A NONLOCAL MIXED SEMILINEAR PROBLEM FOR SECOND-ORDER HYPERBOLIC EQUATIONS

SAID MESLOUB \& SALIM A. MESSAOUDI

Abstract

In this work we study a nonlinear hyperbolic one-dimensional problem with a nonlocal condition. We establish a blow up result for large initial data and a decay result for small initial data.

1. Introduction

In the region $Q=(0, a) \times(0, T)$, with $a<\infty, T<\infty$, we consider the following one-dimensional semilinear hyperbolic nonlocal problem

$$
\begin{gather*}
u_{t t}+u_{t}-\frac{1}{x}\left(x u_{x}\right)_{x}=|u|^{p-2} u \\
u(a, t)=0, \quad \int_{0}^{a} x u(x, t) d x=0 \tag{1.1}\\
u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)
\end{gather*}
$$

for $p>2$. The mathematical modelling by evolution problems with a nonlocal constraint of the form $\int_{0}^{a} \xi(x) u(x, t) d x=\gamma(t)$ is encountered in heat transmission theory, thermoelasticity, chemical engineering, underground water flow, and plasma physics. See for example Cahlon [2], Cannon [3], Ionkin [8], Kamynin [9], Shi and Shilor [16], Choi and chan [4], Samarskii [15], and Ewing [5]. The first paper that discussed second-order partial differential equations with nonlocal integral conditions goes back to Cannon et al [3]. In fact most of the research by then was devoted to the classical solutions (see [3] and the references therein for more information regarding this matter). Later, mixed problems with integral conditions for both parabolic and hyperbolic equations were studied by Gordeziani and Avalishvili [7], Ionkin [8], Kamynin [9], Mesloub and Bouziani [10, 11], Mesloub and Messaoudi [12], Pulkina [13,14], Volkodavov and Zhukov [17], and Yurchuk [18]. We should mention here that the presence of the integral term in the boundary condition can greatly complicate the application of standard functional techniques.

This paper is organized as follows: In section 2, we state the related linear problem, introduce appropriate function spaces to be used and present an abstract formulation of the posed linear problem. In section 3, we establish a priori bound,

[^0]from which we deduce the uniqueness and continuous dependence of a solution on the data. Section 4 is devoted to the solvability of the linear problem. In section 5 , we state and prove the local existence result for the semilinear problem (1.1). In section 6 , we show that the solution of (1.1) blows up in finite time if the initial energy is negative. Finally, in section 7 we show that the solution of (1.1) decays exponentially for positive but sufficiently small initial energy.

2. The linear Problem

In this section we study a linear problem related to (1.1) and establish a strong solution. Thus we consider

$$
\begin{gather*}
\mathcal{L} u=u_{t t}+u_{t}-\frac{1}{x}\left(x u_{x}\right)_{x}=f(x, t), \tag{2.1}\\
\ell_{1} u=u(x, 0)=\varphi_{1}(x) \tag{2.2}\\
\ell_{2} u=u_{t}(x, 0)=\varphi_{2}(x) \tag{2.3}\\
u(a, t)=0 \tag{2.4}\\
\int_{0}^{a} x u(x, t) d x=0 \tag{2.5}
\end{gather*}
$$

To study our problem, we introduce appropriate function spaces. Let $L_{\rho}^{2}(Q)$ be the weighted L^{2}-space with the norm

$$
\|u\|_{L_{\rho}^{2}(Q)}^{2}=\int_{Q} x u^{2} d x d t
$$

and the scalar product $(u, v)_{L_{\rho}^{2}(Q)}=(x u, v)_{L^{2}(Q)}$. Let $V_{\rho}^{1,0}(Q)$ and $V_{\rho}^{1,1}(Q)$ be the Hilbert spaces with scalar products respectively

$$
\begin{gathered}
(u, v)_{V_{\rho}^{1,0}(Q)}=(u, v)_{L_{\rho}^{2}(Q)}+\left(u_{x}, v_{x}\right)_{L_{\rho}^{2}(Q)}, \\
(u, v)_{V_{\rho}^{1,1}(Q)}=(u, v)_{L_{\rho}^{2}(Q)}+\left(u_{x}, v_{x}\right)_{L_{\rho}^{2}(Q)}+\left(u_{t}, v_{t}\right)_{L_{\rho}^{2}(Q)},
\end{gathered}
$$

and with associated norms:

$$
\begin{gathered}
\|u\|_{V_{\rho}^{1,0}(Q)}^{2}=\|u\|_{L_{\rho}^{2}(Q)}^{2}+\left\|u_{x}\right\|_{L_{\rho}^{2}(Q)}^{2} \\
\|u\|_{V_{\rho}^{1,1}(Q)}^{2}=\|u\|_{L_{\rho}^{2}(Q)}^{2}+\left\|u_{x}\right\|_{L_{\rho}^{2}(Q)}^{2}+\left\|u_{t}\right\|_{L_{\rho}^{2}(Q)}^{2}
\end{gathered}
$$

The problem (2.1)-(2.5) can be considered as solving the operator equation

$$
L u=\left(\mathcal{L} u, \ell_{1} u, \ell_{2} u\right)=\left(f, \varphi_{1}, \varphi_{2}\right)=\mathcal{F}
$$

where L is an operator defined on E into F. E is the Banach space of functions $u \in L_{\rho}^{2}(Q)$, satisfying conditions (2.4) and (2.5) with the norm

$$
\|u\|_{E}^{2}=\sup _{0 \leq \tau \leq T} \| u\left(., \tau \|_{V_{\rho}^{1,1}((0, a))}^{2}\right.
$$

and F is the Hilbert space $L_{\rho}^{2}(Q) \times V_{\rho}^{1,0}(0, a) \times L_{\rho}^{2}(0, a)$ which consists of elements $\mathcal{F}=\left(f, \varphi_{1}, \varphi_{2}\right)$ with the norm

$$
\|\mathcal{F}\|_{F}^{2}=\left\|\varphi_{1}\right\|_{V_{\rho}^{1,0}((0, a))}^{2}+\left\|\varphi_{2}\right\|_{L_{\rho}^{2}((0, a))}^{2}+\|f\|_{L_{\rho}^{2}(Q)}^{2} .
$$

Let $D(L)$ be the set of all functions $u \in L^{2}(Q)$, for which $u_{t}, u_{t t}, u_{x}, u_{x x}, u_{x t} \in$ $L^{2}(Q)$ and satisfying conditions (2.4) and (2.5).

3. A PRIORI BOUND

Theorem 3.1. There exists a positive constant c, such that for each function $u \in$ $D(L)$ we have

$$
\begin{equation*}
\|u\|_{E} \leq c\|L u\|_{F} . \tag{3.1}
\end{equation*}
$$

Proof. Taking the scalar product in $L^{2}\left(Q^{\tau}\right)$ of equation (2.1) and the integrodifferential operator

$$
\mathcal{M} u=-x(\tau-t) \int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(\xi, s) d s+x u_{t}
$$

where $Q^{\tau}=(0, a) \times(0, \tau)$ and $\Im_{x}(\zeta v)=\int_{0}^{x} \zeta v(\zeta, t) d \zeta$, we obtain

$$
\begin{align*}
& -\left((\tau-t) u_{t t}, \int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(x, s) d s\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \\
& +\left((\tau-t)\left(x u_{x}\right)_{x}, \int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(x, s) d s\right)_{L^{2}\left(Q^{\tau}\right)} \\
& +\left(u_{t t}, u_{t}\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)}-\left(u_{t},\left(x u_{x}\right)_{x}\right)_{L^{2}\left(Q^{\tau}\right)}+\left\|u_{t}\right\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2} \tag{3.2}\\
& -\left((\tau-t) u_{t}, \int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(x, s) d s\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \\
& =(\mathcal{L} u, \mathcal{M} u)_{L^{2}\left(Q^{\tau}\right)} .
\end{align*}
$$

Successive integration by parts of integrals on the left-hand side of (3.2) are straightforward but somewhat tedious. We give only their results

$$
\begin{align*}
&-\left((\tau-t) u_{t t},\right.\left.\int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(x, s) d s\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)}=-\left(\int_{0}^{t} \Im_{x}\left(\xi u_{t}\right) d s, u_{t}\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \tag{3.3}\\
&\left((\tau-t)\left(x u_{x}\right)_{x}, \int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(x, s) d s\right)_{L^{2}\left(Q^{\tau}\right)} \tag{3.4}\\
&=-\left(x(\tau-t) u_{x}, u\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)}+\left(x(\tau-t) u_{x}, \varphi\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \\
&\left(u_{t t}, u_{t}\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)}=\frac{1}{2}\left\|u_{t}(x \cdot \tau)\right\|_{L_{\rho}^{2}(0, a)}^{2}-\frac{1}{2}\left\|\varphi_{2}\right\|_{L_{\rho}^{2}(0, a)}^{2} \tag{3.5}\\
&-\left(u_{t},\left(x u_{x}\right)_{x}\right)_{L^{2}\left(Q^{\tau}\right)}=\frac{1}{2}\left\|u_{x}(x \cdot \tau)\right\|_{L_{\rho}^{2}(0, a)}^{2}-\frac{1}{2}\left\|\partial \varphi_{1} / \partial x\right\|_{L_{\rho}^{2}(0, a)}^{2}
\end{align*}
$$

By substituting (3.3)-(3.5) in (3.2), we obtain

$$
\begin{align*}
& \| u_{t}(x . \tau)\left\|_{L_{\rho}^{2}((0, a))}^{2}+\right\| u_{x}(x . \tau)\left\|_{L_{\rho}^{2}((0, a))}^{2}+2\right\| u_{t} \|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2} \\
&=\left\|\varphi_{2}\right\|_{L_{\rho}^{2}((0, a))}^{2}+\left\|\partial \varphi_{1} / \partial x\right\|_{L_{\rho}^{2}((0, a))}^{2} \\
& \quad+2\left(x(\tau-t) u_{x}, u\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)}-2\left(x(\tau-t) u_{x}, \varphi_{1}\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \\
&+2\left((\tau-t) u_{t}, \int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(x, s) d s\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \tag{3.6}\\
&-2\left((\tau-t) \int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(\xi, s) d s, \mathcal{L} u\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \\
&+2\left(u_{t}, \mathcal{L} u\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)}+2\left(u_{t}, \int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(x, s) d s\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} .
\end{align*}
$$

Estimates for the last six terms on the right-hand side of (3.6) are as follows:

$$
\begin{gather*}
2\left(x(\tau-t) u_{x}, u\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \leq T a\left\|u_{x}\right\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}+T a\|u\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}, \tag{3.7}\\
-2\left(x(\tau-t) u_{x}, \varphi_{1}\right) \leq T a\left\|u_{x}\right\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}+T^{2} a\left\|\varphi_{1}\right\|_{L_{\rho}^{2}((0, a))}^{2}, \tag{3.8}\\
2\left((\tau-t) u_{t}, \int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(x, s) d s\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \\
=2\left((\tau-t) u_{t}, \Im_{x}(\xi u)\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)}-2\left((\tau-t) u_{t}, \Im_{x}\left(\xi \varphi_{1}\right)\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \tag{3.9}\\
\leq 2 a T\left\|u_{t}\right\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}+\frac{T a^{3}}{2}\|u\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}+\frac{T^{2} a^{3}}{2}\left\|\varphi_{1}\right\|_{L_{\rho}^{2}((0, a))}^{2}, \\
-2\left((\tau-t) \int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(\xi, s) d s, \mathcal{L} u\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \\
=-2\left((\tau-t) \mathcal{L} u, \Im_{x}(\xi u)\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)}+2\left((\tau-t) \mathcal{L} u, \Im_{x}\left(\xi \varphi_{1}\right)\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \tag{3.10}\\
\leq 2 T a\|\mathcal{L} u\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}+\frac{T a^{3}}{2}\|u\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}+\frac{T^{2} a^{3}}{2}\left\|\varphi_{1}\right\|_{L_{\rho}^{2}((0, a))}^{2}, \\
2\left(u_{t}, \int_{0}^{t}\left(\Im_{x}\left(\xi u_{t}\right)\right)(x, s) d s\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \\
=2\left(u_{t}, \Im_{x}(\xi u)\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)}-2\left(u_{t}, \Im_{x}\left(\xi \varphi_{1}\right)\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \tag{3.11}\\
\leq 2 a\left\|u_{t}\right\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}+\frac{a^{3}}{2}\|u\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}+\frac{T a^{3}}{2}\left\|\varphi_{1}\right\|_{L_{\rho}^{2}((0, a))}^{2}, \\
2\left(u_{t}, \mathcal{L} u\right)_{L_{\rho}^{2}\left(Q^{\tau}\right)} \leq\left\|u_{t}\right\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}+\|\mathcal{L} u\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}, \tag{3.12}
\end{gather*}
$$

thanks to Young's inequality and to the inequality of poincare type

$$
\begin{equation*}
\left\|\Im_{x}\left(\xi u_{t}\right)\right\|_{L^{2}(Q)}^{2} \leq \frac{a^{3}}{2}\left\|u_{t}\right\|_{L_{\rho}^{2}(Q)}^{2} \tag{3.13}
\end{equation*}
$$

We also have, by straight forward calculations,

$$
\begin{equation*}
\|u(., \tau)\|_{L_{\rho}^{2}(0, a)}^{2} \leq\|u\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}+\left\|u_{t}\right\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}+\left\|\varphi_{1}\right\|_{L_{\rho}^{2}((0, a))}^{2} \tag{3.14}
\end{equation*}
$$

The combination of (3.6)-(3.12) and (3.14) yields

$$
\begin{equation*}
\|u(., \tau)\|_{V_{\rho}^{1,1}((0, a))}^{2} \leq k\left\{\|u\|_{V_{\rho}^{1,1}\left(Q^{\tau}\right)}^{2}+\left\|\varphi_{1}\right\|_{V_{\rho}^{1,0}(0, a)}^{2}+\left\|\varphi_{2}\right\|_{L_{\rho}^{2}(0, a)}^{2}+\|\mathcal{L} u\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}\right\}, \tag{3.15}
\end{equation*}
$$

where

$$
k=\max \left\{1+T a^{3}+\frac{a^{3}}{2}+T a, T^{2} a+\frac{3 T^{2} a^{3}}{2}+1,2 a T+2 a, 2 a T+1\right\} .
$$

Lemma 3.2. Let $f(t), g(t)$ and $h(t)$ be nonnegative functions on the interval $[0, T]$, such that $f(t)$ and $g(t)$ are integrable and $h(t)$ is nondecreasing. Then

$$
\int_{0}^{\tau} f(t) d t+g(\tau) \leq h(\tau)+m \int_{0}^{\tau} g(t) d t
$$

implies

$$
\int_{0}^{\tau} f(t) d t+g(\tau) \leq e^{m \tau} h(\tau)
$$

The proof of this lemma is similar to lemma 7.1 in [6].
Now, applying the above lemma to the estimate (3.15), we obtain

$$
\begin{equation*}
\|u(., \tau)\|_{V_{\rho}^{1,1}(0, a)}^{2} \leq k e^{k T}\left\{\left\|\varphi_{1}\right\|_{V_{\rho}^{1,0}(0, a)}^{2}+\left\|\varphi_{2}\right\|_{L_{\rho}^{2}(0, a)}^{2}+\|\mathcal{L} u\|_{L_{\rho}^{2}\left(Q^{\tau}\right)}^{2}\right\} \tag{3.16}
\end{equation*}
$$

The right-hand side of (3.16) is independent of τ. By taking the least upper bound of the left side with respect to τ from 0 to T, we get the desired estimate (3.1) with $c=k^{1 / 2} e^{k T / 2}$. It can be proved in a standard way that the operator L is closable (see, e.g., [10]).
Definition Let \bar{L} be the closure of the operator L with domain of definition $D(\bar{L})$. A solution of the operator equation $\bar{L} u=\mathcal{F}$ is called a strong solution of problem (2.1)-(2.5).

By passing to the limit, the estimate (3.1) can be extended to strong solutions, that is we have the inequality

$$
\|u\|_{E} \leq c\|\bar{L} u\|_{F} \quad \forall u \in D(\bar{L})
$$

From this inequality, we deduce the following statements.
Corollary 3.3. If a strong solution of (2.1)-(2.5) exists, it is unique and depends continuously on the elements $\mathcal{F}=\left(f, \varphi_{1}, \varphi_{2}\right) \in F$.
Corollary 3.4. The range $R(\bar{L})$ of the operator \bar{L} is closed in F and $R(\bar{L})=\overline{R(L)}$.
Hence, to prove that a strong solution of problem (2.1)-(2.5) exists for any element $\left(f, \varphi_{1}, \varphi_{2}\right) \in F$, it remains to prove that $\overline{R(L)}=F$.

4. Solvability of the linear problem

To prove that the range of L is dense in F, we need first to prove the following theorem.

Theorem 4.1. If for some function $\Psi \in L^{2}(Q)$ and all $u \in D(L)$, such that $\ell_{1} u=\ell_{2} u=0$, we have

$$
\begin{equation*}
(\mathcal{L} u, \Psi)_{L_{\rho}^{2}(Q)}=0 \tag{4.1}
\end{equation*}
$$

then Ψ vanishes almost everywhere in the domain Q.
Note that (4.1) holds for any function in $D(L)$ such that $\ell_{1} u=\ell_{2} u=0$, so it can be expressed in a particular form. We consider the equation

$$
\begin{equation*}
u_{t t}=h(x, t)-\Im_{x}\left(\xi u_{t}\right)+u \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
h(x, t)=\int_{t}^{T} \Psi(x, s) d s \tag{4.3}
\end{equation*}
$$

and

$$
u(x, t)= \begin{cases}0 & 0 \leq t \leq s \tag{4.4}\\ \int_{s}^{t}(t-\tau) \cdot u_{\tau \tau} d \tau & s \leq t \leq T\end{cases}
$$

It follows from (4.2)-(4.4) that

$$
\begin{equation*}
\Psi=-u_{t t t}-\Im_{x}\left(\xi u_{t}\right)+u_{t} \tag{4.5}
\end{equation*}
$$

Lemma 4.2. The function Ψ defined above is in $L_{\rho}^{2}(Q)$.

Proof. Using the domain of definition $D(L)$ of the operator L and the inequality (3.13), we see that $-\Im_{x}\left(\xi u_{t}\right)$ and u_{t} are in $L_{\rho}^{2}(Q)$. To prove that $-u_{t t t} \in L_{\rho}^{2}(Q)$, we use the t-averaging operators ρ_{ε} introduced in [5]. Applying the operators ρ_{ε} and $\partial / \partial t$ to equation (4.2), we obtain

$$
\begin{aligned}
\left\|\frac{\partial}{\partial t} \rho_{\varepsilon} u_{t t}\right\|_{L_{\rho}^{2}(Q)}^{2} \leq & 3\left\|\frac{\partial}{\partial t}\left(u-\Im_{x}\left(\xi u_{t}\right)\right)\right\|_{L_{\rho}^{2}(Q)}^{2}+3\left\|\frac{\partial}{\partial t} \rho_{\varepsilon} h\right\|_{L_{\rho}^{2}(Q)}^{2} \\
& +3\left\|\frac{\partial}{\partial t}\left[\left(u-\Im_{x}\left(\xi u_{t}\right)\right)-\rho_{\varepsilon}\left(u-\Im_{x}\left(\xi u_{t}\right)\right)\right]\right\|_{L_{\rho}^{2}(Q)}^{2}
\end{aligned}
$$

From this last inequality, it follows that

$$
\begin{align*}
\left\|\frac{\partial}{\partial t} \rho_{\varepsilon} u_{t t}\right\|_{L_{\rho}^{2}(Q)}^{2} \leq & 6\left\|u_{t}\right\|_{L_{\rho}^{2}(Q)}^{2}+3\left\|\frac{\partial}{\partial t} \rho_{\varepsilon} h\right\|_{L_{\rho}^{2}(Q)}^{2}+6\left\|\Im_{x}\left(\xi u_{t t}\right)\right\|_{L_{\rho}^{2}(Q)}^{2} \\
& +3\left\|\frac{\partial}{\partial t}\left[\left(u-\Im_{x}\left(\xi u_{t}\right)\right)-\rho_{\varepsilon}\left(u-\Im_{x}\left(\xi u_{t}\right)\right)\right]\right\|_{L_{\rho}^{2}(Q)}^{2} \tag{4.6}
\end{align*}
$$

Using the properties of the operators ρ_{ε} introduced in [5], we deduce from (4.6) that

$$
\left\|\frac{\partial}{\partial t} \rho_{\varepsilon} u_{t t}\right\|_{L_{\rho}^{2}(Q)}^{2} \leq 6\left\|u_{t}\right\|_{L_{\rho}^{2}(Q)}^{2}+3\left\|\frac{\partial}{\partial t} \rho_{\varepsilon} h\right\|_{L_{\rho}^{2}(Q)}^{2}+6\left\|\Im_{x}\left(\xi u_{t t}\right)\right\|_{L_{\rho}^{2}(Q)}^{2}
$$

Since $\rho_{\varepsilon} v \rightarrow v$ in $L^{2}(Q)$, and $\left\|\frac{\partial}{\partial t} \rho_{\varepsilon} u_{t t}\right\|_{L_{\rho}^{2}(Q)}^{2}$ is bounded, we conclude that Ψ is in $L_{\rho}^{2}(Q)$.

Proof of Theorem 4.1. First, we replace Ψ in (4.1) by its representation (4.5); thus we have

$$
\begin{align*}
& \left\|u_{t}\right\|_{L_{\rho}^{2}(Q)}^{2}+\left(u_{t}, u_{t t}\right)_{L_{\rho}^{2}(Q)}-\left(\left(x u_{x}\right)_{x}, u_{t}\right)_{L^{2}(Q)} \\
& \left.-\left(u_{t t}, u_{t t t}\right)_{L_{\rho}^{2}(Q)}-\left(u_{t t t}, u_{t}\right)\right)_{L_{\rho}^{2}(Q)} \\
& +\left(\left(x u_{x}\right)_{x}, u_{t t t}\right)_{L^{2}(Q)}-\left(u_{t}, \Im_{x}\left(u_{t t}\right)\right)_{L_{\rho}^{2}(Q)} \tag{4.7}\\
& -\left(u_{t t}, \Im_{x}\left(u_{t t}\right)\right)_{L_{\rho}^{2}(Q)}+\left(\left(x u_{x}\right)_{x}, \Im_{x}\left(u_{t t}\right)\right)_{L^{2}(Q)}=0 .
\end{align*}
$$

Using conditions (2.4), (2.5) the particular form of u given by the relations (4.2) and (4.4) and integrating by parts each term of (4.7), we obtain

$$
\begin{gather*}
\left(u_{t}, u_{t t}\right)_{L_{\rho}^{2}(Q)}=\frac{1}{2}\left\|u_{t}(., T)\right\|_{L_{\rho}^{2}((0, a))}^{2} \tag{4.8}\\
-\left(\left(x u_{x}\right)_{x}, u_{t}\right)_{L^{2}(Q)}=\frac{1}{2}\left\|u_{x}(., T)\right\|_{L_{\rho}^{2}((0, a))}^{2} \tag{4.9}\\
-\left(u_{t t}, u_{t t t}\right)_{L_{\rho}^{2}(Q)}=\frac{1}{2}\left\|u_{t t}(., s)\right\|_{L_{\rho}^{2}((0, a))}^{2} \tag{4.10}\\
\left.\quad-\left(u_{t t t}, u_{t}\right)\right)_{L_{\rho}^{2}(Q)}=\left\|u_{t t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2} \tag{4.11}\\
\left(\left(x u_{x}\right)_{x}, u_{t t t}\right)_{L^{2}(Q)}=\frac{1}{2}\left\|u_{x t}(., T)\right\|_{L_{\rho}^{2}((0, a))}^{2}, \tag{4.12}\\
\quad-\left(u_{t t}, \Im_{x}\left(u_{t t}\right)\right)_{L_{\rho}^{2}(Q)}=0 \tag{4.13}\\
\left(\left(x u_{x}\right)_{x}, \Im_{x}\left(u_{t t}\right)\right)_{L^{2}(Q)}=-\left(x u_{t t}, u_{x}\right)_{L_{\rho}^{2}\left(Q_{s}\right)} . \tag{4.14}
\end{gather*}
$$

Combining equalities (4.7)-(4.14), we get

$$
\begin{align*}
& \frac{1}{2}\left\|u_{x}(., T)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\frac{1}{2}\left\|u_{t}(., T)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\frac{1}{2}\left\|u_{t t}(., s)\right\|_{L_{\rho}^{2}((0, a))}^{2} \\
& +\left\|u_{t t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\left\|u_{t}\right\|_{L_{\rho}^{2}(Q)}^{2}+\frac{1}{2}\left\|u_{x t}(., T)\right\|_{L_{\rho}^{2}((0, a))}^{2} \tag{4.15}\\
& \leq\left(x u_{t t}, u_{x}\right)_{L_{\rho}^{2}\left(Q_{s}\right)}+\left(u_{t}, \Im_{x}\left(u_{t t}\right)\right)_{L_{\rho}^{2}(Q)} .
\end{align*}
$$

We then use Young's inequality and (3.13) to estimate the right-hand side of (4.15):

$$
\begin{gather*}
\left(x u_{t t}, u_{x}\right)_{L_{\rho}^{2}\left(Q_{s}\right)} \leq 2\left\|u_{t t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\frac{a^{2}}{8}\left\|u_{x}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2} \tag{4.16}\\
\left(u_{t}, \Im_{x}\left(u_{t t}\right)\right)_{L_{\rho}^{2}(Q)} \leq 2\left\|u_{t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\frac{a^{3}}{16}\left\|u_{t t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2} \tag{4.17}
\end{gather*}
$$

Hence, inequalities (4.15)-(4.17) yield

$$
\begin{align*}
& \left\|u_{x}(., T)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\left\|u_{t}(., T)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\left\|u_{t t}(., s)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\left\|u_{x t}(., T)\right\|_{L_{\rho}^{2}((0, a))}^{2} \\
& \leq \frac{a^{2}}{4}\left\|u_{x}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+2\left\|u_{t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\left(\frac{a^{3}}{8}+2\right)\left\|u_{t t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2} \\
& \leq d \frac{a^{2}}{4}\left\|u_{x t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+2\left\|u_{t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\left(\frac{a^{3}}{8}+2\right)\left\|u_{t t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2} \\
& \leq \delta\left(\left\|u_{x t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\left\|u_{t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\left\|u_{t t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}\right) \tag{4.18}
\end{align*}
$$

where $d=4(T-s)^{2}$ is a Poincare constant and $\delta=\max \left\{d \frac{a^{2}}{4}, \frac{a^{3}}{8}+2\right\}$. If we drop the first term on the left-hand side of (4.18), we obtain

$$
\begin{align*}
& \left\|u_{t}(., T)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\left\|u_{t t}(., s)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\left\|u_{x t}(., T)\right\|_{L_{\rho}^{2}((0, a))}^{2} \\
& \leq \delta\left(\left\|u_{x t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\left\|u_{t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\left\|u_{t t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}\right) . \tag{4.19}
\end{align*}
$$

Now we define a new unknown function $\theta(x, t)$ by $\theta_{t}(x, t)=-u_{t t}$, such that $\theta(x, T)=0$; that is,

$$
\theta(x, t)=\int_{t}^{T} u_{s s} d s
$$

Then we have

$$
u_{t}(x, t)=\theta(x, s)-\theta(x, t) \quad \text { and } \quad u_{t}(x, T)=\theta(x, s) .
$$

Thus inequality (4.19) can be written as

$$
\begin{align*}
&\left\|u_{t t}(., s)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\left\|\theta_{x}(x, s)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\|\theta(x, s)\|_{L_{\rho}^{2}((0, a))}^{2} \\
& \leq \delta \int_{s}^{T}\left\{\int_{0}^{a} x(\theta(x, s)-\theta(x, t))^{2} d x+\int_{0}^{a} x u_{t t}^{2} d x\right. \tag{4.20}\\
&\left.+\int_{0}^{a} x\left(\theta_{x}(x, s)-\theta_{x}(x, t)\right)^{2} d x\right\} d t .
\end{align*}
$$

It follows from (4.20) that

$$
\begin{align*}
& \left(1-2 \delta(T-s)\left(\left\|\theta_{x}(x, s)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\|\theta(x, s)\|_{L_{\rho}^{2}((0, a))}^{2}\right)+\left\|u_{t t}(., s)\right\|_{L_{\rho}^{2}((0, a))}^{2}\right. \\
& \leq 2 \delta\left(\left\|u_{t t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\left\|\theta_{x}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\|\theta\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}\right) \tag{4.21}
\end{align*}
$$

If $s_{0}>0$ satisfies $T-s_{0}=1 / 4$, then (4.21) implies

$$
\begin{align*}
& \left\|u_{t t}(., s)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\left\|\theta_{x}(x, s)\right\|_{L_{\rho}^{2}((0, a))}^{2}+\|\theta(x, s)\|_{L_{\rho}^{2}((0, a))}^{2} \\
& \leq 4 \delta\left(\left\|u_{t t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\left\|\theta_{x}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\|\theta\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}\right) \tag{4.22}
\end{align*}
$$

for all $s \in\left[T-s_{0}, T\right]$. Inequality (4.22) in turns implies that

$$
\begin{equation*}
-\sigma^{\prime}(s) \leq 4 \delta \sigma(s) \tag{4.23}
\end{equation*}
$$

where

$$
\sigma(s)=\left\|u_{t t}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\left\|\theta_{x}\right\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}+\|\theta\|_{L_{\rho}^{2}\left(Q_{s}\right)}^{2}
$$

Since $\sigma(T)=0$, then an integration of (4.23) over $[s, T]$ gives

$$
\sigma(s) e^{4 \delta s} \leq 0, \quad \forall s \in\left[T-s_{0}, T\right]
$$

It follows from the above inequality that $\Psi \equiv 0$ almost everywhere on the domain $Q_{T-s_{0}}=(0, a) \times\left[T-s_{0}, T\right]$. The length s does not depend on the origin, so we can proceed in the same way a finite number of times to show that $\Psi \equiv 0$ in Q.

Theorem 4.3. The range of $R(L)$ of the operator L coincides with F.
Proof. Suppose that for some $W=\left(\Psi, \Psi_{1}, \Psi_{2}\right) \in R(L)^{\perp}$,

$$
\begin{equation*}
(\mathcal{L} u, \Psi)_{L_{\rho}^{2}(Q)}+\left(\ell_{1} u, \Psi_{1}\right)_{V_{\rho}^{1,0}((0, a))}+\left(\ell_{2} u, \Psi_{2}\right)_{L_{\rho}^{2}((0, a))}=0 \tag{4.24}
\end{equation*}
$$

We must prove that $W=0$. Let $D_{0}(L)=\left\{u / u \in D(L): \ell_{1} u=\ell_{2} u=0\right\}$, and put $u \in D_{0}(L)$ in (4.24), we get

$$
(\mathcal{L} u, \Psi)_{L_{\rho}^{2}(Q)}=0, \quad \forall u \in D(L)
$$

Hence, by theorem 4.1 it follows that $\Psi=0$. Thus (4.24) becomes

$$
\begin{equation*}
\left(\ell_{1} u, \Psi_{1}\right)_{V_{\rho}^{1,0}((0, a))}+\left(\ell_{2} u, \Psi_{2}\right)_{L_{\rho}^{2}((0, a))}=0 . \tag{4.25}
\end{equation*}
$$

Since $\ell_{1} u$ and $\ell_{2} u$ are independent and the ranges of the operators ℓ_{1} and ℓ_{2} are everywhere dense in the spaces $V_{\rho}^{1,0}((0, a))$ and $L_{\rho}^{2}((0, a))$ respectively. Hence the inequality (4.25) implies that $\Psi_{1}=\Psi_{2}=0$. Consequently $W=0$. This completes the proof.

5. The semilinear problem

In this section we state and prove the existence of a local solution to problem (1.1). First, we state some lemmas.

Lemma 5.1. For any v in $V_{\rho}^{1,0}((0, a))$ satisfying the boundary condition (2.4), we have

$$
\begin{equation*}
\int_{0}^{a} x v^{2}(x) d x \leq 4 a^{2} \int_{0}^{a} x\left(v_{x}(x)\right)^{2} d x . \tag{5.1}
\end{equation*}
$$

Proof. It is easy to see that for each smooth function v satisfying the boundary condition (2.4), we have

$$
0=\int_{0}^{a}\left(x v^{2}\right)_{x} d x=\int_{0}^{a}\left(v^{2}+2 x v v_{x}\right) d x
$$

hence,

$$
\int_{0}^{a} x v^{2} d x \leq a \int_{0}^{a} v^{2} d x=-2 \int_{0}^{a} x v v_{x} d x
$$

Using Young's inequality we obtain

$$
\int_{0}^{a} x v^{2} d x \leq\left|2 \int_{0}^{a} x v v_{x} d x\right| \leq 2 a^{2} \int_{0}^{a} x v_{x}^{2} d x+\frac{1}{2} \int_{0}^{a} x v^{2} d x
$$

Therefore (5.1) is established for any smooth function v. This inequality remains valid for v in $V_{\rho}^{1,0}((0, a))$ by a density argument.

Lemma 5.2. For v in $V_{\rho}^{1,0}((0, a))$ satisfying the boundary condition (2.4) and $2<p<3$, we have $|v|^{p-2} v \in L_{\rho}^{2}((0, a))$.

Proof. First we note that by virtue of lemma 5.42 of [1] and by using a density argument we have

$$
\begin{equation*}
\sup _{0 \leq x \leq a} x(v(x))^{2} \leq 4 \int_{0}^{a} x v^{2}(x) d x+4 \int_{0}^{a} x\left|v(x) \| v^{\prime}(x)\right| d x . \tag{5.2}
\end{equation*}
$$

Using the Schwarz inequality and lemma 5.1, estimate (5.2) yields

$$
\begin{equation*}
\sup _{0 \leq x \leq a} x(v(x))^{2} \leq C \int_{0}^{a} x\left|v^{\prime}(x)\right|^{2} d x \tag{5.3}
\end{equation*}
$$

Evaluating the L_{ρ}^{2}-norm of $|v|^{p-2} v$ we have

$$
\begin{align*}
\int_{0}^{a} x|v(x)|^{2 p-2} d x & =\int_{0}^{a} x^{p-1}|v(x)|^{2(p-1)} x^{2-p} d x \\
& \leq\left(\sup _{0 \leq x \leq a} x(v(x))^{2}\right)^{p-1} \int_{0}^{a} x^{2-p} d x \tag{5.4}\\
& \leq \frac{C}{3-p}\left(\|v\|_{V_{\rho}^{1,0}((0, a))}\right)^{2 p-2}<\infty,
\end{align*}
$$

by virtue of (5.3). This completes the proof.
Theorem 5.3. If $2<p<3$ then for any ϕ in $V_{\rho}^{1,0}((0, a))$ and ψ in $L_{\rho}^{2}((0, a))$, problem (1.1) has a unique local solution $u \in E$.

Proof. We prove this theorem by using a fixed point argument. For $T>0$ and $M>0$, we define the class of functions $W=W(M, T)$, which consists of all functions $w \in E$ satisfying conditions (2.3)-(2.5) and for which we have $\|w\|_{E}$ $\leq M$. We then define a map $h: W \rightarrow E$ which associates to each $v \in W$ the solution u of the linear problem

$$
\begin{gather*}
u_{t t}+u_{t}-\frac{1}{x}\left(x u_{x}\right)_{x}=|v|^{p-2} v \\
u(a, t)=0, \quad \int_{0}^{a} x u(x, t) d x=0 \tag{5.5}\\
u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)
\end{gather*}
$$

It follows from theorem 3.1 and theorem 4.3 that (5.5) has a unique solution u satisfying

$$
\|u\|_{E}^{2} \leq C\left\{\|\phi\|_{V_{\rho}^{1,0}((0, a))}^{2}+\|\psi\|_{L_{\rho}^{2}((0, a))}^{2}+\left\||v|^{p-2} v\right\|_{L_{\rho}^{2}((Q)}^{2}\right\} .
$$

This, in turn, implies by (5.4) that

$$
\begin{align*}
\|u\|_{E}^{2} & \leq C\left\{\|\phi\|_{V_{\rho}^{1,0}((0, a))}^{2}+\|\psi\|_{L_{\rho}^{2}((0, a))}^{2}+\int_{0}^{T}\left(\|v\|_{V_{\rho}^{1,0}((0, a))}\right)^{2 p-2} d t\right\} \\
& \leq C\left\{\|\phi\|_{V_{\rho}^{1,0}((0, a))}^{2}+\|\psi\|_{L_{\rho}^{2}((0, a))}^{2}+C T\|v\|_{E}^{2 p-2}\right\} \tag{5.6}\\
& \leq C\left\{\|\phi\|_{V_{\rho}^{1,0}((0, a))}^{2}+\|\psi\|_{L_{\rho}^{2}((0, a))}^{2}+C T M^{2 p-2}\right\}
\end{align*}
$$

Taking M so large that $C\left\{\|\phi\|_{V_{\rho}^{1,0}((0, a))}^{2}+\|\psi\|_{L_{\rho}^{2}((0, a))}^{2}\right\} \leq M^{2} / 2$ and T so small that $C T M^{2 p-2} \leq M^{2} / 2$, estimate (5.6) yields

$$
\|u\|_{E}^{2} \leq M^{2}
$$

hence h maps W into itself. To show that h is a contraction for T small enough, we consider $v_{1}, v_{2} \in W$ and the corresponding images u_{1} and u_{2}. It is straightforward to see that $U=u_{1}-u_{2}$ satisfies

$$
\begin{gather*}
U_{t t}+U_{t}-\frac{1}{x}\left(x U_{x}\right)_{x}=\left|v_{1}\right|^{p-2} v_{1}-\left|v_{2}\right|^{p-2} v_{2} \\
U(a, t)=0, \quad \int_{0}^{a} x U(x, t) d x=0 \tag{5.7}\\
U(x, 0)=0, \quad U_{t}(x, 0)=0 .
\end{gather*}
$$

We multiply (5.7) by $x U_{t}$ and integrate over Q to get

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{a} x U_{t}^{2}(x, t) d x+\frac{1}{2} \int_{0}^{a} x U_{x}^{2}(x, t) d x+\int_{0}^{t} \int_{0}^{a} x U_{t}^{2}(x, s) d x d s \\
& \leq \int_{0}^{t} \int_{0}^{a} x\left|U_{t} \|\left|v_{1}\right|^{p-2} v_{1}-\left|v_{2}\right|^{p-2} v_{2}\right|(x, s) d x d s
\end{aligned}
$$

Schwarz inequality then leads to

$$
\begin{align*}
& \int_{0}^{a} x U_{t}^{2}(x, t) d x+\int_{0}^{a} x U_{x}^{2}(x, t) d x+\int_{0}^{t} \int_{0}^{a} x U_{t}^{2}(x, s) d x d s \\
& \leq \int_{0}^{t} \int_{0}^{a} x\left\{\left|v_{1}\right|^{p-2} v_{1}-\left|v_{2}\right|^{p-2} v_{2}\right\}^{2}(x, s) d x d s \tag{5.8}
\end{align*}
$$

We now estimate the right-hand-side of (5.8) as follows. Taking $V=v_{1}-v_{2}$, we obtain

$$
\begin{equation*}
\int_{0}^{a} x\left\{\left|v_{1}\right|^{p-2} v_{1}-\left|v_{2}\right|^{p-2} v_{2}\right\}^{2} d x \leq C_{1} \int_{0}^{a} x|V|^{2}\left\{\left|v_{1}\right|^{2 p-4}+\left|v_{2}\right|^{2 p-4}\right\} \tag{5.9}
\end{equation*}
$$

where C_{1} is a constant independent of v_{1}, v_{2} and t. Thus we have, by virtue of (5.3),

$$
\begin{aligned}
\int_{0}^{a} x\left\{\left|v_{1}\right|^{p-2} v_{1}-\left|v_{2}\right|^{p-2} v_{2}\right\}^{2} d x & \leq C_{1} \sup _{0 \leq x \leq a} x(V(x))^{2} \int_{0}^{a}\left\{\left|v_{1}\right|^{2 p-4}+\left|v_{2}\right|^{2 p-4}\right\} d x \\
& \leq C\left(\int_{0}^{a} x\left|V_{x}\right|^{2} d x\right) \int_{0}^{a}\left\{\left|v_{1}\right|^{2 p-4}+\left|v_{2}\right|^{2 p-4}\right\} d x
\end{aligned}
$$

Next we evaluate

$$
\begin{aligned}
\int_{0}^{a}\left|v_{1}\right|^{2 p-4} d x & =\int_{0}^{a} x^{p-2}\left|v_{1}\right|^{2 p-4} x^{2-p} d x \\
& \leq\left(\sup _{0 \leq x \leq a} x\left|v_{1}\right|^{2}\right)^{p-2} \int_{0}^{a} x^{2-p} d x \\
& \leq \frac{C}{3-p}\left[\int_{0}^{1} x\left(\frac{\partial v_{1}}{\partial x}\right)^{2} d x\right]^{p-2} \leq C M^{2(p-2)}
\end{aligned}
$$

By combining (5.8), (5.9), we arrive at

$$
\begin{equation*}
\int_{0}^{T^{*}} \int_{0}^{a} x\left\{\left|v_{1}\right|^{p-2} v_{1}-\left|v_{2}\right|^{p-2} v_{2}\right\}^{2} d x d s \leq C T M^{2(p-2)}\|V\|_{E}^{2} \tag{5.10}
\end{equation*}
$$

Therefore (5.8) and (5.10) give

$$
\begin{equation*}
\|U\|_{E}^{2} \leq C T M^{2(p-2)}\|V\|_{E}^{2} \tag{5.11}
\end{equation*}
$$

Choosing T small enough that $C T M^{2(p-2)}<1$, makes the map h a contraction from W into itself. The Contraction Mapping Theorem then guarantees the existence of a fixed point u, which is the desired solution of (1.1). The proof is then completed.

6. Finite time blow up

In this section we show that the solution of (1.1) blows up in finite time if

$$
\begin{equation*}
\mathcal{E}_{0}:=\frac{1}{2} \int_{0}^{a} x(\psi(x))^{2} d x+\frac{1}{2} \int_{0}^{a} x\left(\phi_{x}(x)\right)^{2} d x-\frac{1}{p} \int_{0}^{a} x|\phi(x)|^{p} d x<0 \tag{6.1}
\end{equation*}
$$

Theorem 6.1. If $2<p<3$ then for any ϕ in $V_{\rho}^{1,0}((0, a))$ and ψ in $L_{\rho}^{2}((0, a))$ satisfying (2.4), (2.5), and (6.1), the solution of problem (1.1) blows up in finite time.

Proof. We define the functional

$$
\begin{equation*}
\mathcal{E}(t):=\frac{1}{2} \int_{0}^{a} x\left(u_{t}(x, t)\right)^{2} d x+\frac{1}{2} \int_{0}^{a} x\left(u_{x}(x, t)\right)^{2} d x-\frac{1}{p} \int_{0}^{a} x|u(x, t)|^{p} d x \tag{6.2}
\end{equation*}
$$

Multiplying (1.1) by $x u_{t}$ and integrating over ($0, a$) yields

$$
\begin{equation*}
\mathcal{E}^{\prime}(t)=-\int_{0}^{a} x u_{t}^{2}(x, t) d x \leq 0 \tag{6.3}
\end{equation*}
$$

hence $\mathcal{E}(t) \leq \mathcal{E}_{0}(0)<0$, for all $t \geq 0$. By setting $H(t)=-\mathcal{E}(t)$, we get

$$
\begin{equation*}
0<H(0) \leq H(t) \leq \frac{1}{p} \int_{0}^{a} x|u(x, t)|^{p} d x, \quad \forall t \geq 0 . \tag{6.4}
\end{equation*}
$$

Then we define

$$
\begin{equation*}
L(t):=H^{2 / p}(t)+\varepsilon \int_{0}^{a} x u u_{t}(x, t) d x+\frac{\varepsilon}{2} \int_{0}^{a} x u^{2}(x, t) d x \tag{6.5}
\end{equation*}
$$

for ε small enough so that

$$
L(0)=H^{2 / p}(0)+\varepsilon \int_{0}^{a} x \phi \psi(x) d x+\frac{\varepsilon}{2} \int_{0}^{a} x \phi^{2}(x) d x>0
$$

By differentiating (6.5) and using (1.1) and (6.2), we obtain

$$
\begin{align*}
L^{\prime}(t)= & \frac{2}{p} H^{-1+2 / p}(t) H^{\prime}(t)+\varepsilon \int_{0}^{a} x u_{t}^{2}(x, t) d x \\
& +\varepsilon \int_{0}^{a} x u u_{t t}(x, t) d x+\varepsilon \int_{0}^{a} x u u_{t}(x, t) d x \\
= & \frac{2}{p} H^{-1+2 / p}(t) H^{\prime}(t)+\varepsilon \int_{0}^{a} x u_{t}^{2}(x, t) d x+\varepsilon \int_{0}^{a} x u u_{t}(x, t) d x \\
& +\varepsilon \int_{0}^{a} x u\left[-u_{t}+\frac{1}{x}\left(x u_{x}\right)_{x}+|u|^{p-2} u\right] d x \\
\geq & \varepsilon \int_{0}^{a} x u_{t}^{2}(x, t) d x-\varepsilon \int_{0}^{a} x\left(u_{x}(x, t)\right)^{2} d x+\varepsilon \int_{0}^{a} x|u(x, t)|^{p} d x \tag{6.6}\\
= & \varepsilon \int_{0}^{a} x u_{t}^{2}(x, t) d x-\varepsilon \int_{0}^{a} x\left(u_{x}(x, t)\right)^{2} d x \\
& +\varepsilon\left(1-\frac{2}{p}\right) \int_{0}^{a} x|u(x, t)|^{p} d x \\
& +\frac{2 \varepsilon}{p}\left[p H(t)+\frac{p}{2} \int_{0}^{a} x u_{t}^{2}(x, t) d x+\frac{p}{2} \int_{0}^{a} x\left(u_{x}(x, t)\right)^{2} d x\right] \\
= & 2 \varepsilon \int_{0}^{a} x u_{t}^{2}(x, t) d x+2 \varepsilon H(t)+\varepsilon\left(1-\frac{2}{p}\right) \int_{0}^{a} x|u(x, t)|^{p} d x \\
= & \varepsilon\left(1-\frac{2}{p}\right)\left(H(t)+\int_{0}^{a} x|u(x, t)|^{p} d x+\int_{0}^{a} x u_{t}^{2}(x, t) d x\right) .
\end{align*}
$$

The next estimate reads
$\left[\int_{0}^{a} x u^{2} d x\right]^{p / 2} \leq\left[\left(\int_{0}^{a} x|u|^{p} d x\right)^{2 / p}\left(\int_{0}^{a} x d x\right)^{(p-2) / p}\right]^{p / 2} \leq\left(\frac{a^{2}}{2}\right)^{(p-2) / 2} \int_{0}^{a} x|u|^{p} d x$
and

$$
\begin{aligned}
\left|\int_{0}^{a} x u u_{t} d x\right| & \leq\left(\int_{0}^{a} x u^{2} d x\right)^{1 / 2}\left(\int_{0}^{a} x u_{t}^{2} d x\right)^{1 / 2} \\
& \leq\left(\frac{a^{2}}{2}\right)^{(p-2) / 2 p}\left(\int_{0}^{a} x|u|^{p} d x\right)^{1 / p}\left(\int_{0}^{a} x u_{t}^{2} d x\right)^{1 / 2}
\end{aligned}
$$

which implies

$$
\left|\int_{0}^{a} x u u_{t} d x\right|^{p / 2} \leq\left(\frac{a^{2}}{2}\right)^{(p-2) / 4}\left(\int_{0}^{a} x|u|^{p} d x\right)^{1 / 2}\left(\int_{0}^{a} x u_{t}^{2} d x\right)^{p / 4}
$$

Also Young's inequality gives

$$
\left|\int_{0}^{a} x u u_{t} d x\right|^{p / 2} \leq C\left[\left(\int_{0}^{a} x|u|^{p} d x\right)^{\mu / 2}+\left(\int_{0}^{a} x u_{t}^{2} d x\right)^{\theta p / 4}\right]
$$

for $1 / \mu+1 / \theta=1$. We take $\theta=8 / p$, (hence $\mu=8 /(8-p))$ to get

$$
\left|\int_{0}^{a} x u u_{t} d x\right|^{p / 2} \leq C\left[\left(\int_{0}^{a} x|u|^{p} d x\right)^{4 /(8-p)}+\int_{0}^{a} x u_{t}^{2} d x\right]
$$

Using that $z^{\nu} \leq z+1 \leq\left(1+\frac{1}{a}\right)(z+a)$ for all $z \geq 0,0<\nu \leq 1, a \geq 0$, we have the following estimate

$$
\begin{align*}
\left(\int_{0}^{a} x|u|^{p} d x\right)^{4 /(8-p)} & \leq\left(1+\frac{1}{H(t)}\right)\left(\int_{0}^{a} x|u|^{p} d x+H(t)\right) \tag{6.8}\\
& \leq\left(1+\frac{1}{H(0)}\right)\left(\int_{0}^{a} x|u|^{p} d x+H(t)\right)
\end{align*}
$$

Consequently,

$$
\begin{equation*}
\left|\int_{0}^{a} x u u_{t} d x\right|^{p / 2} \leq C\left[\int_{0}^{a} x|u|^{p} d x+H(t)+\int_{0}^{a} x u_{t}^{2} d x\right] . \tag{6.9}
\end{equation*}
$$

A combination of (6.5), (6.7), and (6.9) leads to

$$
\begin{equation*}
L^{p / 2}(t) \leq C\left[\int_{0}^{a} x|u|^{p} d x+H(t)+\int_{0}^{a} x u_{t}^{2} d x\right] . \tag{6.10}
\end{equation*}
$$

Therefore, using (6.6) and (6.10), we obtain

$$
\begin{equation*}
L^{\prime}(t) \geq \lambda L^{p / 2}(t) \tag{6.11}
\end{equation*}
$$

where λ is a constant depending only on $\varepsilon, H(0)$, and a. Integration of (6.11) over $(0, t)$ gives

$$
L^{(p / 2)-1}(t) \geq \frac{1}{L^{1-(p / 2)}(0)-\lambda(p / 2-1) t}
$$

hence $L(t)$ blows up in a time

$$
\begin{equation*}
T^{*} \leq \frac{1}{\lambda(p / 2-1) L^{1-(p / 2)}(0)} \tag{6.12}
\end{equation*}
$$

Remark The time estimate (6.12) shows that the larger $L(0)$ is the quicker the blow up takes place.

7. Decay of Solutions

In this section we show that any solution of (1.1) is global and decays exponentially provided that \mathcal{E}_{0} is positive and small enough. In order to state and prove our results we introduce the following:

$$
\begin{gathered}
I(t)=I(u(t))=\int_{0}^{a} x u_{x}^{2} d x-\int_{0}^{a} x|u|^{p} d x \\
J(t)=J(u(t))=\frac{1}{2} \int_{0}^{a} x u_{x}^{2} d x-\frac{1}{p} \int_{0}^{a} x|u|^{p} d x \\
\mathcal{H}=\left\{w \in V_{\rho}^{1,0}((0, a)): I(w)>0\right\} \cup\{0\}
\end{gathered}
$$

Remark Note that $\mathcal{E}(t)=J(t)+\frac{1}{2} \int_{0}^{a} x u_{t}^{2} d x$.
Lemma 7.1. For v in $V_{\rho}^{1,0}((0, a))$ satisfying the boundary condition (2.4) and for $2 \leq p<4$, we have

$$
\begin{equation*}
\int_{0}^{a} x|v|^{p} d x \leq C_{*}\left\|v_{x}\right\|_{L_{\rho}^{2}((0, a))}^{p} \tag{7.1}
\end{equation*}
$$

where C_{*} is a constant depending on a and p only.

Proof. A direct calculation, using (5.3), gives

$$
\begin{align*}
\int_{0}^{a} x|v|^{p} d x & =\int_{0}^{a}\left(x|v|^{2}\right)^{p / 2} x^{1-p / 2} d x \\
& \leq\left(\sup _{0 \leq x \leq a} x|v|^{2}\right)^{p / 2} \int_{0}^{a} x^{1-p / 2} d x \tag{7.2}\\
& \leq\left(C \int_{0}^{a} x\left|v^{\prime}(x)\right|^{2} d x\right)^{p / 2} \int_{0}^{a} x^{1-p / 2} d x \\
& =C_{*}\left\|v_{x}\right\|_{L_{\rho}^{2}((0, a))}^{p}
\end{align*}
$$

Lemma 7.2. Suppose that $2<p<3$ and $\phi \in H, \psi \in L_{\rho}^{2}((0, a))$ satisfying (2.4), (2.5), and

$$
\begin{equation*}
\beta=C_{*}\left(\frac{2 p}{p-2} \mathcal{E}_{0}\right)^{(p-2) / 2}<1 \tag{7.3}
\end{equation*}
$$

Then $u(t) \in \mathcal{H}$ for each $t \in[0, T)$.
Proof. Since $I\left(u_{0}\right)>0$ then there exists $T_{m} \leq T$ such that $I(u(t)) \geq 0$ for all $t \in\left[0, T_{m}\right)$. This implies

$$
\begin{align*}
J(t) & =\frac{1}{2} \int_{0}^{a} x u_{x}^{2} d x-\frac{1}{p} \int_{0}^{a} x|u|^{p} d x \\
& =\frac{p-2}{2 p} \int_{0}^{a} x u_{x}^{2} d x+\frac{1}{p} I(u(t)) \tag{7.4}\\
& \geq \frac{p-2}{2 p} \int_{0}^{a} x u_{x}^{2} d x, \quad \forall t \in\left[0, T_{m}\right) ;
\end{align*}
$$

hence

$$
\begin{equation*}
\int_{0}^{a} x u_{x}^{2} d x \leq \frac{2 p}{p-2} J(t) \leq \frac{2 p}{p-2} \mathcal{E}(t) \leq \frac{2 p}{p-2} \mathcal{E}_{0}, \quad \forall t \in\left[0, T_{m}\right) \tag{7.5}
\end{equation*}
$$

Using (7.1), (7.3), and (7.5), we easily arrive at

$$
\begin{align*}
\int_{0}^{a} x|u|^{p} d x & \leq C_{*}\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{p}=C_{*}\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{p-2}\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{2} \\
& \leq C_{*}\left(\frac{2 p}{p-2} \mathcal{E}_{0}\right)^{(p-2) / 2}\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{2}=\beta\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{2} \tag{7.6}\\
& <\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{2}, \quad \forall t \in\left[0, T_{m}\right)
\end{align*}
$$

hence

$$
\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{2}-\int_{0}^{a} x|u|^{p} d x>0, \forall t \in\left[0, T_{m}\right)
$$

This shows that $u(t) \in \mathcal{H}, \forall t \in\left[0, T_{m}\right)$. By repeating the procedure, T_{m} is extended to T.

Theorem 7.3. Suppose that $2<p<3$ and $\phi \in \mathcal{H}, \psi \in L_{\rho}^{2}((0, a))$ satisfying (2.4), (2.5), and (7.3). Then the solution of problem (1.1) is a global solution.

Proof. It suffices to show that $\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{2}+\left\|u_{t}\right\|_{L_{\rho}^{2}((0, a))}^{2}$ is bounded independently of t. To achieve this we use (6.3); so we have

$$
\begin{align*}
\mathcal{E}_{0} & \geq \mathcal{E}(t)=\frac{1}{2}\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{2}-\frac{1}{p} \int_{0}^{a} x|u|^{p} d x+\frac{1}{2}\left\|u_{t}\right\|_{L_{\rho}^{2}((0, a))}^{2} \\
& =\frac{p-2}{2 p}\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{2}+\frac{1}{p} I(u(t))+\frac{1}{2}\left\|u_{t}\right\|_{L_{\rho}^{2}((0, a))}^{2} \tag{7.7}\\
& \geq \frac{p-2}{2 p}\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{2}+\frac{1}{2}\left\|u_{t}\right\|_{L_{\rho}^{2}((0, a))}^{2}
\end{align*}
$$

since $I(u(t)) \geq 0$. Therefore,

$$
\left\|u_{x}\right\|_{L_{\rho}^{2}((0, a))}^{2}+\left\|u_{t}\right\|_{L_{\rho}^{2}((0, a))}^{2} \leq \frac{2 p}{p-2} \mathcal{E}_{0}
$$

Theorem 7.4. Suppose that $2<p<3$ and $\phi \in \mathcal{H}, \psi \in L_{\rho}^{2}((0, a))$ satisfying (2.4), (2.5), and (7.3). Then there exist positive constants K and k such that the global solution of problem (1.1) satisfies

$$
\begin{equation*}
\mathcal{E}(t) \leq K e^{-k t}, \quad \forall t \geq 0 \tag{7.8}
\end{equation*}
$$

Proof. We define

$$
\begin{equation*}
\mathcal{F}(t):=\mathcal{E}(t)+\varepsilon \int_{0}^{a} x\left(u u_{t}+\frac{1}{2} u^{2}\right) d x \tag{7.9}
\end{equation*}
$$

for ε small such that

$$
\begin{equation*}
a_{1} \mathcal{F}(t) \leq \mathcal{E}(t) \leq a_{2} \mathcal{F}(t) \tag{7.10}
\end{equation*}
$$

holds for two positive constants a_{1} and a_{2}. This is, of course possible by (5.1) and (7.5). We differentiate (7.9) and use equation (1.1) to obtain

$$
\begin{align*}
\mathcal{F}^{\prime}(t) & =-\int_{0}^{a} x\left|u_{t}\right|^{2} d x+\varepsilon \int_{0}^{a} x\left[u_{t}^{2}-\left|u_{x}\right|^{2}+|u(t)|^{p}\right] d x \tag{7.11}\\
& \leq-[1-\varepsilon] \int_{0}^{a} x\left|u_{t}\right|^{2} d x-\varepsilon \int_{0}^{a} x\left|u_{x}\right|^{2} d x+\varepsilon \int_{0}^{a} x|u(t)|^{p} d x
\end{align*}
$$

We then use (6.2) and (7.6) to get

$$
\begin{align*}
\int_{0}^{a} x|u|^{p} d x= & \alpha \int_{0}^{a} x|u|^{p} d x+(1-\alpha) \int_{0}^{a} x|u|^{p} d x \\
\leq & \alpha\left(\frac{p}{2} \int_{0}^{a} x u_{t}^{2} d x+\frac{p}{2} \int_{0}^{a} x u_{x}^{2} d x-p \mathcal{E}(t)\right) \tag{7.12}\\
& +(1-\alpha) \beta \int_{0}^{a} x u_{x}^{2} d x, \quad 0<\alpha<1
\end{align*}
$$

Therefore, a combination of (7.11) and (7.12) gives

$$
\begin{equation*}
\mathcal{F}^{\prime}(t) \leq-\left[1-\varepsilon\left(\frac{\alpha p}{2}+1\right)\right] \int_{\Omega} u_{t}^{2}(t) d x-\alpha p \mathcal{E}(t)+\varepsilon\left[\alpha\left(\frac{p}{2}-1\right)-\eta(1-\alpha)\right] \int_{0}^{a} x u_{x}^{2} d x \tag{7.13}
\end{equation*}
$$

where $\eta=1-\beta$. By using (7.5) and choosing α close to 1 so that $\alpha\left(\frac{p}{2}-1\right)-\eta(1-\alpha) \geq$ 0 , estimate (7.13) takes the form

$$
\begin{align*}
\mathcal{F}^{\prime}(t) \leq & -\left[1-\varepsilon\left(\frac{\alpha p}{2}+1\right)\right] \int_{\Omega} u_{t}^{2}(t) d x-\alpha p \mathcal{E}(t) \\
& +\varepsilon\left[\alpha\left(\frac{p}{2}-1\right)-\eta(1-\alpha)\right] \frac{2 p}{p-2} \mathcal{E}(t) \tag{7.14}\\
\leq & -\left[1-\varepsilon\left(\frac{\alpha p}{2}+1\right)\right] \int_{\Omega} u_{t}^{2}(t) d x-\eta \varepsilon(1-\alpha) \frac{2 p}{p-2} \mathcal{E}(t)
\end{align*}
$$

At this point we choose ε so small that $1-\varepsilon\left(\frac{\alpha p}{2}+1\right) \geq 0$, and (7.10) remains valid. Consequently (7.14) yields

$$
\begin{equation*}
\mathcal{F}^{\prime}(t) \leq-\eta \varepsilon(1-\alpha) \frac{2 p}{p-2} \mathcal{E}(t) \leq-\varepsilon a_{2} \eta(1-\alpha) \frac{2 p}{p-2} \mathcal{F}(t) \tag{7.15}
\end{equation*}
$$

by virtue of (7.10). A simple integration of (7.15) leads to

$$
\mathcal{F}(t) \leq \mathcal{F}(0) e^{-k t}
$$

where $k=\varepsilon a_{2}\left[\eta(1-\alpha) \frac{2 p}{p-2}\right]$. Again using (7.10), we obtain (7.8). This completes the proof.

Acknowledgment The authors would like to express their gratitude to KFUPM for the economic support provided.

References

[1] R. Adams, Sobolev Spaces, Academic Press (1975).
[2] B. Cahlon, D. M. and P. Shi, Stepwise stability for the heat equation with a nonlocal constraint, SIAM. J. Numer. Anal., 32 (1995), 571-593.
[3] R. Cannon, The solution of heat equation subject to the specification of energy, Quart. Appl. Math., 21 (1963), 155-160.
[4] Y. S. Choi and K. Y. Chan, A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Anal., 18 (1992), 317-331.
[5] R. E. Ewing and T. Lin, A class of paramater estimation techniques for fluid flow in porous media, Adv. Water ressorces, 14 (1991), 89-97
[6] L. Garding, Cauchy problem for hyperbolic equations, University of chicago, Lecture notes, 1957.
[7] D. G. Gordeziani and G. A. Avalishvili, On the construction of solutions of the nonlocal initial boundary problems for one-dimensional medium oscillation equations, Matem. modelivrovanie, 12 no. 1 (2000), 94-103.
[8] N. I. Ionkin, Solution of boundary value problem in heat conduction theory with non local boundary conditions, Diff. Uravn. 13 (1977), 294-304.
[9] N. I. Kamynin, A boundary value problem in the theory of heat conduction with non classical boundary condition, Th. Vychisl. Mat. Fiz. 4:6 (1964), 1006-1024.
[10] S. Mesloub and A. Bouziani, On class of singular hyperbolic equation with a weighted integral condition, Internat. J. Math. \mathcal{G} Math. Sci. Vol. 22, no. 3 (1999)1-9.
[11] S. Mesloub and A. Bouziani, Mixed problem with a weighted integral condition for a parabolic equation with the Bessel operator. J. Appl. Math. Stochastic Anal. 15 no. 3 (2002), 291-300.
[12] S. Mesloub and S. A. Messaoudi, A three point boundary-value problem for a hyperbolic equation with a non-local condition, Electron. J. Diff. Eqns, Vol. 2002 no. 62 (2002), 1-13.
[13] L. S. Pulkina, A nonlocal problem with integral conditions for hyperbolic equations, Electron. J. Diff. Eqns, Vol. 1999 no. 45 (1999), 1-6.
[14] L. S. Pulkina, On solvability in L_{2} of nonlocal problem with integral conditions for a hyperbolic equation, Differents. Uravn., V. no. 2, 2000
[15] A. A. Samarskii, Some problems in the modern theory of differential equations. Differents. Uravn. 16 (1980), 1221-1228.
[16] P. Shi and Shilor, Design of contact patterns in one dimensional thermoelasticity, in theoretical aspects of industrial design, Society for Industrial and Applied Mathematics, philadelphia, PA, 1992.
[17] V. F. Volkodavov and V. E. Zhukov, Two problems for the string vibration equation with integral conditions and special matching conditions on the characteristic, Differential equations, 34 (1998), 501-505.
[18] N. I. Yurchuk, Mixed problem with an integral condition for certain parabolic equations, Differ. Uravn. 22 no. 12 (1986), 2117-2126.

Said Mesloub
Département de Mathématiques, Université de Tébessa, Tébessa 12002, Algerie E-mail address: mesloubs@hotmail.com

Salim A. Messaoudi
Departement of Mathematics, King Fahd University of Petroleum \& Menirals, Dahran 31261, Saudia Arabia

E-mail address: messaoud@kfupm.edu.sa

[^0]: 2000 Mathematics Subject Classification. 35L20, 35L67.
 Key words and phrases. Semilinear hyperbolic equation, integral condition, strong solution, existnece, uniqueness, blow up, decay.
 (C) 2003 Southwest Texas State University.

 Submitted January 2, 2003. Published March 17, 2003.

