Note

A note on blow up of solutions of a quasilinear heat equation with vanishing initial energy

Salim A. Messaoudi
Mathematical Sciences Department, KFUPM, Dhahran 31261, Saudi Arabia
Received 17 September 2001
Submitted by B. Straughan

Abstract

In this work we consider an initial boundary value problem related to the equation $$
u_{t}-\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)=f(u)
$$ and prove, under suitable conditions on f, a blow up result for solutions with vanishing or negative initial energy.

© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

In this paper we are concerned with the finite time blow up of solutions for the initial boundary value problem

$$
\begin{align*}
& u_{t}-\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)=f(u), \quad x \in \Omega, t>0 \\
& u(x, t)=0, \quad x \in \partial \Omega, t \geqslant 0 \\
& u(x, 0)=u_{0}(x), \quad x \in \Omega \tag{1.1}
\end{align*}
$$

where $m>2, f$ is a continuous function, and Ω is a bounded domain of \mathbb{R}^{n} ($n \geqslant 1$), with a smooth boundary $\partial \Omega$.

In 1993, Junning [2] studied (1.1) and established a global existence result for f depending on u as well as on ∇u. He also proved a nonglobal existence result for (1.1) under the condition

[^0]\[

$$
\begin{equation*}
\frac{1}{m} \int_{\Omega}\left|\nabla u_{0}(x)\right|^{m} d x-\int_{\Omega} F\left(u_{0}(x)\right) d x \leqslant-\frac{4(m-1)}{m T(m-2)^{2}} \int_{\Omega} u_{0}^{2}(x) d x \tag{1.2}
\end{equation*}
$$

\]

where $F(u)=\int_{0}^{u} f(s) d s$. More precisely, he showed that if there exists $T>0$, for which (1.2) holds, then the solution blows up in a time less than T. This type of results have been extensively generalized and improved by Levine et al. in [3], where the authors proved some global, as well as nonglobal, existence theorems. Their result, when applied to problem (1.1), requires that

$$
\begin{equation*}
\frac{1}{m} \int_{\Omega}\left|\nabla u_{0}(x)\right|^{m} d x-\int_{\Omega} F\left(u_{0}(x)\right) d x<0 \tag{1.3}
\end{equation*}
$$

We note that the inequality (1.3) implies (1.2). In 1999, Erdem [1] discussed the initial Dirichlet-type boundary problem for

$$
\begin{align*}
& u_{t}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left(d+|\nabla u|^{m-2}\right) \frac{\partial u}{\partial x_{i}}\right)+g(u, \nabla u)=f(u), \\
& x \in \Omega, t>0 . \tag{1.4}
\end{align*}
$$

He established a blow up result, under a condition similar to (1.3) and another one on the growth of g.

Concerning global existence, Nakao and Chen [5] studied the following problem:

$$
\begin{align*}
& u_{t}-\operatorname{div}\left(\sigma\left(|\nabla u|^{2}\right) \nabla u\right)+b(u) \nabla u=0, \quad x \in \Omega, t>0, \\
& u(x, t)=0, \quad x \in \partial \Omega, t \geqslant 0, \\
& u(x, 0)=u_{0}(x), \quad x \in \Omega \tag{1.5}
\end{align*}
$$

where $\sigma(v)$ behaves like $|v|^{m}, m \geqslant 0$, and $|b(u)| \leqslant k_{0}|u|^{\beta}, k_{0}>0, \beta \geqslant 0$. He proved global existence, derived precise estimates for $\nabla u(t)$, and showed that solutions decay as $t \rightarrow \infty$. His work improves an earlier one by Nakao and Ohara [4], in which he considered (1.5) with $b \equiv 0$.

It is also worth mentioning that Nakao and Ohara [6] considered the periodic solutions of (1.5), with the last term replaced by $g(x, u)-f(x, t)$. He showed that these periodic solutions belong to $L^{\infty}\left(\omega, W^{1, \infty}(\Omega)\right)$ and gave a bound of $\|\nabla u(t)\|_{\infty}$ under certain geometric conditions on $\partial \Omega$.

Here we show that the blow up can be obtained even for vanishing energy. More precisely, we will get a blow up under the condition

$$
\begin{equation*}
\frac{1}{m} \int_{\Omega}\left|\nabla u_{0}(x)\right|^{m} d x-\int_{\Omega} F\left(u_{0}(x)\right) d x \leqslant 0 \tag{1.6}
\end{equation*}
$$

To make this paper self-contained we state, without proof, the local existence result of [2].

Proposition. Let f be in $C(\mathbb{R})$ satisfying

$$
\begin{equation*}
|f(u)| \leqslant g(u) \tag{1.7}
\end{equation*}
$$

for g a C^{1} function. Then for any $u_{0} \in L^{\infty}(\Omega) \cap H_{0}^{m}(\Omega)$, the problem (1.1) has a solution

$$
\begin{align*}
& u \in L^{\infty}(\Omega \times(0, T)) \cap L^{m}\left((0, T) ; H_{0}^{m}(\Omega)\right), \\
& u_{t} \in L^{2}(\Omega \times(0, T)) . \tag{1.8}
\end{align*}
$$

2. Blow up

In this section we state and prove our main result.
Theorem. Let f be in $C(\mathbb{R})$ satisfying (1.7) and

$$
\begin{equation*}
p F(u) \leqslant u f(u), \quad p>m>2 . \tag{2.1}
\end{equation*}
$$

Then for any nonzero $u_{0} \in L^{\infty}(\Omega) \cap H_{0}^{m}(\Omega)$ satisfying (1.6), the solution (1.8) blows up in finite time.

Remark. An example of a function f satisfying (2.1) is $f(s)=|s|^{p-2} s$, for $p>m>2$. This shows that, in a sense, the source has to dominate the m Laplacian term.

Proof. We define

$$
H(t)=\int_{\Omega} F(u(x, t)) d x-\frac{1}{m} \int_{\Omega}|\nabla u(x, t)|^{m} d x
$$

By using (1.1), we easily arrive at

$$
H^{\prime}(t)=\int_{\Omega} u_{t}^{2}(x, t) d x \geqslant 0
$$

hence $H(t) \geqslant H(0) \geqslant 0$, by virtue of (1.6). We then set

$$
L(t)=\frac{1}{2} \int_{\Omega} u^{2}(x, t) d x
$$

and differentiate L to get

$$
L^{\prime}(t)=\int_{\Omega} u u_{t}(x, t) d x \geqslant \int_{\Omega} u\left[\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)+f(u)\right](x, t) d x
$$

$$
\begin{align*}
& \geqslant p H(t)+\left(\frac{p}{m}-1\right) \int_{\Omega}|\nabla u|^{m}(x, t) d x \\
& \geqslant\left(\frac{p}{m}-1\right)\left[H(t)+\|\nabla u\|_{m}^{m}\right] \geqslant 0 . \tag{2.2}
\end{align*}
$$

Next we estimate $L^{m / 2}(t)$:

$$
L^{m / 2}(t) \leqslant C\|u\|_{m}^{m} \leqslant C\|\nabla u\|_{m}^{m},
$$

by Poincare's inequality and the embedding of the L^{q} spaces. Here C is a constant depending on Ω and m only. Therefore we have

$$
\begin{equation*}
L^{m / 2}(t) \leqslant C\left[H(t)+\|\nabla u\|_{m}^{m}\right] . \tag{2.3}
\end{equation*}
$$

By combining (2.2) and (2.3) we have

$$
\begin{equation*}
L^{\prime}(t) \geqslant \gamma L^{m / 2}(t) \tag{2.4}
\end{equation*}
$$

where $\gamma=(p-m) / C m$. A direct integration of (2.4) then yields

$$
L^{m / 2-1}(t) \geqslant \frac{1}{L^{1-m / 2}(0)-\gamma t}
$$

Therefore L blows up in a time $t^{*} \leqslant 1 / \gamma L^{(m / 2)-1}(0)$.
Corollary. If there exists $t_{0} \geqslant 0$, for which

$$
\frac{1}{m} \int_{\Omega}\left|\nabla u\left(x, t_{0}\right)\right|^{m} d x-\int_{\Omega} F\left(u\left(x, t_{0}\right)\right) d x=0
$$

then the solution (1.8) either remains equal to zero for all time $t \geqslant t_{0}$ or blows up in finite time $t^{*}>t_{0}$.

Acknowledgment

The author would like to express his sincere thanks to KFUPM for its support.

References

[1] D. Erdem, Blow-up of solutions to quasilinear parabolic equations, Appl. Math. Lett. 12 (1999) 65-69.
[2] Z. Junning, Existence and nonexistence of solutions for $u_{t}=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+f(\nabla u, u, x, t)$, J. Math. Anal. Appl. 172 (1993) 130-146.
[3] H. Levine, S. Park, J. Serrin, Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type, J. Differential Equations 142 (1998) 212-229.
[4] M. Nakao, Y. Ohara, Gradient estimates for a quasilinear parabolic equation of the mean curvature type, J. Math. Soc. Japan 48 (1996) 455-466.
[5] M. Nakao, C. Chen, Global existence and gradient estimates for the quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term, J. Differential Equations 162 (2000) 224250.
[6] M. Nakao, Y. Ohara, Gradient estimates of periodic solutions for quasilinear parabolic equations, J. Math. Anal. Appl. 204 (1996) 868-883.

[^0]: E-mail address: messaoud@kfupm.edu.sa.

