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ABSTRACT

In this paper we consider the viscoelastic equation

utt −∆u +

∫ t

0

g(t− τ)∆u(τ)dτ = 0,

in a bounded domain. We show that the damping caused by the
integral term is strong enough to control and stabilise the solution.
Precisely, we establish an exponential decay result.

1. INTRODUCTION

In [1], Cavalcantiet al. studied
utt −∆u +

t∫
0

g(t− τ)∆u(τ)dτ

+a(x)ut + |u|γu = 0, in Ω× (0,∞)
u(x, t) = 0, x ∈ ∂Ω , t ≥ 0
u(x, 0) = u0(x), ut(x, 0) = u1(x),

(1)

whereΩ is a bounded domain ofIRn (n ≥ 1) with a smooth
boundary∂Ω, γ > 0, g is a positive function, anda : Ω → IR+ is
a function, which may be null on a part ofΩ. Under the condition
thata(x) ≥ a0 > 0 on ω ⊂ Ω, with ω satisfying some geometry
restrictions and

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), t ≥ 0,

such that||g||L1((0,∞)) is small enough, the authors obtained an
exponential rate of decay. This work extended the result of Zuazua
[2], in which he considered (1) withg = 0 and the linear damping
is localized. Berrimi and Messaoudi [3] improved Cavalcanti’s
result by introducing a different functional, which allows them to
weaken the conditions on botha andg. In particular, the functiona
can vanish on the whole domainΩ and consequently the geometry
condition has disappeared. In [4], Cavalcantiet alconsidered

utt − k0∆u +
t∫
0

div[a(x)g(t− τ)∇u(τ)]dτ

+b(x)h(ut) + f(u) = 0, in Ω× (0,∞),

under similar conditions on the relaxation functiong anda(x) +
b(x) ≥ δ > 0, for all x ∈ Ω. They improved the result in [1] by
establishing exponential stability forg decaying exponentially and
h linear and polynomial stability forg decaying polynomially and
h nonlinear. Their proof, based on the use of piecewise multipliers,
is similar to the one in [1]. Though both results in [3] and [4]
improve the earlier one in [1], the approaches are different Another

problem, where the damping induced by the viscosity is acting
on the domain and a part of the boundary, was also discussed by
Cavalcantiet al [5] and existence and uniform decay rate results
were established. In the same direction, Cavalcantiet al [6] have
also studied, in a bounded domain, the following equation

|ut|ρutt −∆u−∆utt +
∫ t

0
g(t− τ)∆u(τ)dτ

−γ∆ut = 0, x ∈ Ω, t > 0,

ρ > 0, and proved a global existence result forγ ≥ 0 and an ex-
ponential decay forγ > 0. This last result has been extended to a
situation, where a source term is competing with the strong mecha-
nism damping and the one induced by the viscosity, by Messaoudi
and Tatar [7]. In their work, Messaoudi and Tatar combined the
well depth method with the perturbation techniques to show that
solution with positive, but small, energy exist globally and decay
to the rest exponentially. Also, Messaoudi [8] considered

utt −∆u +
t∫
0

g(t− τ)∆u(τ)dτ

+aut|ut|m = b|u|γu, in Ω× (0,∞)

and showed, under suitable conditions ong, that solutions with
negative energy blow up in finite time ifγ > m and continue to
exist ifm ≥ γ.We also should mention the work of Kavashima and
Shibata [9], in which a global existence and exponential stability
of small solutions to a nonlinear viscoelastic problem has been
established.

In the present work, we are concerned with
utt −∆u +

t∫
0

g(t− τ)∆u(τ)dτ = 0,

u(x, t) = 0, x ∈ ∂Ω
u(x, 0) = u0(x), ut(x, 0) = u1(x),

(2)

(x, t) ∈ Ω × (0,∞). We will show that the damping caused by
the integral term is enough to obtain an exponential decay result
under weaker conditions on the relaxation functiong. Our choice
of the ’Lyaponov’ functional made our proof easier than the one in
[1] and [4].

2. PRELIMINARIES

In this section, we present the conditions on the control functiong
and state, without proof, a global existence result, which may be
proved by repeating the argument of [1]. So we assume
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g : IR+ → IR+ is a boundedC1 function such that

g(0) > 0, 1−
∞∫
0

g(s)ds = l > 0,

g′(t) ≤ −ξg(t), t ≥ 0, (3)

for a positive constantξ.
Proposition 2.1Let (u0, u1) ∈ H1

0 (Ω) × L2 (Ω) be given. As-

sume thatg satisfies1−
∞∫
0

g(s)ds = l > 0. Then problem(2) has

a unique global solution

u ∈ C
(
[0, ∞) ; H1

0 (Ω)
)

ut ∈ C
(
[0, ∞) ; L2 (Ω)

)
. (4)

Next, we introduce

E(t) : =
1

2

1−
t∫

0

g(s)ds

 ||∇u(t)||22

+
1

2
||ut||22 +

1

2
(g ◦ ∇u)(t), (5)

where

(g ◦ v)(t) =

t∫
0

g(t− τ)||v(t)− v(τ)||22dτ. (6)

3. EXPONENTIAL DECAY

In this section, we state and prove our main result. We start with
the following
Lemma 3.1The ”modified” energy satisfies

E ′(t) =
1

2
(g′ ◦ ∇u)(t) (7)

−1

2
g(t)||∇u(t)||2 ≤ 1

2
(g′ ◦ ∇u)(t) ≤ 0.

For the proof of this lemma, see [1] or [8] for instance.
Theorem 3.2 Let (u0, u1) ∈ H1

0 (Ω) × L2 (Ω) be given. As-
sume thatg satisfies(3). Then for anyt0 > 0 there exist positive
constantsk andK such that the solution given by(4) satisfies

E(t) ≤ Ke−kt, ∀t ≥ t0 > 0. (8)

Proof We define

F (t) := E(t) + ε1Ψ(t) + ε2χ(t) (9)

whereε1 andε2 are positive constants to be specified later and

Ψ(t) : =

∫
Ω

uutdx,

χ(t) : = −
∫
Ω

ut

t∫
0

g(t− τ)(u(t)− u(τ))dτdx.

It is straightforward to see that forε1 andε2 so small, we have

α1F (t) ≤ E(t) ≤ α2F (t), (10)

holds for two positive constantsα1 andα2.
By using equation (2), we easily see that

Ψ′(t) =
∫
Ω

(uutt + u2
t )dx =

∫
Ω

u2
t dx−

∫
Ω

|∇u|2dx

+
∫
Ω

∇u(t).
t∫
0

g(t− τ)∇u(τ)dτdx
(11)

We now estimate the third term in the right-hand side of (11) as
follow ∫

Ω

∇u(t).
t∫
0

g(t− τ)∇u(τ)dτdx

≤ 1
2

∫
Ω

|∇u(t)|2dx 1
2

∫
Ω

[
t∫
0

g(t− τ)×

(|∇u(τ)−∇u(t)|+ |∇u(t)|)dτ ]2dx

(12)

We then use Cauchy-Schwarz inequality, Young’s inequality, and
the fact that

t∫
0

g(τ)dτ ≤
∞∫
0

g(τ)dτ = 1− l,

to obtain, for anyη > 0,

∫
Ω

[
t∫
0

g(t− τ)(|∇u(τ)−∇u(t)|+ |∇u(t)|)dτ ]2dx

≤
∫
Ω

[
t∫
0

g(t− τ)(|∇u(τ)−∇u(t)|dτ ]2dx

+
∫
Ω

[
t∫
0

g(t− τ)|∇u(t)|dτ ]2dx

+2
∫
Ω

[
t∫
0

g(t− τ)(|∇u(τ)−∇u(t)|dτ ]×

[
t∫
0

g(t− τ)|∇u(t)|dτ ]dx

≤ (1 + η)
∫
Ω

[
t∫
0

g(t− τ)|∇u(t)|dτ ]2dx+

(1 + 1
η
)
∫
Ω

[
t∫
0

g(t− τ)(|∇u(τ)−∇u(t)|dτ ]2dx

≤ (1 + η)(1− l)2
∫
Ω

|∇u(t)|2dx

+(1 + 1
η
)(1− l)(g ◦ ∇u)(t)

(13)

By combining (11) - (13), we have

Ψ′(t) ≤
∫
Ω

u2
t dx + 1

2
(1 + 1

η
)(1− l)×

(g ◦ ∇u)(t)− 1
2
{1− (1 + η)

×(1− l)2}
∫
Ω

|∇u(t)|2dx
(14)

By choosingη = l/(1− l), (14) becomes

Ψ′(t) ≤
∫
Ω

u2
t dx− l

2

∫
Ω

|∇u|2dx (15)

+
(1− l)

2l
(g ◦ ∇u)(t)
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Next we estimate

χ′(t) = −
∫
Ω

utt

t∫
0

g(t− τ)(u(t)− u(τ))dτdx

−
∫
Ω

ut

t∫
0

g′(t− τ)(u(t)− u(τ))dτdx

−(
t∫
0

g(s)ds)
∫
Ω

u2
t dx =

∫
Ω

∇u(t)×

(
t∫
0

g(t− τ)(∇u(t)−∇u(τ))dτ)dx

−
∫
Ω

(
t∫
0

g(t− τ)∇u(τ)dτ)×

(
t∫
0

g(t− τ)(∇u(t)−∇u(τ))dτ)dx

−
∫
Ω

ut

t∫
0

g′(t− τ)(u(t)− u(τ))dτdx

−(
t∫
0

g(s)ds)
∫
Ω

u2
t dx

(16)

In a similar way, we estimate the right-hand side terms of (16). So
for δ > 0, we have :
The first term∫

Ω

∇u(t).

 t∫
0

g(t− τ)(∇u(t)−∇u(τ))dτ

 dx

≤ δ

∫
Ω

|∇u|2dx +
(1− l)

4δ
(g ◦ ∇u)(t). (17)

The second term

−
∫
Ω

(
t∫
0

g(t− s)∇u(s)ds)×

(
t∫
0

g(t− s) (∇u(t)−∇u(s)) ds)dx

≤ δ
∫
Ω

∣∣∣∣ t∫
0

g(t− s)∇u(s)ds

∣∣∣∣2 dx

+ 1
4δ

∫
Ω

∣∣∣∣ t∫
0

g(t− s) (∇u(t)−∇u(s)) ds

∣∣∣∣2 dx

≤ δ
∫
Ω

[
t∫
0

g(t− s)(|∇u(t)−∇u(s)|

+ |∇u(t)|)ds]2dx + (1−l)
4δ

(g ◦ ∇u)(t)

≤ 2δ
∫
Ω

[
t∫
0

g(t− s) |∇u(t)−∇u(s)| ds]2dx

+2δ
∫
Ω

[
t∫
0

g(t− s)∇u(t)ds]2dx

+ (1−l)
4δ

(g ◦ ∇u)(t) ≤ +2δ(1− l)2
∫
Ω

|∇u|2 dx

(2δ + 1
4δ

)(1− l)(g ◦ ∇u)(t)

(18)

The third term

−
∫
Ω

ut

t∫
0

g′(t− τ)(u(t)− u(τ))dτdx

≤ δ
∫
Ω

|ut|2 dx + 1
4δ

(
t∫
0

−g
′
(t− s)ds)×∫

Ω

t∫
0

−g
′
(t− s) |u(t)− u(s)|2 dsdx

≤ δ
∫
Ω

|ut|2 dx + g(0)
4δ

Cp

∫
Ω

t∫
0

−g
′
(t− s)×

|∇u(t)−∇u(s)|2 dsdx,

(19)

whereCp is the embedding constant. A combination of (16) - (19)
then yields

χ′(t) ≤ δ{1 + 2(1− l)2}||∇u||22
+{2δ + 1

2δ
}(1− l)(g ◦ ∇u)(t)

+ g(0)
4δ

Cp(−(g′ ◦ ∇u)(t))

+{δ −
t∫
0

g(s)ds}
∫
Ω

u2
t dx,

(20)

Sinceg(0) > 0 then there existst0 > 0 such that

t∫
0

g(s)ds ≥
t0∫

0

g(s)ds = g0 > 0, (21)

∀t ≥ t0. By using (7), (9), (3.9), (20) and (21) we obtain

F ′(t) ≤ −[ε2{g0 − δ} − ε1]
∫
Ω

u2
t dx

−[ ε1l
2
− ε2δ{1 + 2(1− l)2}]||∇u||22

+
{

1
2
− ε1(1−l)

2ξl
− ε2{ g(0)

4δ
Cp+

+ (1−l)
ξ

(2δ + 1
2δ

)}
}

(g′ ◦ ∇u)(t).

(22)

At this point we chooseδ so small that

g0 − δ >
1

2
g0,

1

l
δ{1 + 2(1− l)2} <

1

8
g0.

Whenceδ is fixed, the choice of any two positive constantsε1 and
ε2 satisfying

1

4
g0ε2 < ε1 <

1

2
g0ε2 (23)

will make

k1 = ε2{g0 − δ} − ε1 > 0,

k2 =
ε1l

2
− ε2δ{1 + 2(1− l)2} > 0.

We then pickε1 andε2 so small that (10) and (23) remain valid
and

1
2
− ε1(1−l)

2ξl
− ε2{ g(0)

4δ
Cp+

(1−l)
ξ

(2δ + 1
2δ

)} > 0
(24)

Therefore (24) becomes

F ′(t) ≤ −βE(t) ≤ −βα1F (t),∀t ≥ t0. (25)

by virtue of (10). A simple integration of (25) leads to

F (t) ≤ F (t0)e
βα1t0e−βα1t, ∀t ≥ t0. (26)

Again by(10), estimate (26) yields

E(t) ≤ α2F (t0)e
βα1t0e−βα1t, ∀t ≥ t0. (27)

This completes the proof.
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