Global Existence and Nonexistence in a System of Petrovsky

Salim A. Messaoudi
Mathematical Sciences Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
E-mail: messaoud@kfupm.edu.sa

Submitted by Colin Rogers
Received June 26, 2000

In this paper we consider the nonlinearly damped semilinear Petrovsky equation

$$
u_{t t}+\Delta^{2} u+a u_{t}\left|u_{t}\right|^{m-2}=b u|u|^{p-2}
$$

in a bounded domain, where $a, b>0$. We prove the existence of a local weak solution and show that this solution blows up in finite time if $p>m$ and the energy is negative. We also show that the solution is global if $m \geq p$. © 2002 Elsevier Science

Key Words: nonlinear damping; nonlinear source; negative initial energy; local; global; blow up; finite time.

1. INTRODUCTION

In [4], Guesmia considered the problem

$$
\begin{gather*}
u_{t t}(x, t)+\Delta^{2} u(x, t)+q(x) u(x, t)+g\left(u_{t}(x, t)\right)=0, \quad x \in \Omega, \quad t>0 \\
u(x, t)=\partial_{\nu} u(x, t)=0, \quad x \in \partial \Omega, \quad t \geq 0 \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega
\end{gather*}
$$

where Ω is a bounded domain of $\mathbb{R}^{n}(n \geq 1)$, with a smooth boundary $\partial \Omega$, and ν is the unit outer normal on $\partial \Omega$. For g continuous, increasing, satisfying $g(0)=0$, and $q: \Omega \rightarrow \mathbb{R}^{+}$, a bounded function, Guesmia [4] proved a global existence and a regularity result. He also established, under suitable growth conditions on g, decay results for weak, as well as strong, solutions. Precisely, the author showed that the solution decays exponentially if g behaves like a linear function, whereas the decay is of a polynomial order
otherwise. Results similar to the above system, coupled with a semilinear wave equation, have been established by Guesmia [5]. Also the system composed of the equation (1.1), with $\Delta^{2} u_{t}(x, t)+\Delta g(\Delta u(x, t))$ in the place of $q(x) u(x, t)+g\left(u_{t}(x, t)\right)$, has been treated by Aassila and Guesmia [1], and an exponential decay theorem, through the use of an important lemma of Komornik [6], has been established.
In this paper we are concerned with the problem

$$
\begin{gather*}
u_{t t}+\Delta^{2} u+a u_{t}\left|u_{t}\right|^{m-2}=b u|u|^{p-2}, \quad x \in \Omega, \quad t>0 \\
u(x, t)=\partial_{\nu} u(x, t)=0, \quad x \in \partial \Omega, \quad t \geq 0 \tag{1.2}\\
u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\varphi(x), \quad x \in \Omega,
\end{gather*}
$$

where $a, b>0$ and $p, m>2$. This is a problem similar to (1.1), which contains a nonlinear source term competing with the damping factor. We will establish an existence result and show that the solution continues to exist globally if $m \geq p$; however, it blows up in finite time if $m<p$. It is worth mentioning that it is only for simplicity that q is taken to be zero, $g\left(u_{t}(x, t)\right)=a u_{t}\left|u_{t}\right|^{m-2}$, and the source term has a power form. The same theorems could be established for more general functions.

2. LOCAL EXISTENCE

In this section, we establish a local existence result for (1.2) under suitable conditions on m and p. First we consider, for v given, the linear problem

$$
\begin{gather*}
u_{t t}+\Delta^{2} u+a u_{t}\left|u_{t}\right|^{m-2}=b|v|^{p-2} v, \quad x \in \Omega, \quad t>0 \\
u(x, t)=\partial_{\nu} u(x, t)=0, \quad x \in \partial \Omega, \quad t>0 \tag{2.1}\\
u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\varphi(x), \quad x \in \Omega,
\end{gather*}
$$

where u is the sought solution.
Lemma 2.1. Assume that

$$
\begin{gather*}
2<p, \quad n \leq 4 \\
2<p \leq 2(n-2) / n-4, \quad n \geq 5 . \tag{2.2}
\end{gather*}
$$

Then given any v in $C\left([0, T] ; C_{0}^{\infty}(\Omega)\right)$ and ϕ, φ in $C_{0}^{\infty}(\Omega)$, the problem (2.1) has a unique solution u satisfying

$$
\begin{gather*}
u \in L^{\infty}((0, T) ; W), \quad u_{t t} \in L^{\infty}\left((0, T) ; L^{2}(\Omega)\right) \\
u_{t} \in L^{\infty}\left((0, T) ; H_{0}^{2}(\Omega)\right) \cap L^{m}(\Omega \times(0, T)) . \tag{2.3}
\end{gather*}
$$

Here $H_{0}^{2}(\Omega)=\left\{w \in H^{2}(\Omega): w=\partial_{\nu} w=0\right.$ on $\left.\partial \Omega\right\}$ and $\mathbf{W}=\left\{w \in H^{4}(\Omega) \cap\right.$ $H_{0}^{2}(\Omega): \Delta w=\partial_{\nu} \Delta w=0$ on $\left.\partial \Omega\right\}$.

This lemma is a direct result of [7, Theorem 3.1, Chap. 1] (see also [2] and [4, Theorem 1.2]).

Lemma 2.2. Assume that (2.2) holds. Assume further that

$$
\begin{equation*}
m \leq 2 n /(n-4), \quad n \geq 5 . \tag{2.4}
\end{equation*}
$$

Then given any ϕ in $H_{0}^{2}(\Omega), \varphi$ in $L^{2}(\Omega)$, and v in $C\left([0, T] ; H_{0}^{2}(\Omega)\right)$, the problem (2.1) has a unique weak solution,

$$
\begin{gather*}
u \in C\left([0, T] ; H_{0}^{2}(\Omega)\right) \\
u_{t} \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{m}(\Omega \times(0, T)) . \tag{2.5}
\end{gather*}
$$

Moreover, we have

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega}\left[u_{t}^{2}+(\Delta u)^{2}\right](x, t) d x+a \int_{0}^{t} \int_{\Omega}\left|u_{t}(x, s)\right|^{m} d x d s \\
& \quad=\frac{1}{2} \int_{\Omega}\left[\varphi^{2}+(\Delta \phi)^{2}\right](x) d x+b \int_{0}^{t} \int_{\Omega}|v|^{p-2} v u_{t}(x, s) d x d s \\
& \quad \forall t \in[0, T] . \tag{2.6}
\end{align*}
$$

Proof. We approximate ϕ, φ by sequences $\left(\phi^{\mu}\right),\left(\varphi^{\mu}\right)$ in $C_{0}^{\infty}(\Omega)$, and v by a sequence (v^{μ}) in $C\left([0, T] ; C_{0}^{\infty}(\Omega)\right)$. We then consider the set of linear problems

$$
\begin{gather*}
u_{t t}^{\mu}+\Delta^{2} u^{\mu}+a u_{t}^{\mu}\left|u_{t}^{\mu}\right|^{m-2}=b\left|v^{\mu}\right|^{p-2} v^{\mu}, \quad x \in \Omega, \quad t>0 \\
u^{\mu}(x, t)=\partial_{\nu} u^{\mu}(x, t)=0, \quad x \in \partial \Omega, \quad t>0 \tag{2.7}\\
u^{\mu}(x, 0)=\phi^{\mu}(x), \quad u_{t}^{\mu}(x, 0)=\varphi^{\mu}(x), \quad x \in \Omega .
\end{gather*}
$$

Lemma 2.1 guarantees the existence of a sequence of unique solutions (u^{μ}) satisfying (2.3). Now we proceed to show that the sequence $\left(u^{\mu}, u_{t}^{\mu}\right)$ is Cauchy in
$\mathbf{Y}:=\left\{w: w \in C\left([0, T] ; H_{0}^{2}(\Omega)\right), w_{t} \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{m}(\Omega \times(0, T))\right\}$.
For this aim, we set

$$
U:=u^{\mu}-u^{\nu}, \quad V:=v^{\mu}-v^{\nu} .
$$

It is straightforward to see that U satisfies

$$
\begin{gather*}
U_{t t}+\Delta^{2} U+a\left(u_{t}^{\mu}\left|u_{t}^{\mu}\right|^{m-2}-u_{t}^{\nu}\left|u_{t}^{\nu}\right|^{m-2}\right)=b\left(\left|v^{\mu}\right|^{p-2} v^{\mu}-\left|v^{\nu}\right|^{p-2} v^{\nu}\right) \\
U(x, t)=0, \quad x \in \partial \Omega, \quad t>0 \tag{2.8}\\
U(x, 0)=U_{0}(x)=\phi^{\mu}(x)-\phi^{\nu}(x), \quad U_{t}(x, 0)=U_{1}(x)=\varphi^{\mu}(x)-\varphi^{\nu}(x) .
\end{gather*}
$$

We multiply Eq. (2.8) by U_{t} and integrate over $\Omega \times(0, t)$ to get

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega}\left[U_{t}^{2}+(\Delta U)^{2}\right](x, t) d x+a \int_{0}^{t} \int_{\Omega}\left(u_{t}^{\mu}\left|u_{t}^{\mu}\right|^{m-2}-u_{t}^{\nu}\left|u_{t}^{\nu}\right|^{m-2}\right) U_{t}(x, s) d x d s \\
& =\frac{1}{2} \int_{\Omega}\left[U_{1}^{2}+\left(\Delta U_{0}\right)^{2}\right](x) d x+b \int_{0}^{t} \int_{\Omega}\left[\left|v^{\mu}\right|^{p-2} v^{\mu}-\left|v^{\nu}\right|^{p-2} v^{\nu}\right] \\
& \quad \times U_{t}(x, s) d x d s \tag{2.9}
\end{align*}
$$

We then estimate the last term in (2.9) as follows:

$$
\begin{align*}
& \int_{\Omega}\left|\left[\left|v^{\mu}\right|^{p-2} v^{\mu}-\left|v^{\nu}\right|^{p-2} v^{\nu}\right] U_{t}(x, s)\right| d x \\
& \quad \leq C\left\|U_{t}\right\|_{2}\|V\|_{2 n /(n-4)}\left[\left\|v^{\mu}\right\|_{n(p-2) / 2}^{p-2}+\left\|v^{\nu}\right\|_{n(p-2) / 2}^{p-2}\right] . \tag{2.10}
\end{align*}
$$

The Sobolev embedding and condition (2.2) give

$$
\begin{aligned}
\|V\|_{2 n /(n-2)} & \leq C\|\Delta V\|_{2}, \\
\left\|v^{\mu}\right\|_{n(p-2) / 2}^{p-2}+\left\|v^{\nu}\right\|_{n(p-2) / 2}^{p-2} & \leq C\left[\left\|\Delta v^{\mu}\right\|_{2}^{p-2}+\left\|\Delta v^{\nu}\right\|_{2}^{p-2}\right],
\end{aligned}
$$

where C is a constant depending on Ω only. Therefore (2.10) takes the form

$$
\begin{aligned}
& \int_{\Omega}\left|\left[\left|v^{\mu}\right|^{p-2} v^{\mu}-\left|v^{\nu}\right|^{p-2} v^{\nu}\right] U_{t}(x, s)\right| d x \\
& \quad \leq C\left\|U_{t}\right\|_{2}\|\Delta V\|_{2}\left[\left\|\Delta v^{\mu}\right\|_{2}^{p-2}+\left\|\Delta v^{\nu}\right\|_{2}^{p-2}\right] .
\end{aligned}
$$

Since $\left(u_{t}^{\mu}\left|u_{t}^{\mu}\right|^{m-2}-u_{t}^{\nu}\left|u_{t}^{\nu}\right|^{m-2}\right)\left(u_{t}^{\mu}-u_{t}^{\nu}\right) \geq 0$ then (2.9) yields

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}\left[U_{t}^{2}+(\Delta U)^{2}\right](x, t) d x \leq & \int_{\Omega}\left[U_{1}^{2}+\left(\Delta U_{0}\right)^{2}\right](x) d x \\
& +\Gamma \int_{0}^{t}\left\|U_{t}(., s)\right\|_{2}\|\Delta V(., s)\|_{2} d s,
\end{aligned}
$$

where Γ is a generic positive constant depending on C and the radius of the ball in $C\left([0, T] ; H_{0}^{2}(\Omega)\right)$ containing v^{μ} and v^{ν}. Young's inequality then gives

$$
\begin{aligned}
\max _{0 \leq t \leq T} \int_{\Omega}\left[U_{t}^{2}+(\Delta U)^{2}\right](x, t) d x \leq & \Gamma \int_{\Omega}\left[U_{1}^{2}+\left|\Delta U_{0}\right|^{2}\right](x) d x \\
& +\Gamma T \max _{0 \leq t \leq T} \int_{\Omega}\left[V_{t}^{2}+(\Delta V)^{2}\right](x, t) d x .
\end{aligned}
$$

Since $\left(\phi^{\mu}\right)$ is Cauchy in $H_{0}^{2}(\Omega),\left(\varphi^{\mu}\right)$ is Cauchy in $L^{2}(\Omega)$, and $\left(v^{\mu}\right)$ is Cauchy in $C\left([0, T] ; H_{0}^{2}(\Omega)\right)$, we conclude that $\left(u^{\mu}, u_{t}^{\mu}\right)$ is Cauchy
in $C\left([0, T] ; H_{0}^{2}(\Omega)\right) \times C\left([0, T] ; L^{2}(\Omega)\right)$. To show that u_{t} is Cauchy in $L^{m}(\Omega \times(0, T))$, we use

$$
\begin{equation*}
\left\|U_{t}\right\|_{L^{m}(\Omega \times(0, T))}^{m} \leq C \int_{0}^{t} \int_{\Omega}\left(u_{t}^{\mu}\left|u_{t}^{\mu}\right|^{m-2}-u_{t}^{\nu}\left|u_{t}^{\nu}\right|^{m-2}\right) U_{t}(x, s) d x d s \tag{2.11}
\end{equation*}
$$

which yields, by (2.9),

$$
\begin{aligned}
\left\|U_{t}\right\|_{L^{m}(\Omega \times(0, T))}^{m} \leq & \Gamma \int_{\Omega}\left[U_{1}^{2}+\left(\Delta U_{0}\right)^{2}\right](x) d x \\
& +\Gamma \int_{0}^{T}\left\|U_{t}(., s)\right\|_{2}\|\Delta V(., s)\|_{2} d s
\end{aligned}
$$

Therefore $\left(u_{t}^{\mu}\right)$ is Cauchy in $L^{m}(\Omega \times(0, T))$ and hence $\left(u^{\mu}\right)$ is Cauchy in Y. We now show that the limit u is a weak solution of (2.1) in the sense of [7]. That is for each θ in $H_{0}^{2}(\Omega)$ we must show that

$$
\begin{align*}
& \frac{d}{d t} \int_{\Omega} u_{t}(x, t) \theta(x) d x+\int_{\Omega} \Delta u(x, t) \Delta \theta(x) d x \\
& \quad+a \int_{\Omega} u_{t}\left|u_{t}\right|^{m-2}(x, t) \theta(x) d x=b \int_{\Omega}|v|^{p-2} v(x, t) \theta(x) d x \tag{2.12}
\end{align*}
$$

for almost all t in [0, T]. To establish this, we multiply Eq. (2.7) by θ and integrate over Ω, so we obtain

$$
\begin{align*}
& \frac{d}{d t} \int_{\Omega} u_{t}^{\mu}(x, t) \theta(x) d x+\int_{\Omega} \Delta u^{\mu}(x, t) \Delta \theta(x) d x \\
& \quad+a \int_{\Omega} u_{t}^{\mu}\left|u_{t}^{\mu}\right|^{m-2}(x, t) \theta(x) d x=b \int_{\Omega}\left|v^{\mu}\right|^{p-2} v^{\mu}(x, t) \theta(x) d x \tag{2.13}
\end{align*}
$$

As $\mu \rightarrow \infty$, we see that

$$
\begin{aligned}
\int_{\Omega} \Delta u^{\mu}(x, t) \Delta \theta(x) d x & \rightarrow \int_{\Omega} \Delta u(x, t) \Delta \theta(x) d x \\
\int_{\Omega}\left|v^{\mu}\right|^{p-2} v^{\mu}(x, t) \theta(x) d x & \rightarrow \int_{\Omega}|v|^{p-2} v(x, t) \theta(x) d x
\end{aligned}
$$

in $C([0, T])$ and

$$
\int_{\Omega} u_{t}^{\mu}\left|u_{t}^{\mu}\right|^{m-2}(x, t) \theta(x) d x \rightarrow \int_{\Omega} u_{t}\left|u_{t}\right|^{m-2}(x, t) \theta(x) d x
$$

in $L^{1}((0, T))$. We thus have $\int_{\Omega} u_{t}(x, t) \theta(x) d x\left\{=\lim \int_{\Omega} u_{t}^{\mu}(x, t) \theta(x) d x\right\}$ is an absolutely continuous function on $[0, T]$, so (2.12) holds for almost all t in $[0, T]$. For the energy equality (2.6), we start from the energy equality for u^{μ} and proceed in the same way to establish it for u. To prove uniqueness,
we take v^{μ} and v^{ν} and let u^{μ} and u^{ν} be the corresponding solutions of (2.1). It is clear that $U=u^{\mu}-u^{\nu}$ satisfies

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega}\left[U_{t}^{2}+(\Delta U)^{2}\right](x, t) d x+a \int_{0}^{t} \int_{\Omega}\left(u_{t}^{\mu}\left|u_{t}^{\mu}\right|^{m-2}-u_{t}^{\nu}\left|u_{t}^{\nu}\right|^{m-2}\right) U_{t}(x, s) d x d s \\
& \quad=b \int_{0}^{t} \int_{\Omega}\left[\left|v^{\mu}\right|^{p-2} v^{\mu}-\left|v^{\nu}\right|^{p-2} v^{\nu}\right] U_{t}(x, s) d x d s \tag{2.14}
\end{align*}
$$

If $v^{\mu}=v^{\nu}$ then (2.14) shows that $U=0$, which implies uniqueness. This completes the proof.

Remark 2.1. Note that the condition (2.4) on m is needed so that $\int_{\Omega} u_{t}^{\mu}\left|u_{t}^{\mu}\right|^{m-2}(x, t) \theta(x) d x$ and $\int_{\Omega} u_{t}\left|u_{t}\right|^{m-2}(x, t) \theta(x) d x$ make sense.

Theorem 2.3. Assume that (2.2) and (2.4) hold. Then given any ϕ in $H_{0}^{2}(\Omega)$, and φ in $L^{2}(\Omega)$, the problem (1.2) has a unique weak solution $u \in \mathbf{Y}$, for T small enough.

Proof. For $M>0$ large and $T>0$, we define a class of functions $Z(M, T)$ which consists of all functions w in \mathbf{Y} satisfying the initial conditions of (1.2) and

$$
\begin{equation*}
\max _{0 \leq t \leq T} \frac{1}{2} \int_{\Omega}\left[w_{t}^{2}+(\Delta w)^{2}\right](x, t) d x+a \int_{0}^{T} \int_{\Omega}\left|w_{t}(x, s)\right|^{m} d x d s \leq M^{2} \tag{2.15}
\end{equation*}
$$

$Z(M, T)$ is nonempty if M is large enough. This follows from the trace theorem (see [8]). We also define the map f from $Z(M, T)$ into \mathbf{Y} by $u:=$ $f(v)$, where u is the unique solution of the linear problem (2.1). We would like to show, for M sufficiently large and T sufficiently small, that f is a contraction from $Z(M, T)$ into itself.
By using the energy equality (2.5) we get

$$
\begin{align*}
& \int_{\Omega}\left[u_{t}^{2}+(\Delta u)^{2}\right](x, t) d x+2 a \int_{0}^{t} \int_{\Omega}\left|u_{t}(x, s)\right|^{m} d x d s \\
& \quad \leq \int_{\Omega}\left[u_{1}^{2}+\left(\Delta u_{0}\right)^{2}\right](x) d x+2 b \int_{0}^{t} \int_{\Omega}|v|^{p-1}\left|u_{t}\right|(x, s) d x d s, \quad \forall t \in[0, T] \\
& \quad \leq \int_{\Omega}\left[u_{1}^{2}+\left(\Delta u_{0}\right)^{2}\right](x) d x+2 b \int_{0}^{t}\left\|u_{t}\right\|_{2}\|\Delta v\|_{2}^{p-1}, \quad \forall t \in[0, T] ; \tag{2.16}
\end{align*}
$$

consequently

$$
\|u\|_{\mathbf{Y}}^{2} \leq C \int_{\Omega}\left[u_{1}^{2}+\left(\Delta u_{0}\right)^{2}\right](x) d x+C M^{p-1} T\|u\|_{\mathbf{Y}}
$$

where C is independant of M. By choosing M large enough and T sufficiently small, (2.15) is satisfied; hence $u \in Z(M, T)$. This shows that f maps $Z(M, T)$ into itself.

Next we verify that f is a contraction. For this aim we set $U=u-\bar{u}$ and $V=v-\bar{v}$, where $u=f(v)$ and $\bar{u}=f(\bar{v})$. It is straightforward to see that U satisfies

$$
\begin{gather*}
U_{t t}+\Delta^{2} U+a\left|u_{t}\right|^{m-2} u_{t}-a\left|\bar{u}_{t}\right|^{m-2} \bar{u}_{t}=b|v|^{p-2} v-b|\bar{v}|^{p-2} \bar{v} \\
U(x, t)=0, \quad x \in \partial \Omega, \quad t>0 \tag{2.17}\\
U(x, 0)=U_{t}(x, 0)=0, \quad x \in \Omega
\end{gather*}
$$

By multiplying Eq. (2.17) by U_{t} and integrating over $\Omega \times(0, t)$, we arrive at

$$
\begin{align*}
\int_{\Omega} & {\left[U_{t}^{2}+(\Delta U)^{2}\right](x, t) d x+\int_{0}^{t} \int_{\Omega}\left(\left|u_{t}\right|^{m-2} u_{t}-\left|\bar{u}_{t}\right|^{m-2} \bar{u}_{t}\right) U_{t}(x, s) d x d s } \\
& \leq\left. C \int_{0}^{t} \int_{\Omega}| | v\right|^{p-2} v-|\bar{v}|^{p-2} \bar{v}| | U_{t} \mid(x, s) d x d s \tag{2.18}
\end{align*}
$$

By using (2.2), (2.10), and (2.11), we obtain

$$
\begin{aligned}
& \int_{\Omega}\left[U_{t}^{2}+(\Delta U)^{2}\right](x, t) d x+\int_{0}^{t} \int_{\Omega}\left|U_{t}(x, s)\right|^{m} d x d s \\
& \quad \leq \Gamma \int_{0}^{t}\left\|U_{t}\right\|_{2}\|\Delta V\|_{2}\left(\|\Delta v\|_{2}^{p-2}+\|\Delta \bar{v}\|_{2}^{p-2}\right)(., s) d s .
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\|U\|_{\mathbf{Y}}^{2} \leq C T M^{p-2}\|V\|_{\mathbf{Y}}^{2} \tag{2.19}
\end{equation*}
$$

By choosing T so small that $\Gamma T M^{p-2}<1$, (2.19) shows that f is a contraction. The contraction mapping theorem then guarantees the existence of a unique u satisfying $u=f(u)$. Obviously it is a solution of (1.2). The uniqueness of this solution follows from the energy inequality (2.18). The proof is completed.

3. BLOW-UP RESULT

In this section we show that the solution (2.5) blows up in finite time if $p>m$ and $E(0)<0$, where

$$
\begin{equation*}
E(t):=\frac{1}{2} \int_{\Omega}\left[u_{t}^{2}+(\Delta u)^{2}\right](x, t) d x-\frac{b}{p} \int_{\Omega}|u(x, t)|^{p} d x \tag{3.1}
\end{equation*}
$$

Lemma 3.1. Suppose that (2.2) holds. Then there exists a positive constant $C>1$, depending on Ω only, such that

$$
\begin{equation*}
\|u\|_{p}^{s} \leq C\left(\mid \Delta u\left\|_{2}^{2}+\right\| u \|_{p}^{p}\right) \tag{3.2}
\end{equation*}
$$

for any $u \in H_{0}^{2}(\Omega)$ and $2 \leq s \leq p$.

Proof. If $\|u\|_{p} \leq 1$ then $\|u\|_{p}^{s} \leq\|u\|_{p}^{2} \leq C\|\Delta u\|_{2}^{2}$ by Sobolev embedding theorems and the boundary conditions. If $\|u\|_{p}>1$ then $\|u\|_{p}^{s} \leq\|u\|_{p}^{p}$. Therefore (3.2) follows.

We set

$$
\begin{equation*}
H(t):=-E(t) \tag{3.3}
\end{equation*}
$$

and use, throughout this section, C to denote a generic positive constant depending on Ω only. As a result of (3.1)-(3.3), we have

Corollary 3.2. Let the assumptions of the lemma hold. Then we have

$$
\begin{equation*}
\|u\|_{p}^{s} \leq C\left(|H(t)|+\left\|u_{t}\right\|_{2}^{2}+\|u\|_{p}^{p}\right) \tag{3.4}
\end{equation*}
$$

for any $u \in H_{0}^{2}(\Omega)$ and $2 \leq s \leq p$.
Theorem 3.3. Let the conditions of the Theorem 2.3 be fulfilled. Assume further that

$$
\begin{equation*}
E(0)<0 . \tag{3.5}
\end{equation*}
$$

Then the solution (2.5) blows up in finite time.
Proof. We multiply Eq. (1.2) by $-u_{t}$ and integrate over Ω to get

$$
H^{\prime}(t)=a \int_{\Omega}\left|u_{t}(x, t)\right|^{m} d x \geq 0
$$

for almost every t in $[0, T)$ since $H(t)$ is absolutely continuous (see [2]); hence

$$
\begin{equation*}
0<H(0) \leq H(t) \leq \frac{b}{p}\|u\|_{p}^{p} \tag{3.6}
\end{equation*}
$$

for every t in $[0, T)$, by virtue of (3.1) and (3.3). We then define

$$
\begin{equation*}
L(t):=H^{1-\alpha}(t)+\varepsilon \int_{\Omega} u u_{t}(x, t) d x \tag{3.7}
\end{equation*}
$$

for ε small to be chosen later and

$$
\begin{equation*}
0<\alpha \leq \min \left\{\frac{(p-2)}{2 p}, \frac{(p-m)}{p(m-1)}\right\} . \tag{3.8}
\end{equation*}
$$

By taking a derivative of (3.7) and using Eq. (1.2) we obtain

$$
\begin{align*}
L^{\prime}(t):= & (1-\alpha) H^{-\alpha}(t) H^{\prime}(t)+\varepsilon \int_{\Omega}\left[u_{t}^{2}-(\Delta u)^{2}\right](x, t) d x \\
& +\varepsilon b \int_{\Omega}|u(x, t)|^{p} d x-a \varepsilon \int_{\Omega}\left|u_{t}\right|^{m-2} u_{t} u(x, t) d x . \tag{3.9}
\end{align*}
$$

We then exploit Young's inequality,

$$
X Y \leq \frac{\delta^{r}}{r} X^{r}+\frac{\delta^{-q}}{q} Y^{q}, \quad X, Y \geq 0, \quad \delta>0, \quad \frac{1}{r}+\frac{1}{q}=1,
$$

for $r=m$ and $q=m /(m-1)$ to estimate the last term in (3.9) as

$$
\int_{\Omega}\left|u_{t}\right|^{m-1}|u| d x \leq \frac{\delta^{m}}{m}\|u\|_{m}^{m}+\frac{m-1}{m} \delta^{-m /(m-1)}\left\|u_{t}\right\|_{m}^{m}
$$

which yields, by substitution in (3.9),

$$
\begin{align*}
L^{\prime}(t) \geq & {\left[(1-\alpha) H^{-\alpha}(t)-\frac{m-1}{m} \varepsilon \delta^{-m /(m-1)}\right] H^{\prime}(t) } \\
& +\varepsilon \int_{\Omega}\left[u_{t}^{2}-(\Delta u)^{2}\right](x, t) d x+\varepsilon\left[p H(t)+\frac{p}{2} \int_{\Omega}\left[u_{t}^{2}+(\Delta u)^{2}\right](x, t) d x\right] \\
& -\varepsilon a \frac{\delta^{m}}{m}\|u\|_{m}^{m}, \quad \forall \delta>0 . \tag{3.10}
\end{align*}
$$

Of course (3.10) remains valid even if δ is time dependent, since the integral is taken over the x variable. Therefore by taking δ so that $\delta^{-m /(m-1)}=$ $k H^{-\alpha}(t)$, for large k to be specified later, and substituting in (3.10) we arrive at

$$
\begin{align*}
L^{\prime}(t) \geq & {\left[(1-\alpha)-\frac{m-1}{m} \varepsilon k\right] H^{-\alpha}(t) H^{\prime}(t) } \\
& +\varepsilon\left(\frac{p}{2}+1\right) \int_{\Omega} u_{t}^{2}(x, t) d x+\varepsilon\left(\frac{p}{2}-1\right) \int_{\Omega}(\Delta u(x, t))^{2} d x \\
& +\varepsilon\left[p H(t)-\frac{k^{1-m}}{m} a H^{\alpha(m-1)}(t)\|u\|_{m}^{m}\right] . \tag{3.11}
\end{align*}
$$

By exploiting (3.6) and the inequality $\|u\|_{m}^{m} \leq C\|u\|_{p}^{m}$, we obtain

$$
H^{\alpha(m-1)}(t)\|u\|_{m}^{m} \leq\left(\frac{b}{p}\right)^{\alpha(m-1)} C\|u\|_{p}^{m+\alpha p(m-1)} ;
$$

hence (3.11) yields

$$
\begin{align*}
L^{\prime}(t) \geq & {\left[(1-\alpha)-\frac{m-1}{m} \varepsilon k\right] H^{-\alpha}(t) H^{\prime}(t) } \\
& +\varepsilon\left(\frac{p}{2}+1\right) \int_{\Omega} u_{t}^{2}(x, t) d x+\varepsilon\left(\frac{p}{2}-1\right) \int_{\Omega}(\Delta u(x, t))^{2} d x \\
& +\varepsilon\left[p H(t)-\frac{k^{1-m}}{m} a\left(\frac{b}{p}\right)^{\alpha(m-1)} C\|u\|_{p}^{m+\alpha p(m-1)}\right] . \tag{3.12}
\end{align*}
$$

We then use Corollary 3.2 and relation (3.8), for $s=m+\alpha p(m-1) \leq p$, to deduce from (3.12),

$$
\begin{align*}
L^{\prime}(t) \geq & {\left[(1-\alpha)-\frac{m-1}{m} \varepsilon k\right] H^{-\alpha}(t) H^{\prime}(t) } \\
& +\varepsilon\left(\frac{p}{2}+1\right) \int_{\Omega} u_{t}^{2}(x, t) d x+\varepsilon\left(\frac{p}{2}-1\right) \int_{\Omega}|\nabla u|^{2}(x, t) d x \\
& +\varepsilon\left[p H(t)-C_{1} k^{1-m}\left\{H(t)+\left\|u_{t}\right\|_{2}^{2}+\|u\|_{p}^{p}\right\}\right] \tag{3.13}
\end{align*}
$$

where $C_{1}=a(b / p)^{\alpha(m-1)} C / m$. By noting that

$$
H(t)=\frac{b}{p}\|u\|_{p}^{p}-\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}-\frac{1}{2}\|\Delta u\|_{2}^{2}
$$

and writing $p=(p+2) / 2+(p-2) / 2$, the estimate (3.13) gives

$$
\begin{align*}
L^{\prime}(t) \geq & {\left[(1-\alpha)-\frac{m-1}{m} \varepsilon k\right] H^{-\alpha}(t) H^{\prime}(t)+\varepsilon \frac{p-2}{4}\|\Delta u\|_{2}^{2} } \\
& +\varepsilon\left[\left(\frac{p+2}{2}-C_{1} k^{1-m}\right) H(t)+\left(\frac{p-2}{2 p} b-C_{1} k^{1-m}\right)\|u\|_{p}^{p}\right. \\
& \left.\quad+\left(\frac{p+6}{4}-C_{1} k^{1-m}\right)\left\|u_{t}\right\|_{2}^{2}\right] . \tag{3.14}
\end{align*}
$$

At this point, we choose k large enough so that the coefficients of $H(t),\left\|u_{t}\right\|_{2}^{2}$, and $\|u\|_{p}^{p}$ in (3.14) are strictly positive; hence we get

$$
\begin{align*}
L^{\prime}(t) \geq & {\left[(1-\alpha)-\frac{m-1}{m} \varepsilon k\right] H^{-\alpha}(t) H^{\prime}(t) } \\
& +\varepsilon \gamma\left[H(t)+\left\|u_{t}\right\|_{2}^{2}+\|u\|_{p}^{p}\right], \tag{3.15}
\end{align*}
$$

where $\gamma>0$ is the minimum of these coefficients. Once k is fixed (hence γ), we pick ε small enough so that $(1-\alpha)-\varepsilon k(m-1) / m \geq 0$ and

$$
L(0)=H^{1-\alpha}(0)+\varepsilon \int_{\Omega} u_{0} u_{1}(x) d x>0 .
$$

Therefore (3.15) takes the form

$$
\begin{equation*}
L^{\prime}(t) \geq \gamma \varepsilon\left[H(t)+\left\|u_{t}\right\|_{2}^{2}+\|u\|_{p}^{p}\right] . \tag{3.16}
\end{equation*}
$$

Consequently we have

$$
L(t) \geq L(0)>0, \quad \forall t \geq 0 .
$$

Next we estimate the second term in (3.7) as follows:

$$
\left|\int_{\Omega} u u_{t}(x, t) d x\right| \leq\|u\|_{2}\left\|u_{t}\right\|_{2} \leq C\|u\|_{p}\left\|u_{t}\right\|_{2} .
$$

So we have

$$
\left|\int_{\Omega} u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C\|u\|_{p}^{1 /(1-\alpha)}\left\|u_{t}\right\|_{2}^{1 /(1-\alpha)}
$$

Again Young's inequality gives

$$
\begin{equation*}
\left|\int_{\Omega} u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C\left[\|u\|_{p}^{\mu /(1-\alpha)}+\left\|u_{t}\right\|_{2}^{\theta /(1-\alpha)}\right] \tag{3.17}
\end{equation*}
$$

for $1 / \mu+1 / \theta=1$. We take $\theta=2(1-\alpha)$ to get $\mu /(1-\alpha)=2 /(1-2 \alpha) \leq p$ by condition (3.8). Therefore (3.17) becomes

$$
\left|\int_{\Omega} u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C\left[\|u\|_{p}^{s}+\left\|u_{t}\right\|_{2}^{2}\right]
$$

where $s=2 /(1-2 \alpha) \leq p$. By using Corollary 3.2 we obtain

$$
\begin{equation*}
\left|\int_{\Omega} u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C\left[H(t)+\|u\|_{p}^{p}+\left\|u_{t}\right\|_{2}^{2}\right], \quad \forall t \geq 0 \tag{3.18}
\end{equation*}
$$

Consequently we have

$$
\begin{align*}
L^{1 /(1-\alpha)}(t) & =\left(H^{1-\alpha}(t)+\varepsilon \int_{\Omega} u u_{t}(x, t) d x\right)^{1 /(1-\alpha)} \\
& \leq 2^{1 /(1-\alpha)}\left(H(t)+\left|\int_{\Omega} u u_{t}(x, t) d x\right|^{1 /(1-\alpha)}\right) \\
& \leq C\left(H(t)+\|u\|_{p}^{p}+\left\|u_{t}\right\|_{2}^{2}\right) \tag{3.19}
\end{align*}
$$

We then combine (3.16) and (3.19), to arrive at

$$
\begin{equation*}
L^{\prime}(t) \geq \Gamma L^{1 /(1-\alpha)}(t) \tag{3.20}
\end{equation*}
$$

where Γ is a constant depending on C, γ, and ε only (and hence is independent of the solution u). A simple integration of (3.20) over $(0, t)$ then yields

$$
L^{\alpha /(1-\alpha)}(t) \geq \frac{1}{L^{-\alpha /(1-\alpha)}(0)-\Gamma t \alpha /(1-\alpha)}
$$

Therefore $L(t)$ blows up in a time

$$
\begin{equation*}
T^{*} \leq \frac{1-\alpha}{\Gamma \alpha[L(0)]^{\alpha /(1-\alpha)}} \tag{3.21}
\end{equation*}
$$

Remark 2.1. By following the steps of the proof of Theorem 3.3 closely, one can easily see that the blow-up result holds even for $1<m<p$. Therefore this method is a unified one for both linear and nonlinear damping cases.

Remark 2.2. The estimate (3.21) shows that $L(0)$ is larger when the blow-up takes place more quickly.

4. GLOBAL EXISTENCE

In this section, we show that the solution (2.5) is global if $m \geq p$.
Theorem 4.1. Assume that (2.2) and (2.4) hold such that $m \geq p$. Then for any ϕ in $H_{0}^{2}(\Omega)$ and φ in $L^{2}(\Omega)$, the problem (1.2) has a unique weak solution $u \in \mathbf{Y}$, for any $T>0$.

Proof. Similar to [3], we define the functional

$$
F(t):=\frac{1}{2} \int_{\Omega}\left[u_{t}^{2}+(\Delta u)^{2}\right](x, t) d x+\frac{b}{p} \int_{\Omega}|u(x, t)|^{p} d x .
$$

By taking a derivative and using Eq. (1.2), we obtain

$$
F^{\prime}(t)=-a\left\|u_{t}\right\|_{m}^{m}+2 b \int_{\Omega} u_{t} u|u(x, t)|^{p-2} d x
$$

By using Young's inequality, we get

$$
\left.F^{\prime}(t) \leq-a\left\|u_{t}\right\|_{m}^{m}+\delta\left\|u_{t}\right\|_{p}^{p}+C_{\delta}\right]\|u\|_{p}^{p}
$$

By noting that $m \geq p$, we easily see that

$$
F^{\prime}(t) \leq-a\left\|u_{t}\right\|_{m}^{m}+C \delta\left\|u_{t}\right\|_{m}^{p}+C_{\delta}\|u\|_{p}^{p}
$$

where C is a constant depending on Ω only and C_{δ} is a constant depending on δ. At this point we distinguish two cases: either $\left\|u_{t}\right\|_{m}>1$, so we choose δ small enough so that $-a\left\|u_{t}\right\|_{m}^{m}+C \delta\left\|u_{t}\right\|_{m}^{p} \leq 0$, and hence $F^{\prime}(t) \leq C_{\delta}\|u\|_{p}^{p}$. Or $\left\|u_{t}\right\|_{m} \leq 1$; in this case we have $F^{\prime}(t) \leq C \delta+C_{\delta}\|u\|_{p}^{p}$. Therefore, in either case, we have

$$
F^{\prime}(t) \leq c_{1}+c F(t)
$$

A simple integration then yields

$$
F(t) \leq\left(F(0)+c_{1} / c\right) e^{c t} .
$$

The last estimate, together with the continuation principle, completes the proof.

ACKNOWLEDGMENT

The author expresses his sincere thanks to King Fahd University of Petroleum and Minerals for its support.

REFERENCES

1. M. Aassila and A. Guesmia, Energy decay for a damped nonlinear hyperbolic equation, Appl. Math Lett. 12 (1999), 49-52.
2. V. Barbu, "Analysis and Control of Nonlinearinfinite Dimensional Systems," Academic Press, New York 1993.
3. V. Georgiev and G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms, J. Differential Equations 109, No. 2 (1994), 295-308.
4. A. Guesmia, Existence globale et stabilisation interne non linéaire d'un système de Petrovsky, Bell. Belg. Math. Soc. 5 (1998), 583-594.
5. A. Guesmia, Energy decay for a damped nonlinear coupled system, J. Math. Anal. Appl. 239 (1999), 38-48.
6. V. Komornik, "Exact Controllability and Stabilization. The Multiplier Method," Masson, Paris, 1994.
7. J. L. Lions, "Quelques methodes de resolution des problèmes aux limites nonlinéaires," Dunod Gautier-Villars, Paris, 1969.
8. J. L. Lions and E. Magenes, "Problèmes aux limites nonhomogènes et applications," Vols. 1 and 2, Dunod, Paris, 1968.
