
1 Sobolev Spaces

1.1 Motivation

Let us consider the problem

−u00(x) + u(x) = f(x), 0 < x < 1
u(0) = u(1) = 0.

)
(1)

The objective is to find a solution u ∈ C2([0, 1]) for f ∈ C([0, 1]). This problem is
solvable by standard calculus methods.
Suppose that ϕ ∈ C10 ((0, 1)); that ϕ is continuously differentiable and ϕ(0) =

ϕ(1) = 0. So Z 1

0
(−u00 + u)ϕ(x)dx =

Z 1

0
fϕdx.

Using integration by parts, we obtainZ 1

0
u0ϕ0 + uϕ =

Z 1

0
fϕdx. (2)

We notice here that (2) is valid if u and u0 ∈ L1((0, 1)) or “simply” u ∈ C1([0, 1]). In
this case, we say that u is a weak solution of (1). It satisfies (1) in the weak or in the
variational sense (2).
(2) is the variational equation for (1).

Theorem: If f ∈ C0, then any weak solution u ∈ C1 is C2.
Proof : It suffices to note that u00 = u− f ∈ C. So u ∈ C2.
Theorem: If u ∈ C1((0, 1)) with u(0) = u(1) = 0 satisfying (2) for all ϕ ∈
C∞0 ((0, 1)). Then u is a classical solution; that u satisfies (1).
Remark In some instance, we can show that a weak solution is in fact a classical
solution. This is called the regularity theory. It will be a part of our course.

1.2 Sobolev Space W 1,p(I)

Definition: Given an open interval I and 1 ≤ p ≤ +∞ (bounded or not). We define
the Sobolev space W 1,p(I) = {u ∈ Lp(I) such that there exists g ∈ Lp(I), for which
we have

R
I uϕ

0 = − RI gϕ, ∀ ϕ ∈ C10(I)}.
Remark : For p = 2, we denote W 1,2(I) = H1(I).
Remark : In such a case, we write u0 = g in the weak sense; that isZ

I
(u0 − g)ϕdx = 0, ∀ ϕ ∈ C10(I).

Example: Let I = (−1, 1) and u(x) = 1
2
(x+|x|). It is clear that u is not differentiable

at x = 0 (hence on I). Let ϕ ∈ C10(I), thenZ 1

−1
uϕ0 =

Z 0

−1
0.ϕ0dx+

Z 1

0
xϕ0dx =

Z 1

0
xϕ0dx

= xϕ|10 −
Z 1

0
ϕ(x)dx = −

Z 1

0
ϕ(x)dx = −

Z 1

−1
gϕ(x)dx
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where

g(x) =

(
0, −1 ≤ x < 0
1, 0 ≤ x ≤ 1.

This is the Heavyside function denoted by H . So u0 = H in the weak sense.
Note that u,H ∈ Lp(I), ∀ p ≥ 1⇒ u ∈W 1,p(I), ∀ 1 ≤ p ≤ ∞.
Now let us consider H(x) and test if it is a W 1,p(I) function. For this we take
ϕ ∈ C10 (I) as a test functionZ 1

−1
Hϕ0dx =

Z 1

0
ϕ0(x) = ϕ(1)− ϕ(0) = −ϕ(0) = −δ(ϕ).

In this case, we cannot find g ∈ Lp(I) such thatZ 1

−1
gϕdx = −ϕ(0), ∀ ϕ ∈ C10(I).

Remark: In this latter case, we say that H
0
= δ in the distributional sense. δ is a

distribution. This also motivates us to define W 1,p(I) by using distributions.
Definition: We say that u ∈ W 1,p(I) if u ∈ Lp(I) and its distribution derivative u0
coincides with an Lp(I) function g.
Theorem: The Sobolev space W 1,p(I) equipped with the norm

kWk1,p = kukp + ku0kp
is a Banach space.
Proof : Let (un) be a Cauchy sequence in W

1,p(I). So (un) and (u
0
n) are Cauchy in

Lp ⇒
un → u and u0n → g in Lp(I).

Now Z
I
unϕ

0 = −
Z
I
u0nϕ, ∀ n, ϕ ∈ C10(I).

As n→∞, Z
I
uϕ0 = −

Z
I
gϕ, ∀ ϕ ∈ C10(I)

⇒ u ∈W 1,p(I) with u0 = g (Definition) and kun − uk1,p → 0 as n→∞.
Theorem: The space W 1,p(I) is reflexive for 1 < p < ∞ and separable for 1 ≤ p <
∞.
Proof : We define the operator

T : W 1,p(I)→ Lp(I)× Lp(I)
u→ (u, u0).

This is an isometry. So T (W 1,p(I)) is a closed subspace of Lp(I) × Lp(I); hence
T (W 1,p(I)) is reflexive for 1 < p <∞ since Lp × Lp is reflexive for 1 < p <∞.
The same thing holds for separability.
Theorem: Given u ∈W 1,p(I). There exists ũ ∈ C(I) such that ũ = u a.e. in I and

ũ(y)− ũ(x) =
Z y

x
u0(t)dt, ∀ x, y ∈ I.
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Proof : It is clear that

ũ(x) = u(x0) +
Z x

x0
u0(t)dt, x0 ∈ I,

is absolutely continuous ⇒ ũ ∈ C(I). Moreover, ũ0 = u0 a.e. in I ⇒ ũ = u + c a.e.
in I . But c = 0 since ũ(x0) = u(x0)
Remark: This theorem shows that W 1,p(I) functions can be represented by ab-
solutely continuous functions defined on I. This is why we usually say that if
u ∈W 1,p(I) then u ∈ C(I).
Remark: If u is absolutely continuous with u0 ∈ Lp(I), this does not mean that
u ∈W 1,p(I) unless I is bounded.
Let

g(t) =
1

1 + t2
∈ L1(

but
u(x) =

Z x

0
g(t)dt = tan−1 x /∈ L1(

since Z R

0
tan−1 xdx = R

"
tan−1R − log(1 +R

2)

2R

#
.

which gives Z ∞
0
tan−1 xdx =∞.

Definition: Let u be defined in I ; for x and h such that x+ h ∈ I , we denote by
τhf(x) = f (x+ h)

.
Theorem: Let u ∈ Lp(I), 1 < p ≤∞. The following properties are equivalent:
(i) u ∈W 1,p(I).
(ii) There exists a constant C > 0 such that¯̄̄̄Z

I
uϕ0

¯̄̄̄
≤ Ckϕkp0, ∀ ϕ ∈ C∞0(I),

1

p0
+
1

p
= 1.

(iii) There exists a constant C 0 > 0 such that for each open ω ⊂⊂ I (ω ⊂ I) and for
each h with |h| < distance (ω, ∂I), we have

||τhu− ukp ≤ C 0|h|.
Proof : (i) ⇒ (ii) by Holder’s inequality with c = kukp.
(ii) ⇒ (i) why?
We define F : C(I)→ R by

F (ϕ) =
Z
I
uϕ0

which is bounded and continuous. By Hahn Banach theorem this form is extended
to Lp

0
(I). So

|F (ϕ)| ≤ CkϕkLp0 , ∀ ϕ ∈ Lp0.
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By Riesz representation theorem, there exists g ∈ Lp(I) such thatZ
I
uϕ0 =

Z
I
gϕ, ∀ ϕ ∈ Lp0(I);

in particular, we have Z
I
uϕ0 =

Z
I
gϕ, ∀ ϕ ∈ C∞0 (I).

So, u ∈W 1,p(I) with u0 = −g
(i) ⇒ (iii) why ?

u(x+ h)− u(x) =
Z x+h

x
u0(t)dt.

Now for p = +∞ we have

|u(x+ h)− u(x)|∞ ≤
¯̄̄̄
¯
Z x+h

x
|u0|∞dt

¯̄̄̄
¯ kτnuk∞ ≤ kuk∞|h|.

Next 1 < p <∞. We write

u(x+ h)− u(x) =
Z 1

0
hu0(x+ sh)ds,

which implies

|u(x+ h)− u(x)|p ≤ |h|p
Z 1

0
|u0(x+ sh)|pds

Integrationg over ω :Z
ω
|u(x+ h)− u(x)|pdx ≤ |h|p

Z
ω

Z 1

0
|u0(x+ sh)|pdsdx

≤ |h|p
Z 1

0
ku0kppds = |h|p ku0kpp

Therefore
kτhu− ukp ≤ |h| kuk1,p.

(iii) ⇒ (ii) why?
Let ϕ ∈ C∞0 (I)⇒ supp ϕ ⊂ ω ⊂⊂ I . Take h such that |h| < distance (ω, ∂I), soZ

I
[u(x+ h)− u(x)]ϕ(x)dx =

Z
I
[ϕ(x)− ϕ(x− h)]u(x)dx

This leads to ¯̄̄̄Z
I
[ϕ(x)− ϕ(x− h)]u(x)dx

¯̄̄̄
≤ ||τhu||p||ϕ||p0 ≤ C|h|||ϕ||p0

Divide by h and let h→ 0 to obtain°°°°Z
I
u(x)ϕ0(x)dx

°°°° ≤ Ckϕkp0.
This completes the proof.
Remark: For p = 1, we only have (i) ⇒ (ii) ⇔ (iii).
Remark: (ii) ⇒ (i) is in general false because of the nonseparability of L∞(I).
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