1 Sobolev Spaces

1.1 Motivation

Let us consider the problem

—u"(z) +u(x) = f(z), 0<z<l
w(0) = u(1) = 0. (1)

The objective is to find a solution u € C*([0,1]) for f € C([0,1]). This problem is
solvable by standard calculus methods.

Suppose that ¢ € C}((0,1)); that ¢ is continuously differentiable and ¢(0) =
©(1) =0. So

/1(—u” + u)p(x)dr = /01 fodz.

0
Using integration by parts, we obtain

1 1
/O U+ up = /O fedz. (2)

We notice here that (2) is valid if v and «' € L*((0,1)) or “simply” v € C*([0,1]). In
this case, we say that u is a weak solution of (1). It satisfies (1) in the weak or in the
variational sense (2).

(2) is the variational equation for (1).
Theorem: If f € C°, then any weak solution u € C* is C2.
Proof: It suffices to note that v’ =u — f € C. So u € C?.
Theorem: If u € C'((0,1)) with u(0) = wu(l) = 0 satisfying (2) for all ¢ €
C3°((0,1)). Then w is a classical solution; that u satisfies (1).
Remark In some instance, we can show that a weak solution is in fact a classical
solution. This is called the regularity theory. It will be a part of our course.

1.2 Sobolev Space W!r(I)

Definition: Given an open interval I and 1 < p < +o0o (bounded or not). We define
the Sobolev space W'(I) = {u € LP(I) such that there exists g € LP(I), for which

we have [fup’ = —[rgp, V€ Cy(I)}.
Remark : For p = 2, we denote W'2(I) = H'(I).
Remark : In such a case, we write ©’ = g in the weak sense; that is

z(U’ —g)pdr =0, Y e Cy(I).

1
Example: Let [ = (—1,1) and u(z) = 5 (z+]x|). It is clear that u is not differentiable
at x = 0 (hence on I). Let ¢ € C3(I), then

1 0 1 1
/ up = / 0.90’d;v—|—/ xcp'dx:/ xo'dw
1 -1 0 0
1 1 1
= wpli— [ elayda =~ [ p)dz =~ [ gpla)ds
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where

[0, -1<2<0
g(z) = 0<az<1.

This is the Heavyside function denoted by H. So v/ = H in the weak sense.

Note that u, H € LP(I), Vp>1=uec W), V1<p<co.

Now let us consider H(z) and test if it is a W'P(I) function. For this we take
o € C3(I) as a test function

/_11 Hg'ds = /01 ¢'(x) = p(1) — ¢(0) = —p(0) = —6(¢).

In this case, we cannot find g € LP(I) such that

1
/_1gsod:v = —(0), VpeCy).

Remark: In this latter case, we say that H = 6 in the distributional sense. § is a
distribution. This also motivates us to define WP (I) by using distributions.
Definition: We say that u € W'P(I) if uw € LP(I) and its distribution derivative v’
coincides with an LP(I) function g.

Theorem: The Sobolev space WP(I) equipped with the norm

Wl1p = llullp + llu'll,

is a Banach space.
Proof: Let (u,) be a Cauchy sequence in W'?(I). So (u,) and () are Cauchy in

Ir =
u, — w and u,, — g in LP(I).
Now
/Un‘P/:_/U:#% vn> 90605(1)
I I
As n — oo,

/pr’:—/lgso, Ve Cyl)

= u € W'P(I) with v/ = g (Definition) and ||u, — ul|;, — 0 as n — oc.

Theorem: The space WP(I) is reflexive for 1 < p < oo and separable for 1 < p <
00.

Proof: We define the operator

T:Wh'(I) — LP(I) x LP(I)
u— (u,u).

This is an isometry. So T(W?'P(I)) is a closed subspace of LP(I) x LP(I); hence
T(Wt(I)) is reflexive for 1 < p < oo since LP x LP is reflexive for 1 < p < co.

The same thing holds for separability.

Theorem: Given u € WP(I). There exists % € C'(I) such that @ = u a.e. in I and

aly) — (z) = / “uydt, Yayel
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Proof: It is clear that

a(z) = u(zo) + / d()dt, wo €,

is absolutely continuous = % € C(I). Moreover, @ = u’ a.e. in [ = @ = u + ¢ a.e.
in /. But ¢ = 0 since @(zq) = u(zo)

Remark: This theorem shows that W'P(I) functions can be represented by ab-
solutely continuous functions defined on I. This is why we usually say that if
u € WYP(I) then u € C(I).

Remark: If u is absolutely continuous with « € LP(I), this does not mean that
u € WHP(I) unless I is bounded.

Let 1

t) = Lt

g9(t) e € (
but .
u(z) = / g(t)dt = tan 'z ¢ L(

0

since n loa(1 1 B2
/ tan 'axdr = R |tan ' R — M
0 2R

which gives
o
/ tan"! zdx = co.
0

Definition: Let u be defined in I; for x and h such that x + h € I, we denote by

Tnf(x) = f(z+h)

Theorem: Let u € LP(I), 1< p < oco. The following properties are equivalent:
(i) uwe Wte(I).
(ii) There exists a constant C' > 0 such that

J
I

(iii) There exists a constant C’ > 0 such that for each open w CC I (w C I) and for
each h with |h| < distance (w, dI), we have

1 1
< Cllelly, Ve (), Z?—FZ_?:L

7w = ullp, < C7|h].

Proof: (i) = (ii) by Holder’s inequality with ¢ = [Ju||,.
(i) = (i) why?
We define F': C(I) — R by
F(p) = ﬁ ug'
which is bounded and continuous. By Hahn Banach theorem this form is extended
to L' (I). So
(@) < Cllellpr, Vel
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By Riesz representation theorem, there exists g € LP(I) such that

/uso’ = /gso, Vo e LF(D);
I I
in particular, we have

ﬁw’zﬁgs@, Ve Gr(l).
So, u € WtP(I) with ' = —g¢
(i) = (iii) why ?

z+h

(@ + h) — u(z) :/ W (t)dt.

T

Now for p = 400 we have
z+h ,
o+ 1) =l < | [ W] [l < ol
Next 1 < p < co. We write
1
u(x+h) —u(z) = / hu'(x + sh)ds,
0
which implies
1
lu(z + h) — u(z)|P < yhyp/ [/ (z + sh)|Pds
0
Integrationg over w :
1
/ u(z + h) — u(@)Pdz < |hJ? / / ! (a + sh)[Pdsda
w w JO

1
B [ s = P o

IN

Therefore
ITnu = ullp < [A] flullp
(iii) = (ii) why?
Let ¢ € C°(I) = supp ¢ C w CC I. Take h such that || < distance (w,0I), so

Jlu@+ b = u(@)p@dz = [[e(e) = oo = Wlu(@)ds

I
This leads to

/[@(w) —plz - h)]U(x)dw‘ < [lmnullpllelly < Clhlllelly

I
Divide by h and let h — 0 to obtain

[u@y @z < Clelly.

This completes the proof.
Remark: For p = 1, we only have (i) = (ii) < (iii).
Remark: (ii) = (i) is in general false because of the nonseparability of L>(I).
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