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Blow-up of Solutions of a Semilinear
Heat Equation with a Visco-elastic Term
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Abstract. In this work we consider an initial boundary value problem related
to the equation

ut − ∆u +

∫ t

0

g(t − s)∆u(x, s)ds = |u|p−2u

and prove, under suitable conditions on g and p, a blow-up result for solutions
with negative or vanishing initial energy. This result improves an earlier one
by the author.
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1. Introduction

In this work we study the finite-time blow-up of solutions for the following initial
boundary value problem

ut − ∆u +
∫ t

0

g(t − s)∆u(x, s)ds = |u|p−2u, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where g : R+ → R+ is a bounded C1 function, p > 2, and Ω is a bounded domain
of IRn (n ≥ 1), with a smooth boundary ∂Ω.

This type of equations arises from a variety of mathematical models in
engineering and physical sciences. For example, in the study of heat conduction in
materials with memory, the classical Fourier’s law of heat flux is replaced by the
following form

q = −d∇u −
∫ t

−∞
∇ [k(x, t)u(x, τ)] dτ, (1.2)
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where u is the temperature, d the diffusion coefficient and the integral term rep-
resents the memory effect in the material. The study of this type of equations
has drawn a considerable attention see [3], [4], [12] , [14] [15]. From a mathematical
point of view, one would expect the integral term to be dominated by the leading
term in the equation. Therefore, the theory of parabolic equations applies to this
type of equations.

In the absence of the memory term (g = 0) problem (1.1) has been studied
by various authors and several results concerning global and nonglobal existence
have been established. For instance, in the early 1970’s Levine [8] introduced the
concavity method and showed that solutions with negative energy blow up in finite
time. Later, this method was improved by Kalantarov and Ladyzhenskaya [7] to
accommodate more general situations. Ball [2] also studied (1.1) with f(u,∇u)
instead of |u|p−2u and established a nonglobal existence result in bounded domains.
This result had been extended to unbounded domains by Alfonsi and Weissler [1].

For the quasilinear case, Junning [6] studied

ut − div(|∇u|m−2∇u) = f(u), x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω t ≥ 0

u(x, 0) = u0(x), x ∈ Ω,

(1.3)

and established a global existence result. He also proved a nonglobal existence
result under the condition

1
m

∫
Ω

|∇u0(x)|mdx −
∫

Ω

F (u0(x))dx ≤ − 4(m − 1)
mT (m− 2)2

∫
Ω

u2
0(x)dx (1.4)

where F (u) =
∫ u

0 f(s)ds. More precisely he showed that if there exists T > 0,
for which (1.4) holds then the solution blows up in a time less than T. This type
of results have been extensively generalized and improved by Levine, Park, and
Serrin in a paper [9], where the authors proved some global, as well as nonglobal,
existence theorems. Their result, when applied to problem (1.3), requires that

1
m

∫
Ω

|∇u0(x)|mdx −
∫

Ω

F (u0(x))dx < 0. (1.5)

We note that the inequality (1.5) implies (1.4). In a note, Messaoudi [10] extended
the blow-up result to solution with initial datum satisfying

1
m

∫
Ω

|∇u0(x)|mdx −
∫

Ω

F (u0(x))dx ≤ 0. (1.6)

In the present work, we consider (1.1) and prove, for suitable conditions on
p and g, a blow-up result for solutions with negative or vanishing initial energy.
This result improves an earlier one in [10].
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2. Blow-up

In order to state and prove our result we introduce the “modified” energy func-
tional

E(t) =
1
2
(g � ∇u)(t) +

1
2
(1 −

∫ t

0

g(s)ds) ‖∇u(t)‖2
2 −

1
p
‖u(t)‖p

p (2.1)

where

(g � v)(t) =
∫ t

0

g(t − τ) ‖v(t) − v(τ)‖2
2 dτ. (2.2)

For the relaxation function g and p, we assume that

g(s) ≥ 0, g′(s) ≤ 0, 1 −
∫ ∞

0

g(s)ds = l > 0 (2.3)

and

2 < p ≤ 2(n − 1)
n − 2

, n > 2, p > 2, n = 1, 2. (2.4)

By multiplying the equation in (1.1) by ut, integrating over Ω we get, after some
manipulations, see [11],

d

dt
E(t) = −

(
1
2
g(t) ‖∇u(t)‖2

2 −
1
2
(g

′ � ∇u)(t) +
∫

Ω

|ut|2 utdx

)
≤ 0, (2.5)

for regular solutions. The same result can be established, for weaker solutions and
for almost every t, by a simple density argument.

Similarly to [13], we give a definition for a strong solution of (1.1).

Definition: A strong solution of (1.1) is a function u ∈ C([0, T ); H1
0 (Ω))∩C1([0, T );

L2(Ω)), satisfying (2.5) and
∫ t

0

∫
Ω

(
∇u.∇φ −

∫ s

0

∇u(τ).∇φ(s)dτ + utφ − |u|p−2
uφ

)
dxds = 0,

for all t in [0, T ) and all φ in C([0, T ), H1
0 (Ω)).

Remark 2.1: Condition (2.4) is needed so that |u|p−2u ∈ L2(Ω); hence∫
Ω
|u|p−2

uφdx makes sense. Condition 1 − ∫ ∞
0

g(s)ds = l > 0 is necessary to
guarantee the parabolicity of the system (1.1).

Theorem. Assume that (2.3) and (2.4) hold. Given u0 ∈ H1
0 (Ω) satisfying

E (0) ≤ 0. If ∫ ∞

0

g(s)ds <
p − 2

p − 3/2
(2.6)

then any strong solution of (1.1) blows up in finite time.

Proof. We define

L(t) =
1
2

∫
Ω

u2(x, t)dx
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and differentiate with respect to t to get

L′(t) =
∫

Ω

uut(x, t)dx

=
∫

Ω

u∆udx −
∫

Ω

u(x, t)
∫ t

0

g(t − s)∆u(x, s)dsdx +
∫

Ω

|u|pdx

= −
∫

Ω

|∇u|2dx +
∫

Ω

∫ t

0

g(t − s)∇u(x, t).∇u(x, s)dsdx +
∫

Ω

|u|pdx

≥ −
∫

Ω

|∇u|2dx +
∫ t

0

g(t − s)||∇u(t)||22dτ +
∫

Ω

|u|pdx (2.7)

−
∫ t

0

g(t − s)
∫

Ω

|∇u(t).[∇u(s) −∇u(t)]|dxdτ.

By using the Schwarz inequality, (2.7) takes the form

L′(t) ≥
∫

Ω

|u|pdx − (1 −
∫ t

0

g(s)ds)||∇u(t)||22 (2.8)

−
∫ t

0

g(t − τ)||∇u(t)||2||∇u(τ) −∇u(t)||2dτ

By applying Young’s inequality to the last term of (2.8) we arrive at

L′(t) ≥
∫

Ω

|u|pdx −
[
1 − 3

4

∫ t

0

g(s)ds

]
||∇u(t)||22 − (g � ∇u)(t) (2.9)

We then substitute for ||∇u(t)||22 from (2.1); hence (2.9) becomes

L′(t) ≥
∫

Ω

|u|pdx + 2

[
1 − 3

4

∫ t

0 g(s)ds
]

(1 − ∫ t

0 g(s)ds)
H(t)

+

(
1 − 3

4

∫ t

0 g(s)ds

(1 − ∫ t

0 g(s)ds)
− 1

)
(g � ∇u)(t) (2.10)

−2
p

1 − 3
4

∫ t

0 g(s)ds

(1 − ∫ t

0 g(s)ds)

∫
Ω

|u|pdx ≥ γ

∫
Ω

|u|pdx

where

γ = 1 − 2
p

1 − 3
4

∫ ∞
0 g(s)ds

(1 − ∫ ∞
0 g(s)ds)

> 0

because of (2.6). Next we have, by the embedding of the Lq spaces,

Lp/2(t) ≤ C||u||pp. (2.11)

By combining (2.10) and (2.11) we get

L′(t) ≥ ΓLp/2(t), (2.12)
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A direct integration of (2.12) then yields

Lp/2−1(t) ≥ 1
L1−p/2(0) − Γt

.

Therefore L blows up in a time

t∗ ≤ 1
ΓL(p/2)−1(0)

. =
1
Γ

(
1
2

∫
Ω

u2
0(x)dx

)1−p/2
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