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In this paper we consider the nonlinearly damped semilinear Petrovsky equation

utt + �2u+ aut �ut �m−2 = bu�u�p−2

in a bounded domain, where a� b > 0. We prove the existence of a local weak
solution and show that this solution blows up in finite time if p > m and the energy
is negative. We also show that the solution is global if m ≥ p.  2002 Elsevier Science
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1. INTRODUCTION

In [4], Guesmia considered the problem

utt�x� t� + �2u�x� t� + q�x�u�x� t� + g�ut�x� t�� = 0� x ∈ � t > 0

u�x� t� = ∂νu�x� t� = 0� x ∈ ∂� t ≥ 0 (1.1)

u�x� 0� = u0�x�� ut�x� 0� = u1�x�� x ∈ �
where  is a bounded domain of �n�n ≥ 1�, with a smooth boundary ∂,
and ν is the unit outer normal on ∂. For g continuous, increasing, satisfy-
ing g�0� = 0, and q	  → �+, a bounded function, Guesmia [4] proved a
global existence and a regularity result. He also established, under suitable
growth conditions on g, decay results for weak, as well as strong, solutions.
Precisely, the author showed that the solution decays exponentially if g
behaves like a linear function, whereas the decay is of a polynomial order
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otherwise. Results similar to the above system, coupled with a semilinear
wave equation, have been established by Guesmia [5]. Also the system com-
posed of the equation (1.1), with �2ut�x� t� + �g��u�x� t�� in the place of
q�x�u�x� t� + g�ut�x� t��, has been treated by Aassila and Guesmia [1], and
an exponential decay theorem, through the use of an important lemma of
Komornik [6], has been established.

In this paper we are concerned with the problem

utt + �2u+ aut �ut �m−2 = bu�u�p−2� x ∈ � t > 0

u�x� t� = ∂νu�x� t� = 0� x ∈ ∂� t ≥ 0 (1.2)

u�x� 0� = φ�x�� ut�x� 0� = ϕ�x�� x ∈ �
where a� b > 0 and p�m > 2. This is a problem similar to (1.1), which
contains a nonlinear source term competing with the damping factor. We
will establish an existence result and show that the solution continues to
exist globally if m ≥ p; however, it blows up in finite time if m < p. It is
worth mentioning that it is only for simplicity that q is taken to be zero,
g�ut�x� t�� = aut �ut �m−2, and the source term has a power form. The same
theorems could be established for more general functions.

2. LOCAL EXISTENCE

In this section, we establish a local existence result for (1.2) under
suitable conditions on m and p. First we consider, for v given, the lin-
ear problem

utt + �2u+ aut �ut �m−2 = b�v�p−2v� x ∈ � t > 0

u�x� t� = ∂νu�x� t� = 0� x ∈ ∂� t > 0 (2.1)

u�x� 0� = φ�x�� ut�x� 0� = ϕ�x�� x ∈ �
where u is the sought solution.

Lemma 2.1. Assume that
2 < p� n ≤ 4

2 < p ≤ 2�n− 2�/n− 4� n ≥ 5�
(2.2)

Then given any v in C��0� T �C∞
0 ��� and φ�ϕ in C∞

0 ��, the problem (2.1)
has a unique solution u satisfying

u ∈ L∞��0� T ��W �� utt ∈ L∞��0� T ��L2���
ut ∈ L∞��0� T ��H2

0 ��� ∩ Lm�× �0� T ���
(2.3)

Here H2
0 �� = �w ∈ H2�� 	 w = ∂νw = 0 on ∂� andW = �w ∈ H4�� ∩

H2
0 �� 	 �w = ∂ν�w = 0 on ∂�.



298 salim a. messaoudi

This lemma is a direct result of [7, Theorem 3.1, Chap. 1] (see also [2]
and [4, Theorem 1.2]).

Lemma 2.2. Assume that (2.2) holds. Assume further that

m ≤ 2n/�n− 4�� n ≥ 5� (2.4)

Then given any φ in H2
0 ��� ϕ in L2��, and v in C��0� T �H2

0 ���, the
problem (2.1) has a unique weak solution,

u ∈ C��0� T �H2
0 ���

ut ∈ C��0� T �L2��� ∩ Lm�× �0� T ���
(2.5)

Moreover, we have

1
2

∫

�u2
t + ��u�2�x� t�dx+ a

∫ t
0

∫

�ut�x� s��m dxds

= 1
2

∫

�ϕ2 + ��φ�2�x�dx+ b

∫ t
0

∫

�v�p−2vut�x� s�dxds�

∀ t ∈ �0� T � (2.6)

Proof. We approximate φ�ϕ by sequences �φµ�� �ϕµ� in C∞
0 ��, and v

by a sequence �vµ� in C��0� T �C∞
0 ���. We then consider the set of linear

problems

u
µ
tt + �2uµ + auµt �uµt �m−2 = b�vµ�p−2vµ� x ∈ � t > 0

uµ�x� t� = ∂νuµ�x� t� = 0� x ∈ ∂� t > 0 (2.7)

uµ�x� 0� = φµ�x�� u
µ
t �x� 0� = ϕµ�x�� x ∈ �

Lemma 2.1 guarantees the existence of a sequence of unique solutions
�uµ� satisfying (2.3). Now we proceed to show that the sequence �uµ� uµt �
is Cauchy in

Y 	= �w 	 w ∈ C��0� T �H2
0 ���� wt ∈ C��0� T �L2��� ∩ Lm�× �0� T ����

For this aim, we set

U 	= uµ − uν� V 	= vµ − vν�
It is straightforward to see that U satisfies

Utt + �2U + a�uµt �uµt �m−2 − uνt �uνt �m−2� = b��vµ�p−2vµ − �vν�p−2vν�
U�x� t� = 0� x ∈ ∂� t > 0 (2.8)

U�x� 0� = U0�x� = φµ�x� −φν�x�� Ut�x� 0� = U1�x� = ϕµ�x� − ϕν�x��
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We multiply Eq. (2.8) by Ut and integrate over × �0� t� to get

1
2

∫

�U2

t + ��U�2�x� t�dx+ a
∫ t

0

∫

�uµt �uµt �m−2 − uνt �uνt �m−2�Ut�x� s�dxds

= 1
2

∫

�U2

1 + ��U0�2�x�dx+ b
∫ t

0

∫

��vµ�p−2vµ − �vν�p−2vν

×Ut�x� s�dxds� (2.9)

We then estimate the last term in (2.9) as follows:∫


∣∣∣��vµ�p−2vµ − �vν�p−2vνUt�x� s�
∣∣∣dx

≤ C�Ut�2�V �2n/�n−4�
[
�vµ�p−2

n�p−2�/2 + �vν�p−2
n�p−2�/2

]
� (2.10)

The Sobolev embedding and condition (2.2) give

�V �2n/�n−2� ≤ C��V �2�

�vµ�p−2
n�p−2�/2 + �vν�p−2

n�p−2�/2 ≤ C���vµ�p−2
2 + ��vν�p−2

2 �

where C is a constant depending on  only. Therefore (2.10) takes the form∫


∣∣∣��vµ�p−2vµ − �vν�p−2vνUt�x� s�
∣∣∣dx

≤ C�Ut�2��V �2���vµ�p−2
2 + ��vν�p−2

2 �

Since �uµt �uµt �m−2 − uνt �uνt �m−2��uµt − uνt � ≥ 0 then (2.9) yields

1
2

∫

�U2

t + ��U�2�x� t�dx ≤
∫

�U2

1 + ��U0�2�x�dx

+"
∫ t

0
�Ut��� s��2��V ��� s��2 ds�

where " is a generic positive constant depending on C and the radius of
the ball in C��0� T �H2

0 ��� containing vµ and vν. Young’s inequality then
gives

max
0≤t≤T

∫

�U2

t + ��U�2�x� t�dx ≤ "
∫

�U2

1 + ��U0�2�x�dx

+"T max
0≤t≤T

∫

�V 2
t + ��V �2�x� t�dx�

Since �φµ� is Cauchy in H2
0 ��� �ϕµ� is Cauchy in L2��, and �vµ�

is Cauchy in C��0� T �H2
0 ���, we conclude that �uµ� uµt � is Cauchy
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in C��0� T �H2
0 ��� × C��0� T �L2���. To show that ut is Cauchy in

Lm�× �0� T ��, we use

�Ut�mLm�×�0�T �� ≤ C
∫ t

0

∫

�uµt �uµt �m−2 − uνt �uνt �m−2�Ut�x� s�dxds� (2.11)

which yields, by (2.9),

�Ut�mLm�×�0�T �� ≤ "
∫

�U2

1 + ��U0�2�x�dx

+"
∫ T

0
�Ut��� s��2��V ��� s��2 ds�

Therefore �uµt � is Cauchy in Lm� × �0� T �� and hence �uµ� is Cauchy in
Y. We now show that the limit u is a weak solution of (2.1) in the sense of
[7]. That is for each θ in H2

0 �� we must show that

d

dt

∫

ut�x� t�θ�x�dx+

∫

�u�x� t��θ�x�dx

+a
∫

ut �ut �m−2�x� t�θ�x�dx = b

∫

�v�p−2v�x� t�θ�x�dx� (2.12)

for almost all t in �0� T . To establish this, we multiply Eq. (2.7) by θ and
integrate over , so we obtain

d

dt

∫

u
µ
t �x� t�θ�x�dx+

∫

�uµ�x� t��θ�x�dx

+a
∫

u
µ
t �uµt �m−2�x� t�θ�x�dx = b

∫

�vµ�p−2vµ�x� t�θ�x�dx� (2.13)

As µ→ ∞, we see that∫

�uµ�x� t��θ�x�dx→

∫

�u�x� t��θ�x�dx�∫


�vµ�p−2vµ�x� t�θ�x�dx→

∫

�v�p−2v�x� t�θ�x�dx

in C��0� T � and∫

u
µ
t �uµt �m−2�x� t�θ�x�dx→

∫

ut �ut �m−2�x� t�θ�x�dx

in L1��0� T ��. We thus have
∫
 ut�x� t�θ�x�dx �= lim

∫
 u

µ
t �x� t�θ�x�dx� is

an absolutely continuous function on �0� T , so (2.12) holds for almost all t
in �0� T . For the energy equality (2.6), we start from the energy equality for
uµ and proceed in the same way to establish it for u. To prove uniqueness,



existence in a system of petrovsky 301

we take vµ and vν and let uµ and uν be the corresponding solutions of
(2.1). It is clear that U = uµ − uν satisfies

1
2

∫

�U2

t + ��U�2�x� t�dx+ a
∫ t

0

∫

�uµt �uµt �m−2 − uνt �uνt �m−2�Ut�x� s�dxds

= b
∫ t

0

∫

��vµ�p−2vµ − �vν�p−2vνUt�x� s�dxds� (2.14)

If vµ = vν then (2.14) shows that U = 0, which implies uniqueness. This
completes the proof.

Remark 2�1. Note that the condition (2.4) on m is needed so that∫
 u

µ
t �uµt �m−2�x� t�θ�x�dx and

∫
 ut �ut �m−2�x� t�θ�x�dx make sense.

Theorem 2.3. Assume that (2.2) and (2.4) hold. Then given any φ in
H2

0 ��, and ϕ in L2��, the problem (1.2) has a unique weak solution u ∈ Y,
for T small enough.

Proof. For M > 0 large and T > 0, we define a class of functions
Z�M�T � which consists of all functions w in Y satisfying the initial con-
ditions of (1.2) and

max
0≤t≤T

1
2

∫

�w2

t + ��w�2�x� t�dx+ a
∫ T

0

∫

�wt�x� s��m dxds ≤M2� (2.15)

Z�M�T � is nonempty if M is large enough. This follows from the trace
theorem (see [8]). We also define the map f from Z�M�T � into Y by u 	=
f �v�, where u is the unique solution of the linear problem (2.1). We would
like to show, for M sufficiently large and T sufficiently small, that f is a
contraction from Z�M�T � into itself.

By using the energy equality (2.5) we get∫

�u2
t + ��u�2�x� t�dx+ 2a

∫ t
0

∫

�ut�x� s��m dxds

≤
∫

�u2

1 + ��u0�2�x�dx+ 2b
∫ t

0

∫

�v�p−1�ut ��x� s�dxds� ∀ t ∈ �0� T 

≤
∫

�u2

1 + ��u0�2�x�dx+ 2b
∫ t

0
�ut�2��v�p−1

2 � ∀ t ∈ �0� T � (2.16)

consequently

�u�2
Y ≤ C

∫

�u2

1 + ��u0�2�x�dx+ CMp−1T�u�Y�

where C is independant of M . By choosing M large enough and T suffi-
ciently small, (2.15) is satisfied; hence u ∈ Z�M�T �. This shows that f maps
Z�M�T � into itself.
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Next we verify that f is a contraction. For this aim we set U = u− ū and
V = v − v̄, where u = f �v� and ū = f �v̄�. It is straightforward to see that
U satisfies

Utt + �2U + a�ut �m−2ut − a�ūt �m−2ūt = b�v�p−2v − b�v̄�p−2v̄

U�x� t� = 0� x ∈ ∂� t > 0 (2.17)

U�x� 0� = Ut�x� 0� = 0� x ∈ �
By multiplying Eq. (2.17) by Ut and integrating over × �0� t�, we arrive at∫


�U2

t + ��U�2�x� t�dx+
∫ t

0

∫

��ut �m−2ut − �ūt �m−2ūt�Ut�x� s�dxds

≤ C
∫ t

0

∫

��v�p−2v − �v̄�p−2v̄��Ut ��x� s�dxds� (2.18)

By using (2.2), (2.10), and (2.11), we obtain∫

�U2

t + ��U�2�x� t�dx+
∫ t

0

∫

�Ut�x� s��m dxds

≤ "
∫ t

0
�Ut�2��V �2���v�p−2

2 + ��v̄�p−2
2 ���� s�ds�

Thus we have

�U�2
Y ≤ CTMp−2�V �2

Y� (2.19)

By choosing T so small that "TMp−2 < 1, (2.19) shows that f is a con-
traction. The contraction mapping theorem then guarantees the existence
of a unique u satisfying u = f �u�. Obviously it is a solution of (1.2). The
uniqueness of this solution follows from the energy inequality (2.18). The
proof is completed.

3. BLOW-UP RESULT

In this section we show that the solution (2.5) blows up in finite time if
p > m and E�0� < 0, where

E�t� 	= 1
2

∫

�u2
t + ��u�2�x� t�dx− b

p

∫

�u�x� t��p dx� (3.1)

Lemma 3.1. Suppose that (2.2) holds. Then there exists a positive constant
C > 1, depending on  only, such that

�u�sp ≤ C� ��u�2
2 + �u�pp� (3.2)

for any u ∈ H2
0 �� and 2 ≤ s ≤ p.
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Proof. If �u�p ≤ 1 then �u�sp ≤ �u�2
p ≤ C��u�2

2 by Sobolev embedding
theorems and the boundary conditions. If �u�p > 1 then �u�sp ≤ �u�pp.
Therefore (3.2) follows.

We set

H�t� 	= −E�t� (3.3)

and use, throughout this section, C to denote a generic positive constant
depending on  only. As a result of (3.1)–(3.3), we have

Corollary 3.2. Let the assumptions of the lemma hold. Then we have

�u�sp ≤ C��H�t�� + �ut�2
2 + �u�pp� (3.4)

for any u ∈ H2
0 �� and 2 ≤ s ≤ p.

Theorem 3.3. Let the conditions of the Theorem 2.3 be fulfilled. Assume
further that

E�0� < 0� (3.5)

Then the solution (2.5) blows up in finite time.

Proof. We multiply Eq. (1.2) by −ut and integrate over  to get

H ′�t� = a
∫

�ut�x� t��m dx ≥ 0�

for almost every t in �0� T � since H�t� is absolutely continuous (see [2]);
hence

0 < H�0� ≤ H�t� ≤ b

p
�u�pp� (3.6)

for every t in �0� T �, by virtue of (3.1) and (3.3). We then define

L�t� 	= H1−α�t� + ε
∫

uut�x� t�dx (3.7)

for ε small to be chosen later and

0 < α ≤ min
{�p− 2�

2p
�
�p−m�
p�m− 1�

}
� (3.8)

By taking a derivative of (3.7) and using Eq. (1.2) we obtain

L′�t� 	= �1 − α�H−α�t�H ′�t� + ε
∫

�u2
t − ��u�2�x� t�dx

+ εb
∫

�u�x� t��p dx− aε

∫

�ut �m−2utu�x� t�dx� (3.9)
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We then exploit Young’s inequality,

XY ≤ δr

r
Xr + δ−q

q
Yq� X�Y ≥ 0� δ > 0�

1
r
+ 1
q
= 1�

for r = m and q = m/�m− 1� to estimate the last term in (3.9) as∫

�ut �m−1�u�dx ≤ δm

m
�u�mm + m− 1

m
δ−m/�m−1��ut�mm�

which yields, by substitution in (3.9),

L′�t�≥
[
�1−α�H−α�t�−m−1

m
εδ−m/�m−1�

]
H ′�t�

+ε
∫

�u2
t −��u�2�x�t�dx+ε

[
pH�t�+p

2

∫

�u2
t +��u�2�x�t�dx

]

−εaδ
m

m
�u�mm� ∀δ>0� (3.10)

Of course (3.10) remains valid even if δ is time dependent, since the integral
is taken over the x variable. Therefore by taking δ so that δ−m/�m−1� =
kH−α�t�, for large k to be specified later, and substituting in (3.10) we
arrive at

L′�t� ≥
[
�1 − α� − m− 1

m
εk

]
H−α�t�H ′�t�

+ ε
(
p

2
+ 1

) ∫

u2
t �x� t�dx+ ε

(
p

2
− 1

) ∫

��u�x� t��2 dx

+ ε
[
pH�t� − k1−m

m
aHα�m−1��t��u�mm

]
� (3.11)

By exploiting (3.6) and the inequality �u�mm ≤ C �u�mp , we obtain

Hα�m−1��t��u�mm ≤
(
b

p

)α�m−1�
C�u�m+αp�m−1�

p �

hence (3.11) yields

L′�t� ≥
[
�1 − α� − m− 1

m
εk

]
H−α�t�H ′�t�

+ ε
(
p

2
+ 1

) ∫

u2
t �x� t�dx+ ε

(
p

2
− 1

) ∫

��u�x� t��2 dx

+ε
[
pH�t� − k1−m

m
a

(
b

p

)α�m−1�
C�u�m+αp�m−1�

p

]
� (3.12)
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We then use Corollary 3.2 and relation (3.8), for s = m+ αp�m− 1� ≤ p,
to deduce from (3.12),

L′�t� ≥
[
�1 − α� − m− 1

m
εk

]
H−α�t�H ′�t�

+ ε
(
p

2
+ 1

) ∫

u2
t �x� t�dx+ ε

(
p

2
− 1

) ∫

�∇u�2�x� t�dx

+ ε�pH�t� − C1k
1−m�H�t� + �ut�2

2 + �u�pp�� (3.13)

where C1 = a�b/p�α�m−1�C/m. By noting that

H�t� = b

p
�u�pp −

1
2
�ut�2

2 −
1
2
��u�2

2

and writing p = �p+ 2�/2 + �p− 2�/2, the estimate (3.13) gives

L′�t� ≥
[
�1 − α� − m− 1

m
εk

]
H−α�t�H ′�t� + εp− 2

4
��u�2

2

+ ε
[(
p+ 2

2
− C1k

1−m
)
H�t� +

(
p− 2

2p
b− C1k

1−m
)
�u�pp

+
(
p+ 6

4
− C1k

1−m
)
�ut�2

2

]
� (3.14)

At this point, we choose k large enough so that the coefficients of
H�t�� �ut�2

2, and �u�pp in (3.14) are strictly positive; hence we get

L′�t� ≥
[
�1 − α� − m− 1

m
εk

]
H−α�t�H ′�t�

+ εγ�H�t� + �ut�2
2 + �u�pp� (3.15)

where γ > 0 is the minimum of these coefficients. Once k is fixed (hence
γ), we pick ε small enough so that �1 − α� − εk�m− 1�/m ≥ 0 and

L�0� = H1−α�0� + ε
∫

u0u1�x�dx > 0�

Therefore (3.15) takes the form

L′�t� ≥ γε�H�t� + �ut�2
2 + �u�pp� (3.16)

Consequently we have

L�t� ≥ L�0� > 0� ∀ t ≥ 0�

Next we estimate the second term in (3.7) as follows:∣∣∣∣
∫

uut�x� t�dx

∣∣∣∣ ≤ �u�2�ut�2 ≤ C�u�p�ut�2�
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So we have ∣∣∣∣
∫

uut�x� t�dx

∣∣∣∣
1/�1−α�

≤ C�u�1/�1−α�
p �ut�1/�1−α�

2 �

Again Young’s inequality gives∣∣∣∣
∫

uut�x� t�dx

∣∣∣∣
1/�1−α�

≤ C
[
�u�µ/�1−α�p + �ut�θ/�1−α�2

]
� (3.17)

for 1/µ+ 1/θ = 1. We take θ = 2�1−α� to get µ/�1−α� = 2/�1− 2α� ≤ p
by condition (3.8). Therefore (3.17) becomes∣∣∣∣

∫

uut�x� t�dx

∣∣∣∣
1/�1−α�

≤ C��u�sp + �ut�2
2�

where s = 2/�1 − 2α� ≤ p. By using Corollary 3.2 we obtain∣∣∣∣
∫

uut�x� t�dx

∣∣∣∣
1/�1−α�

≤ C�H�t� + �u�pp + �ut�2
2� ∀ t ≥ 0� (3.18)

Consequently we have

L1/�1−α��t� =
(
H1−α�t� + ε

∫

uut�x� t�dx

)1/�1−α�

≤ 21/�1−α�
(
H�t� +

∣∣∣∣
∫

uut�x� t�dx

∣∣∣∣
1/�1−α�)

≤ C�H�t� + �u�pp + �ut�2
2�� (3.19)

We then combine (3.16) and (3.19), to arrive at

L′�t� ≥ "L1/�1−α��t�� (3.20)

where " is a constant depending on C� γ, and ε only (and hence is inde-
pendent of the solution u). A simple integration of (3.20) over �0� t� then
yields

Lα/�1−α��t� ≥ 1
L−α/�1−α��0� − "tα/�1 − α� �

Therefore L�t� blows up in a time

T ∗ ≤ 1 − α
"α�L�0�α/�1−α� � (3.21)

Remark 2�1. By following the steps of the proof of Theorem 3.3 closely,
one can easily see that the blow-up result holds even for 1 < m < p. There-
fore this method is a unified one for both linear and nonlinear damping
cases.

Remark 2�2. The estimate (3.21) shows that L�0� is larger when the
blow-up takes place more quickly.
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4. GLOBAL EXISTENCE

In this section, we show that the solution (2.5) is global if m ≥ p.

Theorem 4.1. Assume that (2.2) and (2.4) hold such that m ≥ p. Then
for any φ in H2

0 �� and ϕ in L2��, the problem (1.2) has a unique weak
solution u ∈ Y, for any T > 0.

Proof. Similar to [3], we define the functional

F�t� 	= 1
2

∫

�u2
t + ��u�2�x� t�dx+ b

p

∫

�u�x� t��p dx�

By taking a derivative and using Eq. (1.2), we obtain

F ′�t� = −a�ut�mm + 2b
∫

utu�u�x� t��p−2 dx�

By using Young’s inequality, we get

F ′�t� ≤ −a�ut�mm + δ�ut�pp + Cδ�u�pp�

By noting that m ≥ p, we easily see that

F ′�t� ≤ −a�ut�mm + Cδ�ut�pm + Cδ�u�pp�

where C is a constant depending on  only and Cδ is a constant depend-
ing on δ. At this point we distinguish two cases: either �ut�m > 1, so
we choose δ small enough so that −a�ut�mm + Cδ�ut�pm ≤ 0, and hence
F ′�t� ≤ Cδ�u�pp. Or �ut�m ≤ 1; in this case we have F ′�t� ≤ Cδ+ Cδ�u�pp.
Therefore, in either case, we have

F ′�t� ≤ c1 + cF�t��

A simple integration then yields

F�t� ≤ �F�0� + c1/c�ect �

The last estimate, together with the continuation principle, completes the
proof.
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