# On separable-variable functions

Salim A. Messaoudi Mathematical Sciences Department KFUPM, Dhahran 31261 Saudi Arabia.

Email: messaoud@kfupm.edu.sa

#### Abstract

In this note we generalize Scott's result and give a way how to factorize separable-variable functions.

# 1 Introduction

Scott [2] in 1985 gave a necessary and sufficient condition for a two-variable function to be of separable variables. His result, of course, is very important; especially in the area of differential equations. In this work we generalize Scott's result to multi-variable functions ( $n \ge 2$ ) and give a way how to factorize such separable variable functions. To make this note self contained we state the theorem by Scott. For the proof we refer the reader to [1] and [2].

## Proposition

1) Suppose that f is a separable variable function on a domain D of  $\mathbb{R}^2$ ; that is  $f(x,y) = \phi(x)\psi(y)$ . If  $\phi$  and  $\psi$  are differentiable then

$$f\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \tag{1.1}$$

2) Suppose that f,  $\partial f/\partial x$ ,  $\partial f/\partial y$ , and  $\partial^2 f/\partial x \partial y$  exist and are continuous on a domain D. If  $f \neq 0$  and (1.1) holds then f is a separable variable function.

# 2 Main Result.

In this section we state and prove our main result. We first begin with the following

### Lemma

Suppose that f,  $\partial f/\partial x_i$ , and  $\partial^2 f/\partial x_i \partial x_n$ ,  $\forall i = 1, 2, ..., n$ , exist and are continuous on a domain D of  $\mathbb{R}^n$   $(n \geq 2)$ . If f is never zero on D and

$$f\frac{\partial^2 f}{\partial x_i \partial x_n} = \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_n}, \quad i = 1, 2..., n - 1$$
 (2.1)

then there exist functions  $\phi$  and g such that

$$f(x_1, ..., x_n) = \phi(x_n)g(x_1, ..., x_{n-1})$$
(2.2)

**Proof.** We prove this lemma by induction. For n = 2, the result is trivial by Scott's theorem.

Suppose that (2.2) holds for n-1. To establish it for n, we first note that by virtue of (2.1) we have

$$\frac{\partial}{\partial x_n} \left[ \frac{\partial f/\partial x_{n-1}}{f} \right] = \frac{f \partial^2 f/\partial x_{n-1} \partial x_n - \partial f/\partial x_{n-1} \partial f/\partial x_n}{f^2} = 0.$$

So by integrating with respect to  $x_n$ , we get

$$\frac{\partial f/\partial x_{n-1}}{f} = q(x_{1,...}, x_{n-2}, x_{n-1}).$$

Again an integration with respect to  $x_{n-1}$ , leads to

$$\ln|f(x_1,...,x_n)| = \int q(x_1,...,x_{n-2},x_{n-1})dx_{n-1} + r(x_1,...,x_{n-2},x_n);$$

hence we have

$$f(x_1,...,x_n) = Q(x_1,...,x_{n-2},x_{n-1})R(x_1,...,x_{n-2},x_n).$$

By taking derivatives with respect to  $x_i$ ,  $i \neq n-1$ , we obtain

$$\frac{\partial f}{\partial x_n} = Q \frac{\partial R}{\partial x_n}, \quad \frac{\partial f}{\partial x_i} = Q \frac{\partial R}{\partial x_i} + R \frac{\partial Q}{\partial x_i}, \quad \forall i = 1, ..., n-2.$$

$$\frac{\partial^2 f}{\partial x_i \partial x_n} = Q \frac{\partial^2 R}{\partial x_i \partial x_n} + \frac{\partial Q}{\partial x_i} \frac{\partial R}{\partial x_n}, \quad \forall i = 1, ..., n-2.$$

By sustituting in (2.1), we get

$$R\frac{\partial^2 R}{\partial x_i \partial x_n} = \frac{\partial R}{\partial x_i} \frac{\partial R}{\partial x_n}, \quad \forall i = 1, 2..., n-2.$$
 (2.3)

Since R is a (n-1)-variable function, which never vanishes on D and satisfies (2.3) then there exist functions  $\phi$  and S such that

$$R(x_1,...,x_{n-2},x_n) = \phi(x_n)S(x_1,...,x_{n-2}).$$

Consequently

$$f(x_1, ..., x_n) = Q(x_1, ..., x_{n-2}, x_{n-1})\phi(x_n)S(x_1, ..., x_{n-2})$$
  
=  $\phi(x_n)q(x_1, ..., x_{n-1}).$  (2.4)

### Theorem 1.

Let f be such that f,  $\partial f/\partial x_i$ , and  $\partial^2 f/\partial x_i\partial x_j$ ,  $\forall i, j = 1, 2, ..., n, i \neq j$ , exist and are continuous on a domain D of  $\mathbb{R}^n$   $(n \geq 2)$ . If f is never zero on D and

$$f\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j}, \quad i, j = 1, 2..., n, \quad i \neq j$$
 (2.5)

then there exist differentiable functions  $\phi_1, ..., \phi_n$  such that

$$f(x_1, ..., x_n) = \phi_1(x_1)\phi_2(x_2)...\phi_n(x_n). \tag{2.6}$$

**Proof.** We prove this theorem by induction. For n = 2, the result is trivial by Scott's theorem.

Suppose that (2.6) holds for n-1. To prove it for n, we first note that

$$f(x_1,...,x_n) = \phi_n(x_n)g(x_1,...,x_{n-1}),$$

by virtue of the lemma. As a consequence we have

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 g}{\partial x_i \partial x_j} \phi_n(x_n), \quad i, j = 1, 2..., n - 1, \quad i \neq j.$$

Therefore a substitution in (2.5) yields

$$g\frac{\partial^2 g}{\partial x_i \partial x_j} = \frac{\partial g}{\partial x_i} \frac{\partial g}{\partial x_j}, \quad i, j = 1, 2..., n - 1, \quad i \neq j.$$
 (2.7)

Since g is a (n-1)-variable function, which never vanishes on D and sataifies (2.7) then there exist functions  $\phi_1, ..., \phi_{n-1}$  such that  $g(x_1, ..., x_{n-1}) = \phi_1(x_1)...\phi_{n-1}(x_{n-1})$ , which implies (2.6).

**Remark 1.** It is easy to see that any separable-variable function satisfies (2.5) provided that the relevant partial derivatives exist and are continuous.

#### Theorem 2.

Let f be a separable variable function satisfying  $f(\xi) = 1$ , for some point  $\xi$  in the domain D. Then  $f(x) = \phi_1(x_1)\phi_2(x_2)...\phi_n(x_n)$ , where

$$\phi_i(x_i) = f(\xi_1, ..., \xi_{i-1}, x_i, \xi_{i+1}, ..., \xi_n)$$

### Proof.

Since  $f(\xi) = 1$  we can take  $\phi_i(\xi_i) = 1, \quad \forall i = 1, ..., n$ . Therefore

$$f(\xi_1, ..., \xi_{i-1}, x_i, \xi_{i+1}, ..., \xi_n) = \phi_1(\xi_1)...\phi_{i-1}(\xi_{i-1})\phi_i(x_i)\phi_{i+1}(\xi_{i+1})...\phi_n(\xi_n) = \phi_i(x_i).$$

**Remark 2.** It is clear that the condition  $f(\xi) = 1$  can be replaced by  $f(\xi) \neq 0$ . **Example** Let  $f(x,y) = [\cos(x-y) - \cos(x+y)]/2$ . It is easy to verify that f satisfies (2.5), for n = 2 and  $f(\pi/2, \pi/2) = 1$ . Therefore

$$\phi(x) = f(x,\pi/2) = [\cos(x-\pi/2) - \cos(x+\pi/2)]/2 = [\sin(x) + \sin(x)]/2 = \sin(x)$$
 
$$\psi(y) = f(\pi/2,y) = [\cos(\pi/2-y) - \cos(\pi/2+y)]/2 = [\sin(y) + \sin(y)]/2 = \sin(y)$$
 By using the trigonometric identities, we easily see that  $\phi$  and  $\psi$  are the right factors of  $f$ .

References.

- 1. Derrick W. R. and S. I Grossman, A first course in differential equations,  $3^d$  Edition, West Publishing Company, USA 1987.
- 2. Scott D., When is an ordinary differential equation separable, Ameri. Math. Monthly **92** (1985), 422 423.