|_{0} ^{1}-\int_{0}^{1} \varphi(x) d x=-\int_{0}^{1} \varphi(x) d x=-\int_{-1}^{1} g \varphi(x) d x
\end{aligned}
$$

where

$$
g(x)= \begin{cases}0, & -1 \leq x<0 \\ 1, & 0 \leq x \leq 1\end{cases}
$$

This is the Heavyside function denoted by H. So $u^{\prime}=H$ in the weak sense.
Note that $u, H \in L^{p}(I), \quad \forall p \geq 1 \Rightarrow u \in W^{1, p}(I), \quad \forall 1 \leq p \leq \infty$.
Now let us consider $H(x)$ and test if it is a $W^{1, p}(I)$ function. For this we take $\varphi \in C_{0}^{1}(I)$ as a test function

$$
\int_{-1}^{1} H \varphi^{\prime} d x=\int_{0}^{1} \varphi^{\prime}(x)=\varphi(1)-\varphi(0)=-\varphi(0)=-\delta(\varphi) .
$$

In this case, we cannot find $g \in L^{p}(I)$ such that

$$
\int_{-1}^{1} g \varphi d x=-\varphi(0), \quad \forall \varphi \in C_{0}^{1}(I)
$$

Remark: In this latter case, we say that $H^{\prime}=\delta$ in the distributional sense. δ is a distribution. This also motivates us to define $W^{1, p}(I)$ by using distributions.
Definition: We say that $u \in W^{1, p}(I)$ if $u \in L^{p}(I)$ and its distribution derivative u^{\prime} coincides with an $L^{p}(I)$ function g.
Theorem: The Sobolev space $W^{1, p}(I)$ equipped with the norm

$$
\|W\|_{1, p}=\|u\|_{p}+\left\|u^{\prime}\right\|_{p}
$$

is a Banach space.
Proof: Let $\left(u_{n}\right)$ be a Cauchy sequence in $W^{1, p}(I)$. So $\left(u_{n}\right)$ and $\left(u_{n}^{\prime}\right)$ are Cauchy in $L^{p} \Rightarrow$

$$
u_{n} \rightarrow u \text { and } u_{n}^{\prime} \rightarrow g \text { in } L^{p}(I) .
$$

Now

$$
\int_{I} u_{n} \varphi^{\prime}=-\int_{I} u_{n}^{\prime} \varphi, \quad \forall n, \quad \varphi \in C_{0}^{1}(I) .
$$

As $n \rightarrow \infty$,

$$
\int_{I} u \varphi^{\prime}=-\int_{I} g \varphi, \quad \forall \varphi \in C_{0}^{1}(I)
$$

$\Rightarrow u \in W^{1, p}(I)$ with $u^{\prime}=g$ (Definition) and $\left\|u_{n}-u\right\|_{1, p} \rightarrow 0$ as $n \rightarrow \infty$.
Theorem: The space $W^{1, p}(I)$ is reflexive for $1<p<\infty$ and separable for $1 \leq p<$ ∞.
Proof: We define the operator

$$
\begin{aligned}
& T: W^{1, p}(I) \rightarrow L^{p}(I) \times L^{p}(I) \\
& u \rightarrow\left(u, u^{\prime}\right) .
\end{aligned}
$$

This is an isometry. So $T\left(W^{1, p}(I)\right)$ is a closed subspace of $L^{p}(I) \times L^{p}(I)$; hence $T\left(W^{1, p}(I)\right)$ is reflexive for $1<p<\infty$ since $L^{p} \times L^{p}$ is reflexive for $1<p<\infty$.
The same thing holds for separability.
Theorem: Given $u \in W^{1, p}(I)$. There exists $\tilde{u} \in C(\bar{I})$ such that $\tilde{u}=u$ a.e. in I and

$$
\tilde{u}(y)-\tilde{u}(x)=\int_{x}^{y} u^{\prime}(t) d t, \quad \forall x, y \in I .
$$

Proof: It is clear that

$$
\tilde{u}(x)=u\left(x_{0}\right)+\int_{x_{0}}^{x} u^{\prime}(t) d t, \quad x_{0} \in I
$$

is absolutely continuous $\Rightarrow \tilde{u} \in C(\bar{I})$. Moreover, $\tilde{u}^{\prime}=u^{\prime}$ a.e. in $I \Rightarrow \tilde{u}=u+c$ a.e. in I. But $c=0$ since $\tilde{u}\left(x_{0}\right)=u\left(x_{0}\right)$
Remark: This theorem shows that $W^{1, p}(I)$ functions can be represented by absolutely continuous functions defined on \bar{I}. This is why we usually say that if $u \in W^{1, p}(I)$ then $u \in C(\bar{I})$.
Remark: If u is absolutely continuous with $u^{\prime} \in L^{p}(I)$, this does not mean that $u \in W^{1, p}(I)$ unless I is bounded.
Let

$$
g(t)=\frac{1}{1+t^{2}} \in L^{1}(
$$

but

$$
u(x)=\int_{0}^{x} g(t) d t=\tan ^{-1} x \notin L^{1}(
$$

since

$$
\int_{0}^{R} \tan ^{-1} x d x=R\left[\tan ^{-1} R-\frac{\log \left(1+R^{2}\right)}{2 R}\right]
$$

which gives

$$
\int_{0}^{\infty} \tan ^{-1} x d x=\infty
$$

Definition: Let u be defined in I; for x and h such that $x+h \in I$, we denote by

$$
\tau_{h} f(x)=f(x+h)
$$

Theorem: Let $u \in L^{p}(I), \quad 1<p \leq \infty$. The following properties are equivalent:
(i) $u \in W^{1, p}(I)$.
(ii) There exists a constant $C>0$ such that

$$
\left|\int_{I} u \varphi^{\prime}\right| \leq C\|\varphi\|_{p^{\prime}}, \quad \forall \varphi \in C^{\infty_{0}}(I), \quad \frac{1}{p^{\prime}}+\frac{1}{p}=1 .
$$

(iii) There exists a constant $C^{\prime}>0$ such that for each open $\omega \subset \subset I(\bar{\omega} \subset I)$ and for each h with $|h|<\operatorname{distance}(\omega, \partial I)$, we have

$$
\left\|\tau_{h} u-u\right\|_{p} \leq C^{\prime}|h|
$$

Proof: (i) \Rightarrow (ii) by Holder's inequality with $c=\|u\|_{p}$.
(ii) \Rightarrow (i) why?

We define $F: C(I) \rightarrow R$ by

$$
F(\varphi)=\int_{I} u \varphi^{\prime}
$$

which is bounded and continuous. By Hahn Banach theorem this form is extended to $L^{p^{\prime}}(I)$. So

$$
|F(\varphi)| \leq C\|\varphi\|_{L^{p^{\prime}}}, \quad \forall \varphi \in L^{p^{\prime}}
$$

By Riesz representation theorem, there exists $g \in L^{p}(I)$ such that

$$
\int_{I} u \varphi^{\prime}=\int_{I} g \varphi, \quad \forall \varphi \in L^{p^{\prime}}(I) ;
$$

in particular, we have

$$
\int_{I} u \varphi^{\prime}=\int_{I} g \varphi, \quad \forall \varphi \in C_{0}^{\infty}(I) .
$$

So, $u \in W^{1, p}(I)$ with $u^{\prime}=-g$
(i) \Rightarrow (iii) why ?

$$
u(x+h)-u(x)=\int_{x}^{x+h} u^{\prime}(t) d t
$$

Now for $p=+\infty$ we have

$$
|u(x+h)-u(x)|_{\infty} \leq\left.\left|\int_{x}^{x+h}\right| u^{\prime}\right|_{\infty} d t\left|\left\|\tau_{n} u\right\|_{\infty} \leq\|u\|_{\infty}\right| h \mid .
$$

Next $1<p<\infty$. We write

$$
u(x+h)-u(x)=\int_{0}^{1} h u^{\prime}(x+s h) d s
$$

which implies

$$
|u(x+h)-u(x)|^{p} \leq|h|^{p} \int_{0}^{1}\left|u^{\prime}(x+s h)\right|^{p} d s
$$

Integrationg over ω :

$$
\begin{aligned}
\int_{\omega}|u(x+h)-u(x)|^{p} d x & \leq|h|^{p} \int_{\omega} \int_{0}^{1}\left|u^{\prime}(x+s h)\right|^{p} d s d x \\
& \leq|h|^{p} \int_{0}^{1}\left\|u^{\prime}\right\|_{p}^{p} d s=|h|^{p}\left\|u^{\prime}\right\|_{p}^{p}
\end{aligned}
$$

Therefore

$$
\left\|\tau_{h} u-u\right\|_{p} \leq|h|\|u\|_{1, p}
$$

(iii) \Rightarrow (ii) why?

Let $\varphi \in C_{0}^{\infty}(I) \Rightarrow \operatorname{supp} \varphi \subset \omega \subset \subset I$. Take h such that $|h|<\operatorname{distance}(\omega, \partial I)$, so

$$
\int_{I}[u(x+h)-u(x)] \varphi(x) d x=\int_{I}[\varphi(x)-\varphi(x-h)] u(x) d x
$$

This leads to

$$
\left|\int_{I}[\varphi(x)-\varphi(x-h)] u(x) d x\right| \leq\left\|\tau_{h} u\right\|_{p}\|\varphi\|_{p^{\prime}} \leq C|h|\|\varphi\|_{p^{\prime}}
$$

Divide by h and let $h \rightarrow 0$ to obtain

$$
\left\|\int_{I} u(x) \varphi^{\prime}(x) d x\right\| \leq C\|\varphi\|_{p^{\prime}}
$$

This completes the proof.
Remark: For $p=1$, we only have (i) \Rightarrow (ii) \Leftrightarrow (iii).
Remark: (ii) \Rightarrow (i) is in general false because of the nonseparability of $L^{\infty}(I)$.

