
Global Existence and Asymptotic Behavior for a
Nonlinear Viscoelastic Problem

Salim A. Messaoudi & Nasser-eddine Tatar
King Fahd University of Petroleum and Minerals

Department of Mathematical Sciences
Dhahran 31261, Saudi Arabia.

E-mail : messaoud@kfupm.edu.sa
E-mail : tatarn@kfupm.edu.sa

Abstract

In this paper the nonlinear viscoelastic wave equation

|ut|ρutt −∆u−∆utt +
∫ t

0
g(t− τ)∆u(τ)dτ − γ∆ut = b|u|p−2u

is considered. Using the potential well method a global existence and an ex-
ponential decay result are proved. Moreover, for sufficiently large values of the
initial data and for a suitable relation between p and the relaxation function
g, we establish an unboundedness result.
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1 Introduction

We consider the following initial boundary value problem





|ut|ρutt −∆u−∆utt +
t∫
0

g(t− τ)∆u(τ)dτ − γ∆ut = b|u|p−2u, in Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)
where Ω is a bounded domain of IR (n ≥ 1) with a smooth boundary ∂Ω. The
constants γ, ρ and b are positive and p > 2. The function g(t) is positive and satisfies
some conditions to be specified later. This type of equations appears in the models of
nonlinear viscoelasticity (see [1], [2], and [10]). It also can be considered as a system
governing the longitudinal motion of a viscoelastic configuration obeying a nonlinear
Voight model (see [10] and [21]).
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In the case b = 0, that is in the absence of the source term, this problem has
been studied by Cavalcanti et al. in [4]. Assuming 0 < ρ ≤ 2/(n − 2) if n ≥ 3 or
ρ > 0 if n = 1, 2, the authors proved a global existence result for γ ≥ 0 and an
exponential decay for γ > 0. This latter result has been extended to the case γ = 0,
that is without any mechanical dissipation, by the present authors in [18]. A related
problem to (1.1) is





utt −∆u +
t∫
0

g(t− τ)∆u(τ)dτ + aut = b|u|p−2u, in Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.2)

which has been extensively studied. For example, in the presence of the viscoelastic
term (g 6= 0), Cavalcanti et al. [5] studied (2) for a localized damping a(x)ut (a(x)
can be null on a part of the domain) and b < 0. They obtained an exponential rate
of decay by assuming that the kernel g decays exponentially. This work extended
the result of Zuazua [22], in which the author considered (1.2) with g = 0 and the
linear damping is localized. When the damping is caused only by the memory term
(a = 0) and in the absence of the source term, an exponential decay result can be
established, at least for small initial data, by following the idea of proof of Muñoz
Rivera [19], in which he proved that the first and the second-order energy functionals
of the solution to a viscoelastic plate, decay exponentially provided that the kernel
of the memory decays also exponentially (see also [6]). For nonexistence results,
Messaoudi [17] considered (1.2) for b > 0 and with a nonlinear mechanical damping
of the form aut|ut|m−2 instead of aut, and proved a blow up result for solutions with
negative initial energy.

In the absence of the viscoelastic term (g = 0), it is well known that, for a = 0,
the source term bu|u|p−2 in (2) causes finite time blow up of solutions with negative
initial energy (see [3]) and for b = 0, the damping term aut assures global existence
for arbitrary initial data (see [8], [11]). The interaction between the damping and the
source terms was first considered by Levine in [12], [13]. In these papers, the author
showed that solutions with negative initial energy blow up in finite time. Georgiev
and Todorova [7] extended Levine’s result to the nonlinear damping case, where
the linear damping is replaced by a nonlinear one of the form aut|ut|m−2. In their
work, the authors introduced a different method and determined suitable relations
between m and p, for which there is global existence or alternatively finite time blow
up. Precisely; they showed that solutions with negative energy continue to exist
globally ’in time’ if m ≥ p and blow up in finite time if p > m and the initial energy
is sufficiently negative. Without imposing the condition that the initial energy is
sufficiently negative, Messaoudi [16] extended the blow up result of [7] to solutions
with negative initial energy only. For more results of the same nature, we refer the
reader to Kalantarov and Ladyzhenskaya [9], Levine and Serrin [14], Levine, Park,
and Serrin [15] and Vitillaro [20].

In our case, the dissipations compete with the source term and it is interesting
to study this interaction. We prove that, when the initial data are in a stable set,
we have global existence. To achieve our goal, we use the potential well method.
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Moreover, we will show that the solution goes to zero in an exponential rate provided
that the relaxation function is also exponentially decaying to zero. Furthermore, we
prove that, for large initial data and for a p satisfying a condition related to the
relaxation function g, the solution grows up exponentially.

The paper is organized as follows. In Section 2, We present some notations and
material needed for our work and we state, without a proof, a standard local existence
theorem. Section 3 contains the statements and the proofs of the global existence
and exponential decay results. The last section is devoted to the statement and the
proof of the exponential growth result.

2 Preliminaries

In this section, we shall prepare some material needed in the proofs of our results.
Namely, we introduce some notations and show the invariance of the set of initial
data.

We use the standard Lebesgue space Lp(Ω) and Sobolev spaces H1
0 (Ω) with their

usual scalar products and norms. The symbols ∇ and ∆ will stand for the gradient
and the Laplacian, respectively. The prime

′
and the subscript t will denote time

differentiation.
For the relaxation function g(t) we assume
(G1) g : IR+ → IR+ is a bounded C1 function such that

1−
∞∫

0

g(s)ds = l > 0.

(G2) There exists a positive constant m such that

g(t) ≤ −mg′(t), t ≥ 0.

Theorem 2.1 Let u0, u1 ∈ H1
0 (Ω) be given and γ ≥ 0. Assume that g satisfies (G1).

Assume further that

2 ≤ p ≤ 2(n− 1)

n− 2
, n ≥ 3 (2.1)

p ≥ 2, n = 1, 2.

Then problem (1.1) has a unique local solution

u, ut ∈ C
(
[0, Tm) ; H1

0 (Ω)
)
, (2.2)

for some Tm > 0.
Remark 2.1 This theorem can be easily established by combining the arguments in
[4] and [7].
Remark 2.2 Condition (2.1) is needed to establish the local existence result (see
[3]). In fact under this condition, the nonlinearity is Lipschitz from H1(Ω) to L2(Ω).
Condition (G1) is necessary to guarantee the hyperbolicity of the system (1.1).
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Next, we introduce

I(t) = I(u, ut) :=


1−

t∫

0

g(s)ds


 ||∇u||22 + ||∇ut||22 + (g ◦ ∇u)(t)− b||u||pp,

J(t) = J(u, ut) :=
1

2


1−

t∫

0

g(s)ds


 ||∇u(t)||22 +

1

2
||∇ut||22 +

1

2
(g ◦ ∇u)(t)− b

p
||u||pp,

E(t) = E(u, ut) := J(t) +
1

ρ + 2

∫

Ω

|ut(t)|ρ+2dx, (2.3)

H := {(v, w) ∈
[
H1

0 (Ω)
]2

: I(v, w) > 0} ∪ {(0, 0)},
where

(g ◦ v)(t) =

t∫

0

g(t− τ)||v(t)− v(τ)||22dτ. (2.4)

Remark 2.3 By multiplying equation (1.1) by ut and integrating over Ω, using
integration by parts and hypothesis (G2), we get

E ′(t) = −

γ

∫

Ω

|∇ut|2dx− 1

2
(g′ ◦ ∇u)(t) +

1

2
g(t)||∇u(t)||2


 ≤ 0,

for t in [0, T ). This means that the energy is uniformly bounded (by E(0)) and is
decreasing in t.

Next, we would like to prove the invariance of the set H, but first let us mention
here that we will be using the following Sobolev-Poincaré embedding

H1
0 (Ω) ↪→ Lq(Ω) (2.5)

so
‖v‖q ≤ C ‖∇v‖2 , (2.6)

with 2 < q ≤ 2n/(n− 2) if n ≥ 3 or q > 2 if n = 1, 2.
Lemma 2.2 Suppose that (G1), (G2) and the hypotheses on p and ρ hold. If
(u0, u1) ∈ H and satisfy

β =
b

l
Cp
∗

(
2p

(p− 2) l
E(u0, u1)

)(p−2)/2

< 1, (2.7)

where C∗ is the best constant in (2.6) with q = p, then (u(t), ut(t)) ∈ H, for each
t ∈ [0, T ).
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Proof Since I(u0, u1) > 0 then, by continuity, there exists Tm ≤ T such that
I(u, ut) ≥ 0 for all t ∈ [0, Tm). This implies, for all t ∈ [0, Tm)

J(t) = 1
2

(
1−

t∫
0

g(s)ds

)
||∇u(t)||22 + 1

2
||∇ut||22 + 1

2
(g ◦ ∇u)(t)− b

p
||u(t)||pp

= p−2
2p

[(
1−

t∫
0

g(s)ds

)
||∇u(t)||22 + ||∇ut||22 + (g ◦ ∇u)(t)

]
+ 1

p
I(u, ut)

≥ p−2
2p

[(
1−

t∫
0

g(s)ds

)
||∇u(t)||22 + ||∇ut||22 + (g ◦ ∇u)(t)

]
.

(2.8)

Hence, from (G1), (2.3), (2.4), (2.8) and Remark 3, we find

l||∇u(t)||22 ≤
(

1−
t∫
0

g(s)ds

)
||∇u(t)||22 ≤ 2p

p−2
J(t)

≤ 2p
p−2

E(t) ≤ 2p
p−2

E(u0, u1), ∀t ∈ [0, Tm).
(2.9)

By exploiting the embedding relation (2.6) (with q = p and C∗ as in the statement
of the lemma), (G1) and the assumption (2.7), we easily arrive at

b||u(t)||pp ≤ bCp
∗ ||∇u(t)||p2 ≤ bCp

∗
l
||∇u(t)||p−2

2 l||∇u(t)||22
≤ βl||∇u(t)||22 ≤ β

(
1−

t∫
0

g(s)ds

)
||∇u(t)||22

<

(
1−

t∫
0

g(s)ds

)
||∇u(t)||22, ∀t ∈ [0, Tm).

(2.10)

Therefore,

I(t) =


1−

t∫

0

g(s)ds


 ||∇u||22 − b||u(t)||pp + ||∇ut||22 + (g ◦ ∇u)(t) > 0,∀t ∈ [0, Tm).

This shows that (u(t), ut(t) ∈ H, ∀t ∈ [0, Tm). By repeating this procedure, Tm is
extended to T .

3 Exponential decay

Theorem 3.1 Suppose that (G1), (G2) and the hypotheses on p and ρ hold. If
(u0, u1) ∈ H and satisfy (2.7), then the solution is global in time.

Proof It suffices to show that ||∇u(t)||22 + ||∇ut||22 + ||ut(t)||ρ+2
ρ+2 is bounded inde-

pendently of t. To achieve this note that, from (2.8), for t ∈ [0, T )

E(u0, u1) ≥ E(t) = J(t) + 1
ρ+2
||ut(t)||ρ+2

ρ+2

≥ p−2
2p

[l||∇u(t)||22 + ||∇ut(t)||22 + (g ◦ ∇u)(t)] + 1
p
I(u, ut) + 1

ρ+2
||ut(t)||ρ+2

ρ+2

≥ p−2
2p

[l||∇u(t)||22 + ||∇ut(t)||22] + 1
ρ+2
||ut(t)||ρ+2

ρ+2,

(3.1)
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since I(u, ut) (by the Lemma 1) and (g ◦ ∇u)(t) are positive. Therefore,

||∇u(t)||22 + ||∇ut(t)||22 + ||ut(t)||ρ+2
ρ+2 ≤ CE(u0, u1),

where C is positive and depends only on p, ρ and l and is independent of t.
Remark 3.1 Observe that in the previous lemma and theorem we did not use hy-
pothesis (G2). Only the non positivity of g

′
(t) was needed (see Remark 3). This will

not be the case in the theorem below. Indeed, we will need g(t) to decrease in an
exponential fashion.
Theorem 3.2 Suppose that (G1), (G2) and the hypotheses on p and ρ hold. Assume
further that (u0, u1) ∈ H and verify (2.7), then there exist positive constants k and
K such that the solution of (1.1) satisfies

E(t) ≤ Ke−kt, ∀t ≥ 0.

Proof We define

F (t) := E(t) +
ε

ρ + 1

∫

Ω

|ut|ρuutdx + ε
∫

Ω

∇u.∇utdx +
εγ

2

∫

Ω

|∇u|2dx (3.2)

for ε so small that
α1F (t) ≤ E(t) ≤ α2F (t), (3.3)

holds for two positive constants α1 and α2. This is possible because of the embedding
(2.5), (2.6) and the fact that E(t) is uniformly bounded (see Remark 3). Indeed, we
find by (3.1) ∫

Ω
|ut|ρuutdx ≤ 1

2

∫
Ω
|ut|2(ρ+1)dx + 1

2

∫
Ω
|u|2 dx

≤ Ce

2

(
2p

p−2

)ρ ∫
Ω
|∇ut|2dx + Cp

2

∫
Ω
|u|2 dx,

where Ce and Cp are the embedding and the Poincaré constant, respectively. We also
need the inequality

∫

Ω

∇u.∇utdx ≤ 1

2

∫

Ω

|∇u|2dx +
1

2

∫

Ω

|∇ut|2 dx.

Differentiating (3.2), we obtain

F ′(t) = −
(
γ

∫
Ω
|∇ut|2dx− 1

2
(g′ ◦ ∇u)(t) + 1

2
g(t)||∇u(t)||2

)
+ ε

ρ+1

∫
Ω
|ut|ρ+2dx

−ε
∫
Ω
|∇u|2dx + ε

∫
Ω
|∇ut|2dx + ε

t∫
0

g(t− τ)
∫
Ω
∇u(t).∇u(τ)dxdτ + εb

∫
Ω
|u(x, t)|pdx.

(3.4)

Adding and substracting
t∫
0

g(t− τ)||∇u(t)||22dτ to the right hand side of (3.5), we get

F ′(t) ≤ −
(
γ

∫
Ω
|∇ut|2dx− 1

2
(g′ ◦ ∇u)(t) + 1

2
g(t)||∇u(t)||2

)
+ ε

ρ+1

∫
Ω
|ut|ρ+2dx

−ε
∫
Ω
|∇u|2dx + ε

∫
Ω
|∇ut|2dx + εb

∫
Ω
|u|pdx + ε

t∫
0

g(t− τ)||∇u(t)||22dτ

+ε
t∫
0

g(t− τ)
∫
Ω
∇u(t).[∇u(τ)−∇u(t)]dxdτ.

(3.5)
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We then use (2.3) and (2.10) to get for, 0 < α < 1,

b
∫
Ω
|u(t)|pdx = αb

∫
Ω
|u(t)|pdx + (1− α)b

∫
Ω
|u(t)|pdx

≤ α{ p
ρ+2

∫
Ω
|ut|ρ+2dx + p

2

(
1−

t∫
0

g(s)ds

)
||∇u(t)||22 + p

2
||∇ut||22

+p
2
(g ◦ ∇u)(t)− pE(t)}+ (1− α)β

(
1−

t∫
0

g(s)ds

)
||∇u(t)||22,

(3.6)

and exploit Young’s inequality to derive, for any δ > 0,

t∫

0

g(t−τ)
∫

Ω

∇u(t).[∇u(τ)−∇u(t)]dxdτ ≤ 1

4δ
(g◦∇u)(t)+δ

t∫

0

g(s)ds||∇u(t)||22. (3.7)

A combination of (3.6) - (3.8) gives

F ′(t) ≤ −
[
γ − ε

(
αp

2
+ 1

)] ∫
Ω
|∇ut|2dx + 1

2
(g′ ◦ ∇u)(t)− 1

2
g(t)||∇u(t)||2

+ε
(

1
ρ+1

+ αp
ρ+2

) ∫
Ω
|ut|ρ+2dx + ε

(
pα
2

+ 1
4δ

)
(g ◦ ∇u)(t)

+ε
[
α(p

2
− 1)− η(1− α)

] (
1−

t∫
0

g(s)ds

)
||∇u(t)||22

+εδ

(
t∫
0

g(s)ds

)
||∇u(t)||22 − εαpE(t),

where η = 1− β. By using (2.9) and choosing α close to 1 so that

α
(

p

2
− 1

)
− η(1− α) ≥ 0,

we arrive at

F ′(t) ≤ −
[
γ − ε

(
αp

2
+ 1

)] ∫
Ω
|∇ut|2dx + 1

2
(g′ ◦ ∇u)(t) + ε

(
pα
2

+ 1
4δ

)
(g ◦ ∇u)(t)

+ε
(

1
ρ+1

+ αp
ρ+2

) ∫
Ω
|ut|ρ+2dx + εδ

(
t∫
0

g(s)ds

)
||∇u(t)||22 − αεpE(t)

+ε[α(p
2
− 1)− η(1− α)] 2p

p−2
E(t)

or

F ′(t) ≤ −
[
γ − ε

(
αp

2
+ 1

)] ∫
Ω
|∇ut|2dx +

[
1
2
− ε

(
pα
2

+ 1
4δ

)
m

]
(g′ ◦ ∇u)(t)

− 2pε
p−2

[
η(1− α)− δ 1−l

l

]
E(t) + ε

(
1

ρ+1
+ αp

ρ+2

) ∫
Ω
|ut|ρ+2dx.

(3.8)

The last term in the right hand side of (3.11) can be estimated, in view of (3.1), as
follows ∫

Ω
|ut|ρ+2dx ≤ Cρ+2

∗ ||∇ut||ρ+2
2 ≤ Cρ+2

∗ ||∇ut||ρ2||∇ut||22
≤ Cρ+2

∗
(

2p
(p−2)

E(u0, u1)
)ρ/2 ||∇ut||22.
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Hence (3.11) becomes

F ′(t) ≤ −
[
γ − ε

(
αp

2
+ 1

)
− εCρ+2

∗
(

1
ρ+1

+ αp
ρ+2

) (
2p

(p−2)
E(u0, u1)

)ρ/2
] ∫

Ω
|∇ut|2dx

− 2pε
p−2

[
η(1− α)− δ 1−l

l

]
E(t) +

[
1
2
− ε

(
pα
2

+ 1
4δ

)
m

]
(g′ ◦ ∇u)(t).

(3.9)
At this point we choose δ so small that

η(1− α)− δ
1− l

l
> 0,

then ε so small that, in addition to (3.3),

γ − ε
(
α

p

2
+ 1

)
− εCρ+2

∗

(
1

ρ + 1
+

αp

ρ + 2

) (
2p

(p− 2)
E(u0, u1)

)ρ/2

≥ 0,

and
1

2
− ε

(
pα

2
+

1

4δ

)
m ≥ 0.

Consequently (3.12) takes the form

F ′(t) ≤ − 2pε

p− 2

[
η(1− α)− δ

1− l

l

]
E(t) ≤ − 2pε

(p− 2)α1

[
η(1− α)− δ

1− l

l

]
F (t),

(3.10)
by virtue of (3.3). A simple integration of (3.13) then leads to

F (t) ≤ F (0)e−kt,

where

k =
2pε

(p− 2)α1

[
η(1− α)− δ

1− l

l

]
.

The assertion of the theorem follows using once again (3.3). This completes the proof.

4 Exponential growth

In this section we shall prove that the energy is unbounded when the initial data are
large enough in some sense. In fact, it will be proved that the Lp−norm of the solution
grows unboundedly as an exponential function. This will be established here in spite
of the strong damping generated by ∆ut and the strong exponential decreasingness
of the relaxation function g(t). Note that our previous results hold no matter how
small or large are the values of γ and b. So we could have taken γ = b = 1. Let us
adopt this in this section.
Theorem 4.1 Assume that ρ ≤ p − 2. Then the solution of problem (1) grows up
exponentially in the Lp−norm provided that

l >
4

(p + 2)
(4.1)
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and the initial data u0, u1 are large enough (see (4.10) below).
Proof Suppose that E(0) < 0 so that E(t) ≤ E(0) < 0, for all t ≥ 0. Let us consider
the functional

F(t) = E(t)− εΨ(t), ε > 0

where Ψ(t) is defined by

Ψ(t) :=
1

ρ + 1

∫

Ω

|ut|ρ utudx +
∫

Ω

∇u.∇utdx,

and ε is to be determined later.
Firstly, observe that we can find positive real numbers ai, i = 1, ..., 5 such that

ai = ai(p, ρ, ε, l, |Ω|) and

F(t) ≥ a1

∫
Ω
|ut|ρ+2 dx + a2

∫
Ω
|∇u|2 dx + 1

2
(g ◦ ∇u)(t)

+a3

∫
Ω
|∇ut|2 dx− a4

∫
Ω
|u|p dx− a5.

(4.2)

Indeed, by Young inequality we have
∫

Ω

|ut|ρ utudx ≤ 1

p

∫

Ω

|u|p dx +
p− 1

p

∫

Ω

|ut|
(ρ+1)(p)

p−1 dx.

By our assumption ρ ≤ p− 2 we see that p(ρ+1)
p−1

≤ ρ + 2. Therefore,

∫

Ω

|ut|ρ utudx ≤ 1

p

∫

Ω

|u|p dx +
(p− 1) |Ω|

p
+

p− 1

p

∫

Ω

|ut|ρ+2 dx. (4.3)

Taking this estimate (4.3) into account, we infer that

F(t) ≥ 1
ρ+2

∫
Ω
|ut|ρ+2 dx + 1

2

(
1−

t∫
0

g(s)ds

)
∫
Ω
|∇u|2 dx + 1

2

∫
Ω
|∇ut|2 dx

+1
2
(g ◦ ∇u)(t)− 1

p

∫
Ω
|u|p dx− ε

2

∫
Ω
|∇u|2 dx− ε

2

∫
Ω
|∇ut|2 dx

− 1
ρ+1

ε
p

∫
Ω
|u|p dx− ε(p−1)|Ω|

p(ρ+1)
− ε(p−1)

p(ρ+1)

∫
Ω
|ut|ρ+2 dx

or

F(t) ≥
[

1
ρ+2

− ε(p−1)
p(ρ+1)

] ∫
Ω
|ut|ρ+2 dx + 1

2

(
1−

t∫
0

g(s)ds− ε

)
∫
Ω
|∇u|2 dx

+1
2
(g ◦ ∇u)(t) + 1

2
(1− ε)

∫
Ω
|∇ut|2 dx− ε(p−1)|Ω|

p(ρ+1)
− 1

p

(
1 + ε

ρ+1

) ∫
Ω
|u|p dx.

Choosing ε small enough (namely ε < min
(
l, p(ρ+1)

(p−1)(ρ+2)

)
), our claim (4.2) follows.

Secondly, a differentiation of F(t) with respect to t yields

F ′
(t) = E

′
(t)− εΨ

′
(t) = 1

2
(g

′ ◦ ∇u)(t)− ∫
Ω
|∇ut|2 dx− 1

2
g(t)

∫
Ω
|∇u|2 dx

−ε

{
− ∫

Ω
|∇u|2 dx +

∫
Ω
∇u(t)

t∫
0

g(t− s)∇u(s)dsdx +
∫
Ω
|∇ut|2 dx

+ 1
ρ+1

∫
Ω
|ut|ρ+2 dx− ∫

Ω
∇u∇utdx +

∫
Ω
|u|p dx

}
.

(4.4)
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We would like to estimate the fifth term in the right hand side of this identity (4.4).
By (G1) we have

∫
Ω
∇u(t)

t∫
0

g(t− s)∇u(s)dsdx

≤ ∫
Ω
|∇u(t)|

t∫
0

g(t− s) (|∇u(t)−∇u(s)|+ |∇u(t)|) dsdx

≤ (1− l)
∫
Ω
|∇u|2 dx +

∫
Ω
|∇u(t)|

t∫
0

g(t− s) |∇u(t)−∇u(s)| dsdx.

Using Young inequality we obtain

∫
Ω
∇u(t)

t∫
0

g(t− s)∇u(s)dsdx

≤ (1− l + δ1)
∫
Ω
|∇u|2 dx + 1−l

4δ1
(g ◦ ∇u)(t), δ1 > 0.

(4.5)

We shall also use the inequality

∫

Ω

∇u∇utdx ≤ δ2

∫

Ω

|∇u|2 dx +
1

4δ2

∫

Ω

|∇ut|2 dx, δ2 > 0. (4.6)

Let us add and substract kεF(t) to the right hand side of (4.4), then from (4.5) it
appears that

F ′
(t) ≤ kεF(t)− kε

{
1

ρ+2

∫
Ω
|ut|ρ+2 dx + 1

2

(
1−

t∫
0

g(s)ds

)
∫
Ω
|∇u|2 dx

+1
2

∫
Ω
|∇ut|2 dx + 1

2
(g ◦ ∇u)(t)− 1

p

∫
Ω
|u|p dx− ε

ρ+1

∫
Ω
|ut|ρ utudx

+ε
∫
Ω

u∆utdx

}
+ 1

2
(g

′ ◦ ∇u)(t)− ∫
Ω
|∇ut|2 dx− 1

2
g(t)

∫
Ω
|∇u|2 dx

+ε
∫
Ω
|∇u|2 dx− ε

∫
Ω
|∇ut|2 dx− ε

ρ+1

∫
Ω
|ut|ρ+2 dx + ε

∫
Ω
∇u∇utdx

−ε
∫
Ω
|u|p dx + ε(1− l + δ1)

∫
Ω
|∇u|2 dx + ε(1−l)

4δ1
(g ◦ ∇u)(t).

Next, using (4.3), (4.6) and the assumption g(t) ≤ −mg′(t), t ≥ 0 (see (G2)), we
entail

F ′
(t) ≤ kεF(t)− ε

[
k

ρ+2
+ 1

ρ+1
− kε(p−1)

p(ρ+1)

] ∫
Ω
|ut|ρ+2 dx

−ε
[

k+2
2

l − 2− δ1 − (kε + 1)δ2

] ∫
Ω
|∇u|2 dx−

[
1 + (k+2)ε

2
− ε(kε+1)

4δ2

] ∫
Ω
|∇ut|2 dx

−ε
[
1− k

p
− kε

p(ρ+1)

] ∫
Ω
|u|p dx− 1

2

[
1
m

+ kε− ε(1−l)
2δ1

]
(g ◦ ∇u)(t) + kε2(p−1)|Ω|

p(ρ+1)
.

(4.7)
Choosing k, 0 < ε < 1, δ1 and δ2 appropriately we can make all the terms in

brackets in (4.7) nonnegative. Indeed, observe that the first term in brackets is
nonnegative as soon as

ε ≤ ε1 :=
p

k(p− 1)

(
1 +

k(ρ + 1)

ρ + 2

)
.
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Since p > 2(2−l)
l

(this is guaranteed by (4.1)), we may pick k such that

p > k >
2(2− l)

l
.

Then, the fourth term in brackets is nonnegative provided that

ε ≤ ε2 :=
(p− k)(ρ + 1)

k
,

and the second term is nonnegative if we select δ1 and δ2 so small that

δ1 + (k + 1)δ2 ≤ k + 2

2
l − 2.

As for the third and fifth term we pick

ε ≤ ε3 := 4δ2/ [k + 1− 2δ2(k + 2)]

and
ε ≤ ε4 := 2δ1/m [1− l − 2kδ1] ,

respectively.
Finally, choosing

ε ≤ min {εi : i = 1, 2, 3, 4} ,

we obtain from (4.7),
F ′

(t) ≤ kεF(t) + Λ, t > 0 (4.8)

where

Λ =
kε2(p− 1) |Ω|

p(ρ + 1)
.

An integration of (4.8) gives for M(t) = −F(t),

M(t) ≥
(
M(0)− Λ

kε

)
ekεt +

Λ

kε
≥

(
M(0)− Λ

kε

)
ekεt. (4.9)

The initial data are assumed to satisfy M(0)− Λ
kε

=: b > 0 or

−F(0)− ε(p− 1) |Ω|
p(ρ + 1)

> 0,

that is,

1
p

∫
Ω
|u0|p dx− 1

ρ+2

∫
Ω
|u1|ρ+2 dx− 1

2

∫
Ω
|∇u0|2 dx− 1

2

∫
Ω
|∇u1|2 dx

+ ε
ρ+1

∫
Ω
|u1|ρ u1u0dx + ε

∫
Ω
∇u0∇u1dx− a5 > 0.

(4.10)

The relations (4.2) and (4.9) imply

a4

∫

Ω

|u|p dx + a5 ≥ −F(t) = M(t) ≥ bekεt.

The proof is now complete.
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