Corollary: Given $m \ge 1$ and $1 \le p < \infty$. Then

1. For $\frac{N}{p} > m$, we have

$$W^{m,p}(\mathbb{R}^N) \subset L^q(\mathbb{R}^N), \quad \frac{1}{q} = \frac{1}{p} - \frac{m}{N}$$

2. For $\frac{N}{p} = m$, we have

$$W^{m,p}(\mathbb{R}^N) \subset L^q(\mathbb{R}^N), \quad \forall q \in [p, +\infty)$$

3. For $\frac{N}{p} < m$, we have

$$W^{m,p}(\mathbb{R}^N) \subset L^\infty(\mathbb{R}^N)$$

Moreover if

$$m - \frac{N}{p} = k + \theta$$
, for $k = \left[m - \frac{N}{p}\right]$ and $0 < \theta < 1$

then $\forall u \in W^{m,p}(\mathbb{R}^N)$ we have

$$||D^{\alpha}u||_{L^{\infty}} \le C||u||_{W^{1,p}}, \quad \forall \alpha, \quad |\alpha| \le k$$

and

$$|D^{\alpha}u(x) - D^{\alpha}u(y)| \le C||u||_{W^{1,p}}|u - y|^{\theta}$$

for almost every x, y in \mathbb{R}^N and all α , $|\alpha| = k$. In particular,

 $W^{m,p}(\mathbb{R}^N) \subset C^k(\mathbb{R}^N)$

Remark: To prove the above results, we only reiterate the results of the embedding theorems for successive derivatives.

Corollary. For the special case p = 1 and m = N, we have $W^{N,1}(\mathbb{R}^N) \subset L^{\infty}(\mathbb{R}^N)$. **Proof.** Let $u \in C_0^{\infty}(\mathbb{R}^N)$, so we have

$$u(x_1, x_2, \dots, x_N) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \dots \int_{-\infty}^{x_N} \frac{\partial^N u}{\partial x_1 \partial x_2 \dots \partial x_N} (t_1, t_2, \dots, t_N) dt_1, \dots dt_N$$

hence

$$||u||_{\infty} \le ||u||_{W^{N,1}}$$

For $u \in W^{N,1}(\mathbb{R}^N)$, we use the density of $C_0^{\infty}(\mathbb{R}^N)$ in $W^{N,1}(\mathbb{R}^N)$. **Corollary:** Suppose that Ω is an open of class C^1 with bounded boundary $\partial\Omega$ or $\Omega = \mathbb{R}^N_+$. Let $1 \leq p \leq +\infty$; so 1. If $1 \le p < N$ then

$$W^{1,p}(\Omega) \subset L^{P^*}(\Omega), \qquad \frac{1}{p^*} = \frac{1}{p} - \frac{1}{N}$$

2. If p = N then

$$W^{1,p}(\Omega) \subset L^q(\Omega), \quad \forall q \in [p, +\infty).$$

3. If p > N then

$$W^{1,p}(\Omega) \subset L^{\infty}(\Omega).$$

Moreover, for p > N, we have for $u \in W^{1,p}(\Omega)$

$$|u(x) - u(y)| \le C ||u||_{W^{1,p}} |x - y|^{\alpha}, \text{ for almost } x, y \in \Omega$$

where

$$\alpha = 1 - \frac{N}{p}$$
 and $C = C(\Omega, p, N)$.

In particular

$$W^{1,p}(\Omega) \subset C(\bar{\Omega})$$

Proof. We extend u to \mathbb{R}^N by the extension operator we then apply the above corollary to Pu.

Corollary: For $m \geq 2$ and $1 \leq p < \infty$ and Ω of class C^m we have the same embedding result for $W^{m,p}(\Omega)$ as in the case of $\Omega = \mathbb{R}^N$.

Theorem (Rellich Kondrachov): Suppose that Ω is bounded and of class C^1 . So for

1. p < N, $W^{1,p}(\Omega) \subset L^q(\Omega)$, $\forall q \in [1, p^*)$, $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{N}$. 2. p = N, $W^{1,p}(\Omega) \subset L^q(\Omega)$, $\forall q \in [1, +\infty)$ 3. p > N, $W^{1,p}(\Omega) \subset C(\overline{\Omega})$

with compact embedding **Remarks:**

1. If Ω is not bounded, the embedding of $W^{1,p}(\Omega)$ in $L^p(\Omega)$ is not compact in general.

Example. on $[0, +\infty)$ let

$$f_n(x) = \begin{bmatrix} x - (n-1), & n-1 < x \le n \\ -x + (n+1), & n < x < n+1 \\ 0 & \text{otherwise} \end{bmatrix}$$

$$\int_0^\infty |f_n| = 1$$
 and $\int_0^\infty |f'_n(x)| = 2$, $\forall n = 1, 2, ...$

So

$$||f_n||_{W^{1,1}} = 3$$

$$f(x) = \lim_{n \to \infty} f_n(x) = 0, \quad \forall x \in [0, +\infty).$$

However, for any subsequence (f_{n_k})

$$\int_0^{+\infty} |f_{n_k} - f| = \int_0^{+\infty} |f_{n_k}| = 1,$$

which shows that no subsequence would converge in L^1 . Thus the embedding is not compact.

- 2. The embedding of $W^{1,p}(\Omega)$ in $L^{p^*}(\Omega)$ is never compact even if Ω is bounded and regular.
- 3. For the case p = N, the embedding of $W^{1,N}(\Omega)$ in $L^{\infty}(\Omega)$ is not always true even if Ω is bounded and of class C^1 .

Example: Let

$$\Omega = \left\{ (x, y) \in \mathbb{R}^2 / x^2 + y^2 < \frac{1}{2} \right\}$$

and

$$u(x,y) = \left(L\log\frac{1}{x^2 + y^2}\right)^{\alpha}, \quad 0 < \alpha < \frac{1}{2}.$$

It is clear that $u \notin L^{\infty}(\Omega)$ because of the singularity at (0,0). However, $u \in W^{1,2}(\Omega)$ since

$$\begin{split} \int_{\Omega} |u|^2 dx \, dy &= \int_0^{2\pi} \int_0^{\frac{1}{2}} \left(2L \log \frac{1}{r} \right)^{2\alpha} r \, dr \, d\theta \\ &= 2\pi \int_0^{\frac{1}{2}} 2^{2\alpha} \left(\log \frac{1}{r} \right)^{2\alpha} r \, dr \\ &= C \left[\int_0^{-e^{-1}} \left(L \log \frac{1}{r} \right)^{2\alpha} r \, dr + \int_{e^{-1}}^{\frac{1}{2}} \left(\log \frac{1}{r} \right)^{2\alpha} r \, dr \right] \end{split}$$

The second integral is proper and has no problem. On $[0, e^{-1}]$, we have

$$\log \frac{1}{r} \ge 1 \Rightarrow \left(\log \frac{1}{r}\right)^{2\alpha} \le \log \frac{1}{r}$$
 since $2\alpha < 1$.

Thus

$$\begin{aligned} \int_0^{e^{-1}} \left(\log \frac{1}{r} \right)^{2\alpha} dr &\leq -\int_0^{e^{-1}} (+\log r) r \, dr \\ &\leq -\left[\frac{r^2}{2} \log r |_0^{e^{-1}} - \int_0^{e^{-1}} \frac{r^2}{2} \frac{1}{r} dr \right] \\ &\leq \frac{e^{-2}}{2} + \frac{e^{-2}}{4} = \frac{3}{4} e^{-2} < \infty \end{aligned}$$

Consequently

$$\int_{\Omega} |u|^2 dx \, dy < \infty.$$

It is easy to see that

$$u_x = -\alpha \frac{2x}{x^2 + y^2} \left(-\log(x^2 + y^2) \right)^{\alpha - 1}$$

Therefore

$$\int_{\Omega} |u_x|^2 = 2^{2x} \alpha^2 \int_0^{2\pi} \cos^2 \theta \, d\theta \int_0^{\frac{1}{2}} \frac{(-\log r)^{2\alpha - 2}}{r} \, dr$$

we make the change of variable $t = \frac{1}{r}$ to get

$$\int_{0}^{\frac{1}{2}} \frac{(-\log r)^{2\alpha-2}}{r} dr = \int_{2}^{\infty} \frac{(\log t)^{2\alpha-2}}{t} dt$$
$$= \frac{(\log t)^{2\alpha-1}}{2\alpha-1} \Big|_{t=0}^{t=\infty} = \frac{(\log 2)^{2\alpha-1}}{1-2\alpha}.$$

since $2\alpha - 1 < 0$. Thus $\int_{\Omega} |u_x|^2 < \infty$ and $\int_{\Omega} |u_y|^2 < \infty$ by similar computations.