Blow Up in a Nonlinearly Damped Wave Equation

By SALIM A. MESSAOUDI of Dhahran

(Received November 19, 1999; revised version October 10, 2000; accepted October 20, 2000)

Abstract. In this paper we consider the nonlinearly damped semilinear wave equation

$$u_{tt} - \Delta u + au_t |u_t|^{m-2} = bu|u|^{p-2}$$

associated with initial and Dirichlet boundary conditions. We prove that any strong solution, with negative initial energy, blows up in finite time if p > m. This result improves an earlier one in [2].

1. Introduction

In this paper we are concerned with the following initial boundary value problem.

$$(1.1) u_{tt} - \Delta u + au_t |u_t|^{m-2} = bu |u|^{p-2}, \quad x \in \Omega, \quad t > 0,$$

$$u(x,t) = 0, \quad x \in \partial\Omega, \quad t \geq 0,$$

$$u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x), \quad x \in \Omega,$$

where a, b > 0, p, m > 2, and Ω is a a bounded domain of \mathbb{R}^n $(n \ge 1)$, with a smooth boundary $\partial \Omega$. For b = 0, it is well–known that the damping term $au_t |u_t|^{m-2}$ assures global existence for arbitrary initial data (see [3], [5]). If a = 0 then the source term $bu |u|^{p-2}$ causes finite time blow up of solutions with negative initial energy (see [1], [4], [6], [7]).

The interaction between the damping and the source terms was first considered by Levine [6], [7] in the linear damping case (m=2). He showed that solutions with negative initial energy blow up in finite time. Recently Georgiev and Todorova [2] extended Levine's result to the nonlinear case (m>2). In their work, the authors introduced a different method and determined suitable relations between m and p, for which there is global existence or alternatively finite time blow up. Precisely: they showed that solutions with negative energy continue to exist globally "in time"

¹⁹⁹¹ Mathematics Subject Classification. 35L45.

Keywords and phrases. Nonlinear damping, negative initial energy, noncontinuation, blow up, finite time.

if $m \geq p$ and blow up in finite time if p > m and the initial energy is sufficiently negative.

This result has been lately generalized to an abstract setting and to unbounded domains by Levine and Serrin [8] and Levine, Park, and Serrin [9]. In these papers, the authors showed that no solution with negative energy can be extended on $[0,\infty)$ if p>m and proved several noncontinuation theorems. This generalization allowed them also to apply their result to quasilinear situations, of which problem (1.1) is a particular case.

VITILLARO [10] combined the arguments in [2] and [8] to extend these results to situations where the damping is nonlinear and the solution has positive initial energy.

In this work, we prove the same result of [2] without imposing the condition that the initial energy is sufficiently negative. In other words, we show that any solution of (1.1) with negative initial energy — however close to zero is — blows up in finite time. In addition to ommitting the condition of large "negative" initial data, our technique of proof is simpler than the ones in [2] and [8]. We first state a local result established in [2].

Theorem 1.1. Suppose that m > 2, p > 2, and

$$(1.2) p \le 2 \frac{n-1}{n-2}, \quad n \ge 3.$$

Assume further that

$$(1.3) (u_0, u_1) \in H_0^1(\Omega) \times L^2(\Omega).$$

Then the problem (1.1) has a unique local solution

(1.4)
$$u \in C([0,T); H_0^1(\Omega)), \quad u_t \in C([0,T); L^2(\Omega)) \cap L^m(\Omega \times (0,T)),$$

T is small.

Remark 1.2. The condition on p, in (1.2), is needed to establish the local existence result (see [2]). In fact under this condition, the nonlinearity is Lipschitz from $H^1(\Omega)$ to $L^2(\Omega)$.

2. Main result

In this section we show that the solution (1.4) blows up in finite time if p > m and E(0) < 0, where

(2.1)
$$E(t) := \frac{1}{2} \int_{\Omega} \left[u_t^2 + |\nabla u|^2 \right] (x, t) \, dx - \frac{b}{p} \int_{\Omega} |u(x, t)|^p \, dx \, .$$

Lemma 2.1. Suppose that (1.2) holds. Then there exists a positive constant C > 1 depending on Ω only such that

$$(2.2) ||u||_p^s \le C(||\nabla u||_2^2 + ||u||_p^p)$$

for any $u \in H_0^1(\Omega)$ and $2 \le s \le p$.

Proof. If $||u||_p \le 1$ then $||u||_p^s \le ||u||_p^2 \le C ||\nabla u||_2^2$ by Sobolev embedding theorems. If $||u||_p > 1$ then $||u||_p^s \le ||u||_p^p$. Therefore (2.2) follows.

We set

$$H(t) := -E(t)$$

and use, throughout this paper, C to denote a generic positive constant depending on Ω only. As a result of (2.1), (2.2), we have

Corollary 2.2. Let the assumptions of the lemma hold. Then we have

$$(2.3) ||u||_p^s \le C(|H(t)| + ||u_t||_2^2 + ||u||_p^p)$$

for any $u \in H_0^1(\Omega)$ and $2 \le s \le p$.

Theorem 2.3. Let the conditions of the Theorem 1.1 be fulfilled. Assume further that p > m and

$$(2.4) E(0) < 0.$$

Then the solution (1.4) blows up in finite time.

Remark 2.4. Note that contrary to [2], no condition on the size of the initial data has been done. The blow up takes place for any initial data satisfying (2.4).

Proof. We multiply Equation (1.1) by u_t and integrate over Ω to get

(2.5)
$$E'(t) = -a \int_{\Omega} |u_t(x,t)|^m dx,$$

for almost every t in [0, T) since E'(t) is absolutely continuous (see [2]); hence $H'(t) \ge 0$. So we have

$$(2.6) 0 < H(0) \le H(t) \le \frac{b}{p} ||u||_p^p,$$

for every t in [0,T), by virtue of (2.4). We then define

(2.7)
$$L(t) := H^{1-\alpha}(t) + \varepsilon \int_{\Omega} u u_t(x,t) dx$$

for ε small to be chosen later and

(2.8)
$$0 < \alpha \le \min \left\{ \frac{(p-2)}{2p}, \frac{(p-m)}{p(m-1)} \right\}.$$

By taking a derivative of (2.7) and using Equation (1.1) we obtain

(2.9)
$$L'(t) := (1-\alpha)H^{-\alpha}(t)H'(t) + \varepsilon \int_{\Omega} \left[u_t^2 - |\nabla u|^2\right](x,t) dx + \varepsilon b \int_{\Omega} |u(x,t)|^p dx - a\varepsilon \int_{\Omega} |u_t|^{m-2} u_t u(x,t) dx.$$

We then exploit Young's inequality

$$XY \le \frac{\delta^r}{r} X^r + \frac{\delta^{-q}}{q} Y^q, \quad X, Y \ge 0, \quad \text{for all} \quad \delta > 0, \quad \frac{1}{r} + \frac{1}{q} = 1$$

with r = m and q = m/(m-1) to estimate the last term in (2.9) as follows

$$\int_{\Omega} |u_t|^{m-1} |u| dx \leq \frac{\delta^m}{m} ||u||_m^m + \frac{m-1}{m} \delta^{-m/(m-1)} ||u_t||_m^m$$

which yields, by substitution in (2.9),

$$L'(t) \geq \left[(1-\alpha)H^{-\alpha}(t) - \frac{m-1}{m} \varepsilon \delta^{-m/(m-1)} \right] H'(t)$$

$$(2.10) \qquad + \varepsilon \int_{\Omega} \left[u_t^2 - |\nabla u|^2 \right] (x,t) \, dx + \varepsilon \left[pH(t) + \frac{p}{2} \int_{\Omega} \left[u_t^2 + |\nabla u|^2 \right] (x,t) \, dx \right]$$

$$- \varepsilon a \frac{\delta^m}{m} ||u||_m^m, \quad \text{for all} \quad \delta > 0.$$

Of course (2.10) remains valid even if δ is time dependant since the integral is taken over the x variable. Therefore by taking δ so that $\delta^{-m/(m-1)} = kH^{-\alpha}(t)$, for large k to be specified later, and substituting in (2.10) we arrive at

$$(2.11) L'(t) \geq \left[(1-\alpha) - \frac{m-1}{m} \varepsilon k \right] H^{-\alpha}(t) H'(t) + \varepsilon \left(\frac{p}{2} + 1 \right) \int_{\Omega} u_t^2(x,t) \, dx + \varepsilon \left(\frac{p}{2} - 1 \right) \int_{\Omega} |\nabla u|^2(x,t) \, dx + \varepsilon \left[pH(t) - \frac{k^{1-m}}{m} a H^{\alpha(m-1)}(t) ||u||_m^m \right].$$

By exploiting (2.6) and the inequality $||u||_m^m \le C \, ||u||_p^m$, we obtain

$$H^{\alpha(m-1)}(t) ||u||_m^m \le \left(\frac{b}{p}\right)^{\alpha(m-1)} C ||u||_p^{m+\alpha p(m-1)},$$

hence (2.11) yields

$$(2.12) L'(t) \geq \left[(1-\alpha) - \frac{m-1}{m} \varepsilon k \right] H^{-\alpha}(t) H'(t) + \varepsilon \left(\frac{p}{2} + 1 \right) \int_{\Omega} u_t^2(x,t) dx$$

$$+ \varepsilon \left(\frac{p}{2} - 1 \right) \int_{\Omega} |\nabla u|^2(x,t) dx$$

$$+ \varepsilon \left[pH(t) - \frac{k^{1-m}}{m} a \left(\frac{b}{p} \right)^{\alpha(m-1)} C ||u||_p^{m+\alpha p(m-1)} \right].$$

We then use Corollary 2.2 and (2.8), for $s = m + \alpha p(m-1) \le p$, to deduce from (2.12)

$$(2.13) L'(t) \geq \left[(1-\alpha) - \frac{m-1}{m} \varepsilon k \right] H^{-\alpha}(t) H'(t) + \varepsilon \left(\frac{p}{2} + 1 \right) \int_{\Omega} u_t^2(x,t) dx + \varepsilon \left(\frac{p}{2} - 1 \right) \int_{\Omega} |\nabla u|^2(x,t) dx + \varepsilon \left[pH(t) - C_1 k^{1-m} \left\{ H(t) + ||u_t||_2^2 + ||u||_p^p \right\} \right],$$

where $C_1 = a \left(\frac{b}{p}\right)^{\alpha(m-1)} C/m$. By noting that

$$H(t) = \frac{b}{p} ||u||_p^p - \frac{1}{2} ||u_t||_2^2 - \frac{1}{2} ||\nabla u||_2^2$$

and writing p = (p+2)/2 + (p-2)/2, (2.13) yields

$$L'(t) \geq \left[(1-\alpha) - \frac{m-1}{m} \varepsilon k \right] H^{-\alpha}(t) H'(t) + \frac{p-2}{4} ||\nabla u||_{2}^{2}$$

$$+ \varepsilon \left[\left(\frac{p+2}{2} - C_{1} k^{1-m} \right) H(t) + \left(\frac{p-2}{2p} b - C_{1} k^{1-m} \right) ||u||_{p}^{p} \right]$$

$$+ \left(\frac{p+6}{4} - C_{1} k^{1-m} \right) ||u_{t}||_{2}^{2}$$

At this point, we choose k large enough so that the coefficients of H(t), $||u_t||_2^2$, and $||u||_p^p$ in (2.14) are strictly positive; hence we get

$$(2.15) L'(t) \ge \left[(1 - \alpha) - \frac{m - 1}{m} \varepsilon k \right] H^{-\alpha}(t) H'(t) + \varepsilon \gamma \left[H(t) + ||u_t||_2^2 + ||u||_p^p \right],$$

where $\gamma > 0$ is the minimum of these coefficients. Once k is fixed (hence γ), we pick ε small enough so that $(1 - \alpha) - \varepsilon k(m - 1)/m \ge 0$ and

$$L(0) = H^{1-\alpha}(0) + \varepsilon \int_{\Omega} u_0 u_1(x) dx > 0.$$

Therefore (2.15) takes the form

(2.16)
$$L'(t) \geq \gamma \varepsilon \left[H(t) + ||u_t||_2^2 + ||u||_p^p \right].$$

Consequently we have

$$L(t) \geq L(0) > 0$$
, for all $t \geq 0$.

Next we would like to show that

(2.17)
$$L'(t) \geq \Gamma L^{1/(1-\alpha)}(t)$$
, for all $t \geq 0$,

where Γ is a positive constant depending on $\varepsilon\gamma$ and C (the constant of Lemma 2.1). Once (2.17) is established, we obtain in a standard way the finite time blow up of L(t), hence of u (see [1] for instance).

To prove (2.17), we first estime

$$\left| \int_{\Omega} u u_t(x,t) \, dx \right| \leq ||u||_2 ||u_t||_2 \leq C ||u||_p ||u_t||_2$$

which implies

$$\left| \int_{\Omega} u u_t(x,t) \, dx \right|^{1/(1-\alpha)} \leq C ||u||_p^{1/(1-\alpha)} ||u_t||_2^{1/(1-\alpha)}.$$

Again Young's inequality gives us

(2.18)
$$\left| \int_{\Omega} u u_t(x,t) \, dx \right|^{1/(1-\alpha)} \leq C \left[||u||_p^{\mu/(1-\alpha)} + ||u_t||_2^{\theta/(1-\alpha)} \right],$$

for $1/\mu + 1/\theta = 1$. We take $\theta = 2(1-\alpha)$, to get $\mu/(1-\alpha) = 2/(1-2\alpha) \le p$ by (2.8). Therefore (2.18) becomes

$$\left| \int_{\Omega} u u_t(x,t) \, dx \right|^{1/(1-\alpha)} \leq C \left[||u||_p^s + ||u_t||_2^2 \right],$$

where $s = 2/(1-2\alpha) \le p$. By using Corollary 2.2 we obtain

$$(2.19) \qquad \left| \int_{\Omega} u u_t(x,t) \, dx \right|^{1/(1-\alpha)} \leq C \left[H(t) + ||u||_p^p + ||u_t||_2^2 \right], \quad \text{for all} \quad t \geq 0.$$

Finally by noting that

$$L^{1/(1-\alpha)}(t) = \left(H^{1-\alpha}(t) + \varepsilon \int_{\Omega} u u_t(x,t) dx\right)^{1/(1-\alpha)}$$

$$\leq 2^{1/(1-\alpha)} \left(H(t) + \left| \int_{\Omega} u u_t(x,t) dx \right|^{1/(1-\alpha)} \right)$$

and combining it with (2.16) and (2.19), the inequality (2.17) is established. This completes the proof.

Acknowledgements

The author would like to express his sincere thanks to KFUPM for its support.

References

- Ball, J.: Remarks on Blow Up and Nonexistence Theorems for Nonlinear Evolutions Equations, Quart. J. Math. Oxford 28 (1977), 473-486
- [2] GEORGIEV, V., and TODOROVA, G.: Existence of Solutions of the Wave Equation with Nonlinear Damping and Source Terms, J. Diff. Eqns. 109 (1994), 295-308
- [3] HARAUX, A., and ZUAZUA, E.: Decay Estimates for Some Semilinear Damped Hyperbolic Problems, Arch. Rational Mech. Anal. 150 (1988), 191–206
- [4] KALANTAROV, V. K., and LADYZHENSKAYA, O. A.: The Occurrence of Collapse for Quasilinear Equations of Parabolic and Hyperbolic Type, J. Soviet Math. 10 (1978), 53-70
- [5] KOPACKOVA, M.: Remarks on Bounded Solutions of a Semilinear Dissipative Hyperbolic Equation, Comment. Math. Univ. Carolin. 30 (1989), 713-719
- [6] LEVINE, H. A.: Instability and Nonexistene of Global Solutions of Nonlinear Wave Equation of the Form $Pu_{tt} = Au + F(u)$, Trans. Amer. Math. Soc. **192** (1974), 1–21
- [7] LEVINE, H. A.: Some Additional Remarks on the Nonexistence of Global Solutions to Nonlinear Wave Equation, SIAM J. Math. Anal. 5 (1974), 138-146
- [8] LEVINE, H.A., and SERRIN, J.: A Global Nonexistence Theorem for Quasilinear Evolution Equation with Dissipation, Arch. Rational Mech. Anal. 137 (1997), 341–361

- [9] LEVINE, H. A., and Ro PARK, S.: Global Existence and Global Nonexistence of Solutions of the Cauchy Problem for a Nonlinearly Damped Wave Equation, J. Math. Anal. Appl. 228 (1998), 181–205
- [10] VITILARO, E.: Global Nonexistence Theorems for a Class of Evolution Equations with Dissipation, Arch. Rational Mech. Anal. 149 (1999), 155-182

 $\begin{tabular}{ll} Mathematical Sciences Department \\ KFUPM, Dhahran 31261 \\ Saudi Arabia \\ E-mail: \\ messaoud@kfupm.edu.sa \\ \end{tabular}$