1 Regularity of weak solutions

Definition. Let Ω be an open set of \mathbb{R}^{N}. We say that Ω is of class C^{m}, if for each $x \in \Gamma$, there exists a neighborhood U of x in \mathbb{R}^{N} and a bijective application $H: Q \rightarrow U$ such that

$$
\begin{aligned}
H & \in C^{m}(\bar{Q}), & H^{-1} \in C^{m}(\bar{U}), \\
H\left(Q_{+}\right) & =U \cap \Omega, & H\left(Q_{0}\right)=U \cap \Gamma .
\end{aligned}
$$

Ω is said to be of class C^{∞}, if it is of class $C^{m}, \quad \forall m \geq 1$.
Here are some regularity results.
Theorem 1. Suppose that $f \in L^{2}\left(\mathbb{R}^{N}\right)$ and $u \in H^{1}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{equation*}
\int(\nabla u \cdot \nabla \phi+u \phi)=\int f \phi, \quad \forall \phi \in H^{1}\left(\mathbb{R}^{N}\right) \tag{1}
\end{equation*}
$$

then

$$
u \in H^{2}\left(\mathbb{R}^{N}\right) \text { and }\|u\|_{H^{2}} \leq c\|f\|_{L^{2}}
$$

Proof. For $h \in \mathbb{R}^{N}, h \neq 0$, we set

$$
D_{h} u=\frac{1}{|h|}\left(\tau_{h} u-u\right),
$$

that is

$$
D_{h} u(x)=\frac{u(x+h)-u(x)}{|h|}
$$

Let $\phi=D_{-h}\left(D_{h} u\right)$. It is clear that $\phi \in H^{1}\left(\mathbb{R}^{N}\right)$. Since $u \in H^{1}\left(\mathbb{R}^{N}\right)$ and use it for (1) to obtain

$$
\int\left|\nabla\left(D_{h} u\right)\right|^{2}+\int\left|D_{h} u\right|^{2}=\int f\left(D_{-h}(D u)\right)
$$

which implies

$$
\begin{equation*}
\left\|D_{h} u\right\|_{H^{1}}^{2} \leq\|f\|_{L^{2}}\left\|D_{-h}(D u)\right\|_{L^{2}} \tag{2}
\end{equation*}
$$

In the other hand, we have

$$
\begin{equation*}
\left\|D_{-h}(D u)\right\|_{L^{2}} \leq\|\nabla(D u)\|_{L^{2}} \tag{3}
\end{equation*}
$$

since

$$
\left\|D_{-h} v\right\|_{L^{2}(\omega)} \leq\|\nabla v\|_{L^{2}\left(\mathbb{R}^{N}\right)}, \quad \forall v \in H^{1} \text { and } w \subset \subset \mathbb{R}^{N}
$$

Combining (2) and (3) we easily get

$$
\left\|D_{h} u\right\|_{H^{1}} \leq\|f\|_{L_{2}}
$$

In particular, we have

$$
\left\|D_{h} \frac{\partial u}{\partial x_{i}}\right\|_{L_{2}} \leq\|f\|_{L_{2}}, \quad \forall i=1,2, \ldots, N
$$

S0,

$$
\frac{\partial u}{\partial x_{i}} \in H^{1}\left(\mathbb{R}^{N}\right), \quad \forall i=1,2, \ldots, N
$$

Hence $u \in H^{2}\left(\mathbb{R}^{N}\right)$.

More regularity

Corollary 1. If $f \in H^{1}\left(\mathbb{R}^{N}\right)$ and u satisfies (1) then $u \in H^{3}\left(\mathbb{R}^{N}\right)$.
Proof. Let $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$; so $\frac{\partial \phi}{\partial x_{i}} \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right), \forall i=1,2, \ldots N$. Since $u \in H^{1}$ (in fact $u \in H^{2}$) then we have

$$
\int \nabla u \cdot \nabla\left(\frac{\partial \phi}{\partial x_{i}}\right)+\int u \frac{\partial \phi}{\partial x_{i}}=\int f \frac{\partial \phi}{\partial x_{i}}, i=1,2, \ldots N .
$$

By integrating we obtain

$$
\int \nabla\left(\frac{\partial u}{\partial u_{i}}\right) \cdot \nabla \phi=\int \frac{\partial u}{\partial x_{i}} \phi=\int \frac{\partial f}{\partial x_{i}} \phi, \quad \forall \epsilon C_{0}^{\infty}\left(\mathbb{R}^{N}\right),
$$

which implies that $\frac{\partial u}{\partial x_{i}} \in H^{2}, \forall i=1,2, \ldots N$; hence $u \in H^{3}\left(\mathbb{R}^{N}\right)$.
By repeating the same procedure we have the following:
Corollary 2. If $f \in H^{m}\left(\mathbb{R}^{N}\right)$ and u satisfies (1). Then $u \in H^{m+2}\left(\mathbb{R}^{N}\right)$.

1.1 Case $\Omega=\mathbb{R}_{+}^{N}$.

Reminder. $\mathbb{R}_{+}^{N}=\left\{\left(x_{1}, x_{2}, \ldots, x_{N-1} x_{N}\right), \quad x_{N} \geq 0\right\}$
Definition. We say that $h / / \Gamma$ if $h \in \mathbb{R}^{N-1} \times\{0\}$ i.e. $h=\left(h_{1}, \ldots, h_{N-1}, 0\right)$.
Lemma. Suppose that $u \in H_{0}^{1}(\Omega)$ and $h / / \Gamma$ then $D_{h} u \in H_{0}^{1}(\Omega)$.
Proposition. Let $f \in L^{2}(\Omega)$ and suppose that $u \in H_{0}^{1}(\Omega)$ satisfies,

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla \phi+\int_{\Omega} u \phi=\int f \phi, \quad \forall \phi \in H_{0}^{1}(\Omega) \tag{4}
\end{equation*}
$$

Then $u \in H^{2}(\Omega)$.
Proof. Let $h / / \Gamma$ and use $\phi=D_{-h}(D u)$ in (4). Then

$$
\int_{\Omega}\left|\nabla\left(D_{h} u\right)\right|^{2}+\int_{\Omega}\left|D_{h} u\right|^{2}=\int_{\Omega} f D_{-h}\left(D_{h} u\right)
$$

So

$$
\begin{equation*}
\left\|D_{h} u\right\|_{H^{1}}^{2} \leq\|f\|_{L^{2}}\left\|D_{-h}\left(D_{h} u\right)\right\|_{L^{2}} . \tag{5}
\end{equation*}
$$

We then use the fact that

$$
\begin{equation*}
\left\|D_{h} v\right\|_{L^{2}(\Omega)} \leq\|\nabla v\|_{L^{2}(\Omega)}, \quad \forall v \in H^{1}(\Omega), \quad \forall h / / \Gamma \tag{6}
\end{equation*}
$$

to obtain from (5)

$$
\begin{equation*}
\left\|D_{h} u\right\|_{H^{1}} \leq\|f\|_{L^{2}}, \quad \forall h / / \Gamma . \tag{7}
\end{equation*}
$$

Exercise. Establish (6).
Let $1 \leq j \leq N, 1 \leq k \leq N-1$ and take $h=|h| e_{k}$. So, for $\phi \in C_{0}^{\infty}(\Omega)$, we have

$$
\begin{equation*}
\int_{\omega} D_{h}\left(\frac{\partial u}{\partial x_{j}}\right) \phi=-\int_{\Omega} u D_{-h}\left(\frac{\partial \phi}{\partial x_{j}}\right) \tag{8}
\end{equation*}
$$

Exercise. Show (8).
Combining (7) and (8) we have

$$
\left|\int_{\Omega} u D_{-h}\left(\frac{\partial \phi}{\partial x_{j}}\right)\right| \leq\|f\|_{L^{2}}\|\phi\|_{L^{2}}, \quad \forall 1 \leq j \leq N, \quad 1 \leq k \leq N-1 .
$$

As $h \rightarrow 0$, we obtain

$$
\begin{equation*}
\left|\int u \frac{\partial^{2} \phi}{\partial x_{k} \partial x_{j}}\right| \leq\|f\|_{L^{2}}\|\phi\|_{L^{2}} \tag{9}
\end{equation*}
$$

Next, we show that

$$
\left|\int u \frac{\partial^{2} \phi}{\partial x_{N}^{2}}\right| \leq C\|f\|_{L^{2}}\|\phi\|_{L^{2}}, \quad \forall \phi \in C_{0}^{\infty}(\Omega)
$$

To do this, we use (4). So, we get

$$
\begin{aligned}
\left|\int_{\Omega} u \frac{\partial^{2} \phi}{\partial x_{N}^{2}}\right| & \leq \sum_{i=1}^{N-1}\left|\int_{\Omega} u \frac{\partial^{2} \phi}{\partial x_{i}^{2}}\right|+\left|\int_{\Omega}(f-u) \phi\right| \\
& \leq C\|f\|_{L^{2}}\|\phi\|_{L^{2}}, \quad \forall \phi \in C_{0}^{\infty}(\Omega)
\end{aligned}
$$

We conclude that

$$
\begin{equation*}
\left|\int u \frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}}\right| \leq C\|f\|_{L^{2}}\|\phi\|_{L^{2}}, \quad \forall \phi \in C_{0}^{\infty}(\Omega) \text { and } \forall 1 \leq j, k \leq N . \tag{10}
\end{equation*}
$$

Consequently, $u \in H^{2}(\Omega)$.
Remark. In fact, (10) shows that there exist $g_{j k} \in L^{2}(\Omega)$ such that

$$
\int_{\Omega} u \frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}}=\int g_{j k} \phi, \forall \phi \in C_{0}^{\infty}(\Omega) .
$$

By using Hahn-Banach theorem, the desired result is established More regularity
Lemma 2. Let $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ satisfy (4). Then

$$
\frac{\partial u}{\partial x_{j}} \in H_{0}^{1}(\Omega), \quad \forall j=1,2, \ldots, N
$$

Moreover, we have

$$
\begin{equation*}
\int_{\Omega} \nabla\left(\frac{\partial u}{\partial x_{j}}\right) \cdot \nabla \phi+\int_{\Omega} \frac{\partial u}{\partial x_{j}} \phi=\int \frac{\partial f}{\partial x_{j}} \phi, \quad \forall \phi \in H_{0}^{1}(\Omega) . \tag{11}
\end{equation*}
$$

Proof. Let $h=|h| e_{j}, 1 \leq j \leq N-1$; then $D_{h} u \in H_{0}^{1}(\Omega)$. Since $H_{0}^{1}(\Omega)$ is invariant under tangential translation.

From (6), we deduce that

$$
\begin{equation*}
\left\|D_{h} u\right\|_{H^{1}} \leq\|u\|_{H^{2}} \leq C\|f\|_{L^{2}} \tag{12}
\end{equation*}
$$

So there exists a sequence $h_{n} \rightarrow 0$ such that

$$
D_{h_{n}} u \rightharpoonup g_{j} \text { in } H_{0}^{1}(\Omega)
$$

By using

$$
\int_{\Omega}\left(D_{h_{n}} u\right) \phi=-\int u D_{-h} \phi, \quad \forall \phi \in C_{0}^{\infty}(\Omega)
$$

and letting $h_{n} \rightarrow 0$, we arrive at

$$
\int g_{j} \phi=-\int u \frac{\partial \phi}{\partial x_{j}}, \forall \phi \in C_{0}^{\infty}(\Omega) .
$$

hence

$$
\left.\frac{\partial u}{\partial x_{j}}=g_{j} \in H_{0}^{1} \right\rvert\,(\Omega)
$$

To obtain (11), it suffices to use $\frac{\partial \phi}{\partial x_{j}}$ in (4) instead of $\phi \in C_{0}^{\infty}(\Omega)$.
Exercise. Verify (12)
Corollary. Suppose that $u \in H_{0}^{1}(\Omega)$ satisfies (4) and $f \in H^{m}(\Omega)$. Then $u \in H^{m+2}(\Omega)$.
Proof. From (11) and proposition 2, we obtain that

$$
\frac{\partial u}{\partial x_{i}} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), \forall i=1,2, \ldots, N
$$

Consequently, $u \in H^{3}(\Omega)$.
By repeating the same procedure, se easily prove the corollary by induction.

1.2 General case

Theorem. Suppose that Ω is open and of class C^{2}, with Γ bounded. let $f \in L^{2}(\Omega)$ and $u \in H_{0}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla \phi+\int_{\Omega} u \phi=\int_{\Omega} f \phi, \quad \forall \phi \epsilon H_{0}^{1}(\Omega) . \tag{13}
\end{equation*}
$$

Then $u \in H^{2}(\Omega)$ and $\|u\|_{H^{2}} \leq C\|f\|_{L^{2}}$, where C is a constant depending on Ω only.

Moreover, if Ω is of class C^{m+2} and $f \in H^{m}(\Omega)$. Then

$$
u \in H^{m+2}(\Omega), \quad \text { and }\|u\|_{m+2} \leq C\|f\|_{m}
$$

In particular, if $m>\frac{N}{2}$ then $u \in C^{2}(\bar{\Omega})$.
Finally, if Ω is of class C^{∞} and $f \in C^{\infty}(\bar{\Omega})$ then $u \in C^{\infty}(\bar{\Omega})$.
Proof. Involves the partition of unity, investigation of regularity in the interior of Ω and near Γ.

