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Abstract: We consider the multi-dimensional semilinear wave equation
Uy — Au = —au; + VO(z).Vu — BlulP %,

a,B > 0, associated with initial-boundary conditions. We first prove a local
" existence theorem for arbitrary initial data. We then show that this solution
is global with an energy that decays exponentially to zero.
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1. Introduction

In [15], Pucci and Serrin studied the following problem

uy — Au+ Q(z,t, u,uy) + fz,u) =0, ztefl, t>0,
wlz, =0, z €0, t>0, (1.1)
u(z,0) = ¢(z), uz,0)=¢p(z), z €,

and proved that the energy of the solution is a Lyaponov function. Although,
they did not discuss the issue of the decay rate, they did show that in gen-
eral this energy goes to zero as t approaches infinity. They also considered
an important special case which occurs when Q(z,t,u,u;) = a(t)t*u; and
f(z,u) = V(z)u and showed that the behavior of the solutions depends cru-
sially on the parameter a. If |a| < 1, then the rest field is asymptotically
stable.
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On the other hand, when a@ < —1 or @ > 1, there are solutions that do not
approach zero or they approach nonzero functions ¢(z) as t — cc.

In [14], Nakao studied (1.1) in an abstract setting and established a theorem
concerning the decay of the solution energy. His result shows that the energy
decays exponentially for the linear damping case (Q(z,t,u,u;) = au,) and it
decays in the rate of t=2/"=2 when Q(=,t,u,u) = alu;|™ ?u;, m > 2.

In [7] and also in [16], the linear wave equation associated with a nonlinear
feedback at the boundary has been considered. Precisely, the authors looked
into the following problem

U“—AU:O, C!".:EQ, t>01

2 2,0) = ~m(@) ()g(u), =€ To, >0,
u(z,t) =0, rely, t>0,
u(m,ﬂ) = (}5($), u!(xa 0) = (p(I), T €l

where m(z) = ¢ — 2q, 20 € R",To = {z € 0 : m(z).r(z) > 0}, and
I = 090 \ Ty, with I'; # ¢. They discussed the rate of decay of the energy of
the solution and established, under certain growth conditions on g, a similar
result to [14]. .

In this article, we deal with the energy decay of the solution for the initial
boundary value problem

Uy — Au = —Qau; + V@(x).Vu e ﬁ|u|p_2u, T e 91 1> [].J
uix =10 z € d, t>0, (1.2)
u(a.", 0) = ¢(I)1 ut(xa U) = (P(ﬂ:)a ze Q,

where o and (3. are strictly positive constants, p > 2, ® € W*(Q), and  is
a bounded domain of IR® with a smooth boundary 9.

For ® = 0 and 8 = 0, it is well known that the damping term au, assures
global existence for arbitrary initial data (see [4], [8]). If ® =0, = 0 and
B < 0 then the source term —Bu|u|P~? causes finite time blow up of solutions
with negative initial energy (see [2], [5], [9], [10]). The interaction between
the damping term and the source term has been first considered by Levine [9],
[10]. For ® = 0, @ > 0, and 8 < 0, the author showed that solutions with
negative initial energy blow up in finite time. This result has been extended
to the situation where ® # 0 by Messaoudi [13].

For ® small in L™ norm, (1.2) is a special case of (1.1). However, to
my knowledge, no result concerning the energy decay of this problem has
been discussed for arbitrary ® in W"*(Q2). To accomplish this goal, we use
an argument close to the one presented by Aassila and Guesmia [1]. This
argument is based on a theorem by Komornik [6], which we state as a lemma
without proof. This work is divided into two parts. In part one, we establish
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a local existence theorem. In part two, we show that this local solution is, in
fact, global with energy that decays exponentially to zero.

2. Local Existence

First let us consider, for v given, the linear problem
uy — Au = —au; + V8(z).Vu — Blvff~2v, = E-Q, t>0,
u(z,t) =0, z€e N, t>0, (2.1)
ulz 0 =olz), wlz,0) =), z € Q,
where u is the sought solution.
Lemma 2.1. Assume that ® € W'*(Q) and p > 2 with

p<2n—1

_n—_zs

(2.2)

if n > 3. Then given any v in C ([0, T); C§°(Q)) and ¢, ¢ in C(Q), the

problem (2.1) has a unique solution

w e W ((0, T); HA(Q)N HYQ)), j=0,1,2. (2.3)

This lemma is a direct result of Theorem 3.1, Chapter 1, [12]. It can also
be established by using a classical energy argument (see [4] for instance).

Lemma 2.2. Let the assumptions of Lemma 2.1 hold. Then given any
¢ in Hy(Q), ¢ in L*(Q), and v in C ([0, T]; H)(RY)), the problem (2.1) has a

unique solution

we C ([0, T); HY(Q)nC ([0, T); LX) nC* ([0, T]; H(Q)). (24)

Moreover, we have

t
l/e"”’[uf{— [VulQ](:z:,t]dw-i-/ /eq’{“]u?(x,s)dxds (2.5)
2 Q o Ja

t
= 3/ e®@)[u? 4+ iVugiz](:c]d:c-l-ﬁf /eq'(r)|v|p_2vu;(x,s)dxds,
2 2 0 J0
vt e [0, T].
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Proof. We approximate ¢, ¢ by sequences (¢*), (¢*) C C(9), and v by
a sequence (v*) C C ([0, T]; C(£2)) . We then consider the linear problem

ub — Au* = —aul + V@(z).Vu* — Bt~ z€Q, >0,
u’(z,t) =0, z €00, t>0, (2.6)
ut(z,0) = ¢*(z), up(z,0)= H(x), e

Lemma 2.1 guarantees the existence of a unique solution u* satisfying (23
Now we procced to show that the sequence of solutions (u*) is Cauchy in

W :=C ([0, T}; HX (@) nC* ([0, T}; L*(Q)) , (2.7)

equipped with the norm

olfy = max{ [ 1t + Ve, e, 0 <2 < r}.

Dov bhis Aim, swe et
U:=u¥ —u, Vet —at,

It is straightforward to see that U satisfies

U — AU = —alU; + V8(z). VU — Blv* P~ + Blo*[P*v",
U(z,t)=0, €80, t>0, (2.8)
U(z,0) = Us(z) = ¢(2) — ¢"(2), Ui(x,0) = Us(2) = ¢*(2) — ¢"(2).
We multiply equation (2.8) by e®@)U, and integrate over Q x (0, £) to get

¢
—]‘—fed)(”)[Uf+lVU]z][:r,t)dx+af ‘/c(b(z}Uf(:c,.s)da:ds
2 ') 0 JQ

1

- L SO0 4 (VU [)(2)dz
i
—5/ f-e"(x)[|v“|’J_2v'“ — [v*|P20¥|Us(x, s)dzds.  (2.9)
o Ja
This, in turns, yields

5 [0+ 19UPle, e e [ [ Ulteshdeds < 32 [+ 190 (o)

i
“ﬁf f [[lo#e~2* — [0 P*0"]Us(3, )| dads, (2.10)
a Jo Ja '
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where @ and A satisfy
axelBlaa w0

We then estimate the last term in (2.10) as follows

/ [[lo*[P~20" — |v"]”'2v"]Ut(:.:,s)‘ dz
2

< OOV ooy [ 1152+ 1071272, . (2.0
The Sobolev embedding and condition (2.2) give

”V”2n/(n—2J < CHVV“21 ’!Uﬂ”zaf_zj alz ”’v””:a?_g)

<O [IVe |52 + |97

where C is a constant depending on Q only. Therefore (2.11) takes the form

/ﬂ |[v*P=20* — [v* [P~ 20U, (z, s)| dz
< ClGHLIV VI, [[|7o )22 4+ Vo 1577 5

hence (2.10) becomes
l 2 2 A 2 2
3 ol H IVUPYe 0t < 2 [ (02 4 1902y
2 0 20‘. 0

+T [ 100V ),

where T' is a generic positive constant depending on e,.A, Q, and the radius
of the ball in C ([0, T7; Hy(Q)) containing v* and v~ Young’s inequality then
guarantees

IU]3 < T /ﬂ (U} + 1900 )(2)dz + TT ||V,

Since (¢*) is Cauchy in H;(R), ( ¢*) is Cauchy in L*(9Q), and (v*) is Cauchy
m C ([0, T); H;(9)) , we conclude that that (u*) is Cauchy in W; hence (uf)
1s Cauchy in L2 ((Q) x (o, t)) . Therefore (u*) converges to a limit u in W.. We
now show that this limit u is a weak solution of (2.1) in the sense of [11]. That
is for each 0 in H(), we must show that

. :
3;/;1u;(x,t)l?dx-f-/ﬂVu(x,t).VQ(:c)dm:—a/ﬂut(m,t)ﬂ(x)dx

+ /ﬂ V8 (2).Vu(z, 1)6(z)dz — 3 /ﬂ [oF~2o(z, )8(z)dz, (2.12)
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for each t in [0, T]. To establish this, we multiply equation (2.6) by 8 and
integrate over (1, so we obtain

i/uf{x,t)@d&:: —/Vu”(x,t).Vﬂdm—afui‘(x,t)ﬁ'(a:]d&:
di Q 0 Q

. /ﬂ V&(2).Vu(z, 1)8(z)dz — 8 /ﬂ [0 P20z, )0(z)dz. (2.13)

As pp — oo, we see that each term in the righthand side of (2.13) is in C(]0,
T]). We thus have [, u(z,t)8dz {= lim Jowi(z,t)8dz} is a C! function on
[0, T, so (2.12) holds for each t in [0, T]. For the energy equality (2.5), we
start from the energy equality for u# and proceed in the same way to establish
it for u. To prove uniqueness, we take v; and vy and let u; and uy; be the
corresponding solutions of (2.1). It is clear that U = u; — Uy satisfies

t
lfSQ(I)[UE‘FJVUJQ](mjt}d$+a/ /e'ﬁ(”]Uf{x,s)dxds
2 0 0 Ji
t
= _IB/ /e‘b(‘t)”‘vl lp_z'Ul == Ivg|p_203]U¢(x,s)dxd3 o (2.14)
0 J

If v; = vy, then (2.14) shows that U/ = 0, which implies uniqueness. This
completes the proof.

Remark 2.1. This result, as well as the results below, hold if ® € L=(9)
with V@ defined almost everywhere. In this case the limit u is a weak solution
of (2.6) in the following sense

i[ e°(”)u¢(x,t)9dx+/eﬂ"}Vu(x,t).Vﬂc{z
dt Jo Q

= _a/e"(f)ut(x,z)a(a:)dz—a/e"(f)]vip—?v(z,t)e(z)dx,-
193 o
for each 6 in H}(Q).

Theorem 2.3. Assume that ® € W»*(Q) and p > 2, satisfying (2.2) if
n > 3. Assume further that

€ Hy(Q), pel*Q).
Then (1.2) has a unique solution -

ueC (o, T HY®)NnC' (o, T); L*(®)), (2.15)

T is small enough.
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Proof. For M > 0 large and T > 0, we define a class of functions Z(M,T)
which consists of all functions w in W satisfying the initial conditions of (1.2)
and '

il < M. (2.16)

Z(M,T) is nonempty if M is large enough. This follows from the trace theorem
(see [11]). We also define the map f from Z(M, T) into W by u := f(v), where
u is the unique solution of the linear problem (2.1). We would like to show,
for M sufficiently large and T sufficiently small, that f is a contraction from
Z(M,T) into itself. For this purpose, we use the energy equality (2.5), which
yields

t
/{”tz'l' IVulz](a:,t)d;c-pza/ /uf(z,s)dxds
a o Jo
A 2 2 . A g =
< = | [ui + [Vul’)(z)dz + p= [P~ Jwe|(2, s)dzds, VYt €0, T)
a Jo a Jo Ja

A A [t 2
<7 [+ Vuli)s +602 [dulivols, veep, 71
CJQ 0
This leads to

ity < © [ﬂ [u? + [Vuol?)(z)dz + CMP~T}[ullw,

where C is independant of M. By choosing M large enough and T sufficiently
small, (2.16) is satisfied; hence u € Z(M, T).

Next we verify that f is a contraction. To this end we set U = U] — Uy and
V' = vy — v,, where u; = f(v;) and u; = f(vz). It is straightforward to verify
that U satisfies

Uy — AU = —al; + V®(2).VU — Bjvy P %u; + Blvzlf~%v, ,

U(z,t)=0, z€0f, t>0, (2.17)

U(z,0) = Uy(z,0) =0, z€Q.
By multiplying equation (2.17) by e®®)U, and integrating over 0 x (0, t), we

arrive at

. A7 : . .
ini"? + |VUP)(z,t)dz < _f[ / |01 [P0y — i‘!}glp_z'?.’3| U} (z, s)dzds
Ja aJjo Ja'

Al - oo e s
= f ORIV VIRVl + [[Voal 577)(., 5)ds
0

Thus we have i
1UIRy < =CTM?||V i3y (2.18)
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By choosing T so small that CTM?~2A/a < 1, (2.18) shows that f is a con-
traction. The contraction mapping theorem then guarantees the existence of a
unique u satisfying u = f(u). Obviously it is a solution of (1.2). The unique-
ness of this solution follows from the energy inequality (2.17). The proof is
completed.

Remark 2.2. Lemma 2.2 shows that u, € C ([0, T7; H(Q)).

3. Global Existence and Energy Decay

In this section, we establish a global existence result and show that the energy
of this global solution decays exponentially.

Theorem 3.1. Suppose that the conditions of Theorem 2.3 hold. Then
the solution (2.4) is global; i.e,

u € C ([0, o0); H;(Q)) ncCt ([0, o0); L*(Q)) . (3.1)

Proof. To establish (3.1), it suffices to show that the solution (2.4) remains

bounded, independantly of T, in its space. So we have to prove that there
exists a constant K independant of T' such that

IVl Ol + Nl 1); < K, Ve>o0. (3.2)

This is too trivial in our case. We only multiply equation (1.2) by e®®)y, and
integrate over ) x (0, ¢) to obtain

l]‘e"ﬁ'(“”)[mf+ IVu|2](a:,t)dx+E/eﬂxnu(a:,t)]p
Q P Ja

2
1
+o:/ /6¢(r)|Ug($,3)|2dIdS
o Ja
= 1/ e°(3)[uf+ [Vuu|2](x,t)d:c+ —ﬁ-/ e‘b(r)luo(x,t”p, Vi=0:
Q PJa

o

which yields

/[uf + |Vul?(z, t)dz
JQ

<2 ([0 +190fi(e, e + 2 [ lu@or) =5 veso

Therefore (3.2) is established.
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To prove the decay result, we make use of a theorem by Komornik [6],
which we state as a lemma without proof.

Lemma 3.2. Let E : Rt — R* be a nonincreasing function such that
there exists a constant v, for which

f ” B(t)dt < 1E(S), VS € R*. (3.3)
S {

Then :
E(t) < E(0)e*", ¥t > 0. (3.4)

Next we define an ’equivalent’ energy of the solution
2
B(#) = [ SO +1VuPl(o, o+ 2 [ Fule, s (39)
Q Q

A straightforward calculations show that a multiplication of equation (1.2) by
e®@)y, and integration over {) leads to

E'(t) = —2¢ l; e*@ul(z,t)dz, (3.6)

for any regular solution of (1.2). This identity remains valid for solutions (3.1)
by a simple density argument. Therefore E is a nonincreasing function.

Theorem 3.3. Under the conditions Theorem 2.3, the solution (3.1) sat-
isfies

E(t) < E(0)e*", Vt>0,. (3.7
where
e 3.8
g=ld=t—s (3.8)

Here C is a constant depending on ) only and A and a are the upper and
lower bounds of ().

Proof. We multiply equation (1.2) by e?®)u and integrate over ) to get

—/eq)(x)uf(x,t)dr+/ eq’(”][Vu(x,t)|2dx+ﬂ/ c‘ﬁ(z}[u(x,tni’dx
iR Q L

d
5

i c‘b(’;)uut(z)t)dx:—Cv'/eé(x}uu;(ﬂ:,t)dﬂf, (39) .
di o Q z

for any regular solution of (1.2). Again this identity remains valid for solutions
(3.1) by a simple density argument. By combining (3.5) and (3.9), we arrive
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at

ad . d = .
E(t) < haafne‘” }uz(x,t)d:t:—a]s;ed’( )uut(z,t)da:-i-Q/ﬂeﬂ Jut(z,t)dz

2 1
-80-2) [ SOua typas,

P Jo

which gives, by (3.6) and the condition p > 2,

ad d 1
E Al i e, ‘b(:l;‘) 2 B Q(z} $ ) . I
() < 5 ﬂ.‘3 u*(z,t)dz 5 /;le uuy(z,t)dz aE ). (3.10)
We then integrate (3.10) over (S, T') to obtain

T
[ E(t)dt < E/ e*@u?(z, §)dx — E/ eq(m)uz(z,T]dx
s 2 Jq 2 Jo
4 / e®Cuuy(z, $)dz — [ e‘l'(”)uut(:r:,T)da:-l-g(E(S) — E(T))
Q Q a
2
= E[ eq’[”}uz(:v,S)da:—l— —E(S)+ / eq’(z)uut(x,.g)dx
2 Ja a Q

- f @y, (z,T)dz, 0<S<T<oo. (3.11)
0 ;

We now estimate the righthand side of (3.11). By using Poincare’s inequality"

we get

/eﬂx)uz(z,js)dxg A/ug(:r,S)dx < AC / \Vu(z, S)[*dz
Q Q 4

AC

< b

2| Vu(z, 8)dz < 2C B(S). (3.12)
a Ja a

Also by using, Schwarz inequality we have

| 1 H ¢ 9
|fe¢{x}uu:(x,t)dz = —j[ Az, )ds + + [ (e, t)da
Q Q =

2 <Ja
1 AC 1 AC
= silhsl B Sl S HE(8) S <t < T (3.13)

Therefore by combining (3.11) - (3.13), we arrive at
T
/ E(t)dt <vE(S), VS<T.
s

where v is defined in (3.8). By letting T go to infinity, (3.3) is verified; hence
(3.7) follows and the proof of the theorem is completed.
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