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Abstract

In this note we generalize Scott’s result and give a way how to factorize
separable-variable functions.

1 Introduction

Scott [2] in 1985 gave a necessary and sufficient condition for a two-variable function
to be of separable variables. His result, of course, is very important; especially in
the area of differential equations. In this work we generalize Scott’s result to multi-
variable functions (n ≥ 2) and give a way how to factorize such separable variable
functions. To make this note self contained we state the theorem by Scott. For the
proof we refer the reader to [1] and [2].
Proposition

1) Suppose that f is a separable variable function on a domain D of IR2; that is
f(x, y) = φ(x)ψ(y). If φ and ψ are differentiable then

f
∂2f

∂x∂y
=

∂f

∂x

∂f

∂y
(1.1)

2) Suppose that f, ∂f/∂x, ∂f/∂y, and ∂2f/∂x∂y exist and are continuous on a
domain D. If f 6= 0 and (1.1) holds then f is a separable variable function.
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2 Main Result.

In this section we state and prove our main result. We first begin with the
following
Lemma

Suppose that f, ∂f/∂xi, and ∂2f/∂xi∂xn, ∀i = 1, 2, ..., n, exist and are continuous
on a domain D of IRn (n ≥ 2). If f is never zero on D and

f
∂2f

∂xi∂xn

=
∂f

∂xi

∂f

∂xn

, i = 1, 2..., n− 1 (2.1)

then there exist functions φ and g such that

f(x1, ..., xn) = φ(xn)g(x1, ..., xn−1) (2.2)

Proof. We prove this lemma by induction. For n = 2, the result is trivial by Scott’s
theorem.

Suppose that (2.2) holds for n − 1. To establish it for n, we first note that by
virtue of (2.1) we have

∂

∂xn

[
∂f/∂xn−1

f

]
=

f∂2f/∂xn−1∂xn − ∂f/∂xn−1∂f/∂xn

f 2
= 0.

So by integrating with respect to xn, we get

∂f/∂xn−1

f
= q(x1,..., xn−2, xn−1).

Again an integration with respect to xn−1, leads to

ln |f(x1, ..., xn)| =
∫

q(x1,..., xn−2, xn−1)dxn−1 + r(x1, ..., xn−2, xn);

hence we have

f(x1, ..., xn) = Q(x1,..., xn−2, xn−1)R(x1, ..., xn−2, xn).

By taking derivatives with respect to xi, i 6= n− 1, we obtain

∂f

∂xn

= Q
∂R

∂xn

,
∂f

∂xi

= Q
∂R

∂xi

+ R
∂Q

∂xi

, ∀i = 1, ..., n− 2.

∂2f

∂xi∂xn

= Q
∂2R

∂xi∂xn

+
∂Q

∂xi

∂R

∂xn

, ∀i = 1, ..., n− 2.

By sustituting in (2.1), we get

R
∂2R

∂xi∂xn

=
∂R

∂xi

∂R

∂xn

, ∀i = 1, 2..., n− 2. (2.3)
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Since R is a (n− 1)-variable function, which never vanishes on D and satisfies (2.3)
then there exist functions φ and S such that

R(x1, ..., xn−2, xn) = φ(xn)S(x1, ..., xn−2).

Consequently

f(x1, ..., xn) = Q(x1,..., xn−2, xn−1)φ(xn)S(x1, ..., xn−2)
= φ(xn)g(x1, ..., xn−1).

(2.4)

Theorem 1 .
Let f be such that f, ∂f/∂xi, and ∂2f/∂xi∂xj, ∀i, j = 1, 2, ..., n, i 6= j, exist and

are continuous on a domain D of IRn (n ≥ 2). If f is never zero on D and

f
∂2f

∂xi∂xj

=
∂f

∂xi

∂f

∂xj

, i, j = 1, 2..., n, i 6= j (2.5)

then there exist differentiable functions φ1, ..., φn such that

f(x1, ..., xn) = φ1(x1)φ2(x2)...φn(xn). (2.6)

Proof. We prove this theorem by induction. For n = 2, the result is trivial by Scott’s
theorem.

Suppose that (2.6) holds for n− 1. To prove it for n, we first note that

f(x1, ..., xn) = φn(xn)g(x1, ..., xn−1),

by virtue of the lemma. As a consequence we have

∂2f

∂xi∂xj

=
∂2g

∂xi∂xj

φn(xn), i, j = 1, 2..., n− 1, i 6= j.

Therefore a substitution in (2.5) yields

g
∂2g

∂xi∂xj

=
∂g

∂xi

∂g

∂xj

, i, j = 1, 2..., n− 1, i 6= j. (2.7)

Since g is a (n − 1)-variable function, which never vanishes on D and sataifies (2.7)
then there exist functions φ1, ..., φn−1 such that g(x1, ..., xn−1) = φ1(x1)...φn−1(xn−1),
which implies (2.6).
Remark 1. It is easy to see that any separable-variable function satisfies (2.5)
provided that the relevant partial derivatives exist and are continuous.
Theorem 2.

Let f be a separable variable function satisfying f(ξ) = 1, for some point ξ in the
domain D. Then f(x) = φ1(x1)φ2(x2)...φn(xn), where

φi(xi) = f(ξ1, ..., ξi−1, xi, ξi+1, ..., ξn)
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Proof.
Since f(ξ) = 1 we can take φi(ξi) = 1, ∀i = 1, ..., n.

Therefore

f(ξ1, ..., ξi−1, xi, ξi+1, ..., ξn) = φ1(ξ1)...φi−1(ξi−1)φi(xi)φi+1(ξi+1)...φn(ξn) = φi(xi).

Remark 2. It is clear that the condition f(ξ) = 1 can be replaced by f(ξ) 6= 0.
Example Let f(x, y) = [cos(x−y)−cos(x+y)]/2. It is easy to verify that f satisfies
(2.5), for n = 2 and f(π/2, π/2) = 1. Therefore

φ(x) = f(x, π/2) = [cos(x−π/2)− cos(x + π/2)]/2 = [sin(x) + sin(x)]/2 = sin(x)
ψ(y) = f(π/2, y) = [cos(π/2− y)− cos(π/2 + y)]/2 = [sin(y) + sin(y)]/2 = sin(y)

By using the trigonometric identities, we easily see that φ and ψ are the right factors
of f .
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