1 Classical L^p Spaces

1.1 Definitions and Properties

Definition: Let E be a measurable set of \mathbb{R}^n . We say that a function f is in $L^p(E)$, if f is measurable and $\int_E |f|^p < +\infty$.

Remark: The integral here is in the Lebesgue sense and $p \in (0, +\infty)$.

Proposition: $L^p(E)$ is a linear space.

Proof: f and g be in $L^p(E)$ and $\alpha \in \mathbb{R}$. It is clear that

$$\int_{E} |\alpha f|^{p} = |\alpha|^{p} \int_{E} |f|^{p} < \infty$$

$$\int_{E} |f + g|^{p} \le 2^{p} \left(\int_{E} |f|^{p} + \int_{E} |g|^{p} \right) < \infty$$

We equip $L^p(E)$ with the "natural" norm

$$||f||_p = \left(\int |f|^p\right)^{1/p}, \quad p \ge 1.$$

One can easily verify that this is, indeed, a norm.

Definition: We call $L^{\infty}(E)$ the set of all functions which are bounded on E, except maybe on a subset of measure zero.

Examples: 1) f(x) = x is not in $L^{\infty}(\mathbb{R})$.

2)

$$g(x) = \begin{cases} x, & x \in Q \\ 1, & \text{otherwise} \end{cases}$$

is in $L^{\infty}(\mathbb{R})$. We have in this case $|g(x)| \leq 1$, a.e.

Definition: On $L^{\infty}(E)$, we define the norm by

$$||f||_{\infty} = ess \sup |f(t)| = \inf\{M : \max\{t \ / \ |f(t)| > M\} = 0\}.$$

In the previous example, $||g||_{\infty} = 1$.

Proposition: If f = g a.e. on E, then

$$||f||_p = ||g||_p, \quad \forall \ p \in [1, +\infty].$$

Exercise: If

$$f(x) = \begin{cases} x, & x \text{ irrational,} \\ 1, & x \text{ rational,} \end{cases}.$$

show that $||f||_{\infty} = \infty$.

Theorem: (Hölder's inequality) Let p and q be nonnegative extended real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^p(E)$ and $g \in L^q(E)$, then $fg \in L^1(E)$ and $\int_E |fg| \le ||f||_p ||g||_q$.

Theorem: (Riesz-Fischer) The $L^p(E)$, $1 \le p \le \infty$, equipped with the "natural" norm is complete (Banach space).

Remark: $L^2(E)$ is a Hilbert space. The inner product is $\langle f, g \rangle = \int_E fg$.

1.2 Bounded Linear Functionals on L^p Spaces

Given a fixed g in $L^q(E)$; we define the functional $F: L^p(E) \to \mathbb{R}$ by $F(f) = \int_E fg$.

This is well defined since $f \in L^p(E)$ and $L^q(E)$, for $\frac{1}{p} + \frac{1}{q} = 1$.

Theorem: F is a linear functional such that $||F|| = ||g||_{L^q(E)}$.

Proof: let us remember that

$$||F|| = \sup_{f \neq 0} \frac{|F(f)|}{||f||_p}, \qquad f \in L^p(E)..$$

So

$$|F(f)| = \left| \int fg \right| \le ||f||_p \cdot ||g||_q \Rightarrow ||F|| \le ||g||_q$$
 (1.1)

Next, we set for, 1

$$h = |g|^{q/p} \text{ sing } g = \begin{cases} |g|^{q/p}, & g(x) \ge 0\\ -|g|^{q/p}, & g(x) < 0. \end{cases}$$

It is clear that $\int |h|^p = \int |g|^q \Rightarrow h \in L^p(E)$. So,

$$F(h) = \int |g|^{q/p} g(\text{sing } g) = \int |g|^{q/p} |g| = \int |g|^q$$
$$= ||g||_q^q = ||g||_q \cdot ||g||_q^{q-1} = ||g||_q ||h||_p.$$

Hence

$$\frac{|F(h)|}{\|h\|_p} = \|g\|_q \Rightarrow \|F\| \ge \|g\|_q. \tag{1.2}$$

For (1) and (2), we obtain $||F|| = ||g||_q$.

Lemma: Let g be measurable on E. Suppose there exists M > 0 such that

$$\left| \int fg \right| \le M \|f\|_p$$
, for all f in $L^p(E)$.

Then

$$g \in L^q$$
 and $||g||_q \le M$; $(1 \le p \le \infty)$.

Theorem: (Riesz Representation Theorem). Let F be a bounded linear functional on $L^p(E)$, $1 \le p < \infty$. Then there exists g in $L^q(E)$, 1/q + 1/p = 1, such that

$$F(f) = \int_E fg, \quad \forall \ f \in L^p(E).$$

Moreover, we have $||F|| = ||g||_q$.

Exercise: 1) Show that if E is a set of finite measure (bounded for example) and $f \in L^p(E)$, then $f \in L^r(E)$ for all $r \leq p$.

2) How about if E is of infinite measure (unbounded for example)?