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Abstract. The issue of stablity of solutions to nonlinear wave equations has
been addressed by many authors. So many results concerning energy decay
have been established. Here in this paper we consider the following nonlin-
early damped wave equation

utt − ∆u + a(1 + |ut|m−2)ut = bu|u|p−2,

a, b > 0, in a bounded domain and show that, for suitably chosen initial
data, the energy of the solution decays exponentially even if m > 2.
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1 Introduction

In [9] Messaoudi considered the following problem

utt − ∆u + g(ut) + f(u) = 0, x ∈ Ω, t > 0
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.1)
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where f(u) = bu|u|p−2, g(ut) = a(1 + |ut|m−2)ut, a, b > 0, m, p > 2, and Ω is a
bounded domain of R

n(n ≥ 1), with a smooth boundary ∂Ω. He showed that,
for any initial data (u0, u1) ∈ H1

0 (Ω) × L2(Ω), the problem has a unique global
solution with energy decaying exponentially. In the case when g(ut) = |ut|m−2ut,
Nakao [12] showed that (1.1) has a unique global weak solution if 0 ≤ p − 2 ≤
2/(n − 2), n ≥ 3 and a global unique strong solution if p − 2 > 2/(n − 2), n ≥ 3
(of course if n = 1 or 2 then the only requirement is p ≥ 2). In addition to global
existence the issue of the decay rate was also addressed. In both cases it has been
shown that the energy of the solution decays algebraically if m > 2 and decays
exponentially if m = 2. This improves an earlier result by Nakao [11], where he
studied the problem in an abstract setting and established a theorem concerning
decay of the solution energy only for the case m − 2 ≤ 2/(n − 2), n ≥ 3. Also in a
joint work, Nakao and Ono [13] extended this result to the Cauchy problem

utt − ∆u + λ2(x)u + ρ(ut) + f(u) = 0, x ∈ R
n, t > 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ R
n, (1.2)

where ρ(ut) behaves like |ut|βut and f(u) behaves like −bu|u|α. In this case the
authors required that the initial data be small enough in the H1 × L2 norm and
with compact support. Later on, Ono [14] studied the global existence and the
decay properties of smooth solutions to the Cauchy problem related to (1.1), for
f ≡ 0 and gave sharp decay estimates of the solution without any restrictions on
the data size. Concerning nonexistence in (1.1), it is well known that if a = 0 then
the source term f(u) = −bu|u|p−2 causes finite time blow up of solutions with
negative initial energy (see [1], [3], [4]). The interaction between the damping
and the source terms was first considered by Levine [5] in the linear damping case
(m = 2). He showed that solutions with negative initial energy blow up in finite
time. Georgiev and Todorova [2] extended Levine’s result to the nonlinear damp-
ing case (g(ut) = |ut|m−2ut). In their work the authors introduced a new method
and determined suitable relations between m and p, for which there is global exis-
tence or alternatively finite time blow up. Precisely they showed that the solutions
continue to exist globally ‘in time’ if m ≥ p and blow up in finite time if m < p and
the initial energy is sufficiently negative. This result was later generalized to an
abstract setting and to unbounded domains by Levine and Serrin [6] and Levine,
Pucci, and Serrin [7], and Levine and Park [8]. In these papers, the authors
showed that no solution with negative energy can be extended on [0,∞), if the
nonlinearity dominates the damping effect (p > m). This generalization allowed
them also to apply their result to quasilinear situations. Vitillaro [19] extended
these results to situations where the damping is nonlinear and the solution has
positive initial energy. It is also worth mentioning that the blow up result of [2]
has been improved by Messaoudi [10], where the condition of sufficiently negative
has been weakened to negative only. In this paper we are concerned with (1.1),
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for f(u) = −bu|u|p−2. and g(ut) = a(1 + |ut|m−2)ut. Precisely we consider

utt − ∆u + a(1 + |ut|m−2)ut = bu|u|p−2, x ∈ Ω, t > 0
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω (1.3)

and show that for suitably chosen initial data, (1.3) possesses a global weak solu-
tion, which decays exponentially even if m > 2. Our proof of the global existence
is based on the use of the potential well theory introduced by Sattiger [16] and
Payne and Sattiger [15]. See also Todorova [17], [18] for more recent work. We
first state an existence result, which is known as a standard one (see [2]).

Proposition. Suppose that m ≥ 2, p ≥ 2, such that

p ≤ 2
n − 1
n − 2

, n ≥ 3 (1.4)

and let (u0, u1) ∈ H1
0 (Ω) × L2(Ω) be given. Then problem (1.3) has a unique

solution

u ∈ C([0, T ); H1
0 (Ω))

ut ∈ C([0, T ); L2(Ω)) ∩ Lm(Ω x (0, T )). (1.5)

for some T small.

Remark 1.1 Condition (1.4) is needed to establish the local existence result
(see [2]). In fact, under this condition the nonlinearity is Lipschitz from H1(Ω)
to L2(Ω). Also from Poincaré’s inequality and Sobolev embedding theorems, there
exists a constants C∗ depending on Ω, m only such that

‖u‖q ≤ C∗‖∇u‖2, 2 ≤ q ≤ 2n

n − 2
, n ≥ 3. (1.6)

2 Main result

In order to state and prove our main result we first introduce the following

I(t) = I(u(t)) = ‖∇u(t)‖2
2 − b‖u(t)‖p

p

J(t) = J(u(t)) =
1
2
‖∇u(t)‖2

2 − b

p
‖u(t)‖p

p

E(t) = E(u(t), ut(t)) = J(t) +
1
2
‖ut(t)‖2

2

H = {w ∈ H1
0 (Ω)/I(w) > 0} ∪ {0} (2.1)

where we are using w(t) instead of w(., t).
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Remark 2.1 By multiplying equation (1.3) by ut, integrating over Ω, and using
integration by parts, we get

E′(t) = −a(‖ut(t)‖m
m + ‖ut(t)‖2

2) ≤ 0, (2.2)

for almost each t in [0, T ).

Lemma 2.1 Suppose that

2 < p ≤ 2
n − 1
n − 2

, n ≥ 3 (2.3)

holds. If u0 ∈ H and u1 ∈ L2(Ω) such that

β = bCp
∗

(
2p

p − 2
E(u0, u1)

)(p−2)/2

< 1 (2.4)

then u(t) ∈ H, for each t ∈ [0, T ).

Proof. Since I(u0) > 0 then there exists Tm ≤ T such that I(u(t)) ≥ 0 for all
t ∈ [0, Tm). This implies

J(t) =
1
2
‖∇u(t)‖2

2 − b

p
‖u(t)‖p

p

=
p − 2
2p

‖∇u(t)‖2
2 +

1
p
I(u(t))

≥ p − 2
2p

‖∇u(t)‖2
2, ∀t ∈ [0, Tm); (2.5)

hence

‖∇u(t)‖2
2 ≤ 2p

p − 2
J(t) ≤ 2p

p − 2
E(t)

≤ 2p

p − 2
E(u0, u1), ∀t ∈ [0, Tm). (2.6)

By exploiting (1.6), (2.4), and (2.6), we easily arrive at

b‖u(t)‖p
p ≤ bCp

∗‖∇u(t)‖p
2 = bCp

∗‖∇u(t)‖p−2
2 ‖∇u(t)‖2

2

≤ bCp
∗

(
2p

p − 2
E(u0, u1)

)(p−2)/2

‖∇u(t)‖2
2 = β‖∇u(t)‖2

2

< ‖∇u(t)‖2
2, ∀t ∈ [0, Tm); (2.7)

hence ‖∇u(t)‖2
2 − b‖u(t)‖p

p > 0, ∀t ∈ [0, Tm). This shows that u(t) ∈ H, ∀t ∈
[0, Tm). By noting that bC p

∗(
2p

p−2E(u(Tm), ut(Tm)))(p−2)/2 < 1 we easily repeat
the steps (2.5)–(2.7) to extend Tm to 2Tm. We continue this procedure until
u(t) ∈ H, ∀t ∈ [0, T ). �
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Theorem 2.2 Suppose that (2.3) holds. If u0 ∈ H and u1 ∈ L2(Ω) satisfying
(2.4) Then the solution is global

Proof. It suffices to show that ‖∇u(t)‖2
2 +‖ut(t)‖2

2 is bounded independently of t.
To achieve this we use (2.1) and (2.2); so

E(u0, u1) ≥ E(t) =
1
2
‖∇u(t)‖2

2 − b

p
‖u(t)‖p

p +
1
2
‖ut(t)‖2

2

=
p − 2
2p

‖∇u(t)‖2
2 +

1
p
I(u(t)) +

1
2
‖ut(t)‖2

2

≥ p − 2
2p

‖∇u(t)‖2
2 +

1
2
‖ut(t)‖2

2 (2.8)

since I(u(t)) ≥ 0. Therefore

‖∇u(t)‖2
2 + ‖ut(t)‖2

2 ≤ C1E(u0, u1)

for C = max{2, 2p/(p − 2)}. �

Remark 2.2 If m ≥ p then the global existence can be obtained for any u0 ∈
H1

0 (Ω) and any u1 ∈ L2(Ω). See [2].

Lemma 2.3 Suppose that

2 < m ≤ 2n

n − 2
, n ≥ 3. (2.9)

Then the solution satisfies

‖u(t)‖m
m ≤ CE(t), (2.10)

for some constant C independent of t.

Proof.

‖u(t)‖m
m ≤ Cm

∗ ‖∇u(t)‖m
2 ≤ Cm

∗ ‖∇u(t)‖m−2
2 ‖∇u(t)‖2

2

≤ Cm
∗

(
2p

p − 2
E(u0, u1)

)(m−2)/2 2p

p − 2
E(t)

by virtue of (1.5) and (2.8). Therefore (2.10) is established. �

Theorem 2.4 Suppose that (2.3), (2.4), and (2.9) hold. Then there exist positive
constants K and k such that the global solution of (1.3) satisfies

E(t) ≤ Ke−kt, ∀t ≥ 0. (2.11)
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Proof. We define

F (t) := E(t) + ε

∫
Ω

(
u(t)ut(t) +

a

2
u2(t)

)
dx, (2.12)

for ε so small that

α1F (t) ≤ E(t) ≤ α2F (t), (2.13)

holds for two positive constants α1 and α2.We differentiate (2.12) and use equation
(1.3) to obtain

F ′(t) = −a

∫
Ω

|ut(t)|2dx − a

∫
Ω

|ut(t)|mdx + ε

∫
Ω
[u2

t (t) − |∇u(t)|2]dx

− aε

∫
Ω

|ut(t)|m−2ut(t)u(t)dx + εb

∫
Ω

|u(t)|pdx

≤ −a

∫
Ω

|ut(t)|mdx − [a − ε]
∫

Ω
u2

t (t)dx − ε

∫
Ω

|∇u(t)|2dx

+ aε

∫
Ω

|ut(t)|m−1|u(t)|dx + εb

∫
Ω

|u(t)|pdx. (2.14)

We then use (2.1) and (2.7) to get

b

∫
Ω

|u(t)|pdx = αb

∫
Ω

|u(t)|pdx + (1 − α)b
∫

Ω
|u(t)|pdx

= α

(
p

2

∫
Ω

u2
t (t)dx +

p

2

∫
Ω

|∇u(t)|2dx − pE(t)
)

+ (1 − α)β
∫

Ω
|∇u(t)|2dx, 0 < α < 1 (2.15)

and exploit Young’s inequality to estimate
∫

Ω
|ut(t)|m−1|u(t)dx| ≤ δ‖u(t)‖m

m + c(δ)‖u(t)t‖m
m, ∀δ > 0. (2.16)

Therefore a combination of (2.14)–(2.16) gives

F ′(t) ≤ −a

∫
Ω

|ut(t)|mdx −
[
a − ε

(αp

2
+ 1

)] ∫
Ω

u2
t (t)dx − αpE(t)

+ ε
[
α

(p

2
− 1

)
− η(1 − α)

] ∫
Ω

|∇u(t)|2dx

+ εa (δ‖u(t)‖m
m + c(δ)‖ut(t)‖m

m) (2.17)
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where η = 1 − β. By using (2.8) and choosing α close to 1 so that α(p
2 − 1) −

η(1 − α) ≥ 0, we arrive at

F ′(t) ≤ −a

∫
Ω

|ut(t)|mdx −
[
a − ε

(αp

2
+ 1

)] ∫
Ω

u2
t (t)dx − αpE(t)

+ ε
[
α

(p

2
− 1

)
− η(1 − α)

] 2p

p − 2
E(t)

+ εa (δ‖u(t)‖m
m + c(δ)‖ut(t)‖m

m)

≤ −a

∫
Ω

|ut(t)|mdx −
[
a − ε

(αp

2
+ 1

)] ∫
Ω

u2
t (t)dx

− ηε(1 − α)
2p

p − 2
E(t) + εa (δ‖u(t)‖m

m + c(δ)‖ut(t)‖m
m) (2.18)

We then recall Lemma 2.3 to substitute for ‖u(t)‖m
m; hence (2.18) becomes

F ′(t) ≤ −a [1 − εc(δ)] ‖ut(t)‖m
m −

[
a − ε

(αp

2
+ 1

)] ∫
Ω

u2
t (t)dx

−ε

[
η(1 − α)

2p

p − 2
− δaC

]
E(t). (2.19)

At this point we choose δ so small that η(1 − α) 2p
p−2 − δaC > 0. Once δ is chosen

we then pick ε so small that 1 − εc(δ) ≥ 0, a − ε(αp
2 + 1) ≥ 0, and (2.13) remains

valid. Consequently (2.19) yields

F ′(t) ≤ −ε

[
η(1 − α)

2p

p − 2
− δaC

]
E(t)

≤ −εα2

[
η(1 − α)

2p

p − 2
− δaC

]
F (t) (2.20)

by virtue of (2.13). A simple integration of (2.20) then leads to

F (t) ≤ F (0)e−kt, (2.21)

where k = εα2[η(1 − α) 2p
p−2 − δaC ] Again using (2.13) we obtain (2.11). This

completes the proof. �
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