
Corollary: Given m ≥ 1 and 1 ≤ p < ∞. Then

1. For N
p

> m, we have

W m,p(IRN) ⊂ Lq(IRN),
1

q
=

1

p
− m

N

2. For N
p

= m, we have

W m,p(IRN ) ⊂ Lq(IRN), ∀ q ∈ [p, +∞)

3. For N
p

< m, we have

W m,p(IRN) ⊂ L∞(IRN)

Moreover if

m − N

p
= k + θ, for k =

[
m − N

p

]
and 0 < θ < 1

then∀ u ∈ W m,p(IRN ) we have

||Dαu||L∞ ≤ C||u||W 1,p, ∀α, |α| ≤ k

and
|Dαu(x) − Dαu(y)| ≤ C||u||W 1,p|u − y|θ

for almost every x, y in IRN and all α, |α| = k. In particular,

W m,p(IRN) ⊂ Ck(IRN )

Remark: To prove the above results, we only reiterate the results of the embedding
theorems for successive derivatives.
Corollary. For the special case p = 1 and m = N, we have W N,1(IRN) ⊂ L∞(IRN).
Proof. Let u ∈ C∞

0 (IRN), so we have

u (x1, x2, . . . , xN) =
∫ x1

−∞

∫ x2

−∞
. . .
∫ xN

−∞

∂Nu

∂x1∂x2 . . . ∂xN

(t1, t2, . . . , tN) dt1, . . . dtN

hence
||u||∞ ≤ ||u||

WN,1

For u ∈ W N,1(IRN), we use the density of C∞
0 (IRN ) in W N,1(IRN).

Corollary: Suppose that Ω is an open of class C1 with bounded boundary ∂Ω or
Ω = IRN

+ . Let 1 ≤ p ≤ +∞; so

1



1. If 1 ≤ p < N then

W 1,p(Ω) ⊂ LP ∗
(Ω),

1

p∗
=

1

p
− 1

N

.

2. If p = N then
W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [p, +∞).

3. If p > N then
W 1,p(Ω) ⊂ L∞(Ω).

Moreover, for p > N, we have for u ∈ W 1,p(Ω)

|u(x) − u(y)| ≤ C||u||W 1,p|x − y|α, for almost x, y ∈ Ω

where

α = 1 − N

p
and C = C(Ω, p, N).

In particular

W 1,p(Ω) ⊂ C(Ω̄)

Proof. We extend u to IRN by the extension operator we then apply the above
corollary to Pu.
Corollary: For m ≥ 2 and 1 ≤ p < ∞ and Ω of class Cm we have the same
embedding result for W m,p(Ω) as in the case of Ω = IRN .
Theorem (Rellich Kondrachov): Suppose that Ω is bounded and of class C1. So for

1. p < N, W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [1, p∗), 1
p∗

= 1
p
− 1

N
.

2. p = N, W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [1, +∞)

3. p > N, W 1,p(Ω) ⊂ C(Ω̄)

with compact embedding
Remarks:

1. If Ω is not bounded, the embedding of W 1,p(Ω) in Lp(Ω) is not compact in
general.

Example. on [0, +∞) let

fn(x) =




x − (n − 1), n − 1 < x ≤ n
−x + (n + 1), n < x < n + 1

0 otherwise
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∫ ∞

0
|fn| = 1 and

∫ ∞

0
|f ′

n(x)| = 2, ∀n = 1, 2, . . .

So
||fn||W 1,1 = 3

f(x) = lim
n→∞

fn(x) = 0, ∀x ∈ [0, +∞).

However, for any subsequence (fnk
)

∫ +∞

0
|fnk

− f | =
∫ +∞

0
|fnk

| = 1,

which shows that no subsequence would converge in L1. Thus the embedding
is not compact.

2. The embedding of W 1,p(Ω) in Lp∗(Ω) is never compact even if Ω is bounded
and regular.

3. For the case p = N, the embedding of W 1,N(Ω) in L∞(Ω) is not always true
even if Ω is bounded and of class C1.

Example: Let

Ω =
{
(x, y) ∈ IR2/x2 + y2 <

1

2

}

and

u(x, y) =

(
L log

1

x2 + y2

)α

, 0 < α <
1

2
.

It is clear that u /∈ L∞(Ω) because of the singularity at (0, 0). However, u ε W 1,2(Ω)
since

∫

Ω
|u|2dx dy =

∫ 2π

0

∫ 1
2

0

(
2 L log

1

r

)2α

r dr dθ

= 2π
∫ 1

2

0
22α

(
log

1

r

)2α

r dr

= C

[∫ −e−1

0

(
L log

1

r

)2α

r dr +
∫ 1

2

e−1

(
log

1

r

)2α

r dr

]

The second integral is proper and has no problem. On [0, e−1], we have

log
1

r
≥ 1 ⇒

(
log

1

r

)2α

≤ log
1

r
since 2α < 1.
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Thus

∫ e−1

0

(
log

1

r

)2α

dr ≤ −
∫ e−1

0
(+ log r)r dr

≤ −
[
r2

2
log r|e−1

0 −
∫ e−1

0

r2

2

1

r
dr

]

≤ e−2

2
+

e−2

4
=

3

4
e−2 < ∞

Consequently ∫

Ω
|u|2dx dy < ∞.

It is easy to see that

ux = −α
2x

x2 + y2

(
− log(x2 + y2)

)α−1

Therefore ∫

Ω
|ux|2 = 22xα2

∫ 2π

0
cos2 θ dθ

∫ 1
2

0

(− log r)2α−2

r
dr

we make the change of variable t = 1
r

to get

∫ 1
2

0

(− log r)2α−2

r
dr =

∫ ∞

2

(log t)2α−2

t
dt

=
(log t)2α−1

2α − 1

∣∣∣∣∣

t=∞

t=0

=
(log 2)2α−1

1 − 2α
.

since 2α − 1 < 0. Thus
∫

Ω
|ux|2 < ∞ and

∫

Ω
|uy|2 < ∞ by similar computations.
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