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Abstract. In this paper we consider the nonlinearly damped semilinear wave equation

utt −∆u + aut |ut|m−2 = bu|u|p−2

associated with initial and Dirichlet boundary conditions. We prove that any strong solution, with
negative initial energy, blows up in finite time if p > m. This result improves an earlier one in [2].

1. Introduction

In this paper we are concerned with the following initial boundary value problem.

utt −∆u+ aut |ut|m−2 = bu |u|p−2 , x ∈ Ω , t > 0 ,

u(x, t) = 0 , x ∈ ∂Ω , t ≥ 0 ,

u(x, 0) = u0(x) , ut(x, 0) = u1(x) , x ∈ Ω ,

(1.1)

where a, b > 0, p,m > 2, and Ω is a a bounded domain of IRn (n ≥ 1), with a smooth
boundary ∂Ω. For b = 0, it is well–known that the damping term aut |ut|m−2 assures
global existence for arbitrary initial data (see [3], [5]). If a = 0 then the source term
bu |u|p−2 causes finite time blow up of solutions with negative initial energy (see [1],
[4], [6], [7]).
The interaction between the damping and the source terms was first considered by

Levine [6], [7] in the linear damping case (m = 2). He showed that solutions with
negative initial energy blow up in finite time. Recently Georgiev and Todorova [2]
extended Levine’s result to the nonlinear case (m > 2). In their work, the authors
introduced a different method and determined suitable relations between m and p,
for which there is global existence or alternatively finite time blow up. Precisely:
they showed that solutions with negative energy continue to exist globally “in time”
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if m ≥ p and blow up in finite time if p > m and the initial energy is sufficiently
negative.
This result has been lately generalized to an abstract setting and to unbounded

domains by Levine and Serrin [8] and Levine, Park, and Serrin [9]. In these
papers, the authors showed that no solution with negative energy can be extended
on [0,∞) if p > m and proved several noncontinuation theorems. This generalization
allowed them also to apply their result to quasilinear situations, of which problem
(1.1) is a particular case.

Vitillaro [10] combined the arguments in [2] and [8] to extend these results to
situations where the damping is nonlinear and the solution has positive initial energy.
In this work, we prove the same result of [2] without imposing the condition that

the initial energy is sufficiently negative. In other words, we show that any solution of
(1.1) with negative initial energy — however close to zero is — blows up in finite time.
In addition to ommitting the condition of large “negative” initial data, our technique
of proof is simpler than the ones in [2] and [8]. We first state a local result established
in [2].

Theorem 1.1. Suppose that m > 2, p > 2, and

p ≤ 2
n− 1
n− 2

, n ≥ 3 .(1.2)

Assume further that

(u0, u1) ∈ H1
0(Ω) × L2(Ω) .(1.3)

Then the problem (1.1) has a unique local solution

u ∈ C
(
[0, T );H1

0(Ω)
)
, ut ∈ C

(
[0, T );L2(Ω)

) ∩ Lm(Ω× (0, T )) ,(1.4)

T is small.

Remark 1.2. The condition on p, in (1.2), is needed to establish the local existence
result (see [2]). In fact under this condition, the nonlinearity is Lipschitz from H1(Ω)
to L2(Ω).

2. Main result

In this section we show that the solution (1.4) blows up in finite time if p > m and
E(0) < 0, where

E(t) :=
1
2

∫
Ω

[
u2t + |∇u|2](x, t) dx− b

p

∫
Ω

|u(x, t)|p dx .(2.1)

Lemma 2.1. Suppose that (1.2) holds. Then there exists a positive constant C > 1
depending on Ω only such that

||u||sp ≤ C
(||∇u||22+ ||u||pp

)
(2.2)

for any u ∈ H1
0(Ω) and 2 ≤ s ≤ p.
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Proof . If ||u||p ≤ 1 then ||u||sp ≤ ||u||2p ≤ C ||∇u||22 by Sobolev embedding theorems.
If ||u||p > 1 then ||u||sp ≤ ||u||pp. Therefore (2.2) follows. ✷

We set

H(t) := −E(t)

and use, throughout this paper, C to denote a generic positive constant depending on
Ω only. As a result of (2.1), (2.2), we have

Corollary 2.2. Let the assumptions of the lemma hold. Then we have

||u||sp ≤ C
(|H(t)|+ ||ut||22 + ||u||pp

)
(2.3)

for any u ∈ H1
0(Ω) and 2 ≤ s ≤ p.

Theorem 2.3. Let the conditions of the Theorem 1.1 be fulfilled. Assume further
that p > m and

E(0) < 0 .(2.4)

Then the solution (1.4) blows up in finite time.

Remark 2.4. Note that contrary to [2], no condition on the size of the initial data
has been done. The blow up takes place for any initial data satisfying (2.4).

Proof . We multiply Equation (1.1) by ut and integrate over Ω to get

E′(t) = −a

∫
Ω

|ut(x, t)|m dx ,(2.5)

for almost every t in [0, T ) since E′(t) is absolutely continuous (see [2]); hence H ′(t) ≥
0. So we have

0 < H(0) ≤ H(t) ≤ b

p
||u||pp ,(2.6)

for every t in [0, T ), by virtue of (2.4). We then define

L(t) := H1−α(t) + ε

∫
Ω

uut(x, t) dx(2.7)

for ε small to be chosen later and

0 < α ≤ min
{
(p− 2)

2p
,
(p −m)
p(m− 1)

}
.(2.8)

By taking a derivative of (2.7) and using Equation (1.1) we obtain

L′(t) := (1− α)H−α(t)H ′(t) + ε

∫
Ω

[
u2t − |∇u|2](x, t) dx

+ εb

∫
Ω

|u(x, t)|p dx− aε

∫
Ω

|ut|m−2utu(x, t) dx .

(2.9)
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We then exploit Young’s inequality

XY ≤ δr

r
Xr +

δ−q

q
Y q , X , Y ≥ 0 , for all δ > 0 ,

1
r
+

1
q

= 1

with r = m and q = m/(m− 1) to estimate the last term in (2.9) as follows∫
Ω

|ut|m−1 |u| dx ≤ δm

m
||u||mm +

m− 1
m

δ−m/(m−1) ||ut||mm

which yields, by substitution in (2.9),

L′(t) ≥
[
(1− α)H−α(t) − m− 1

m
εδ−m/(m−1)

]
H ′(t)

+ ε

∫
Ω

[
u2t − |∇u|2](x, t) dx+ ε

[
pH(t) +

p

2

∫
Ω

[
u2t + |∇u|2](x, t) dx]

− εa
δm

m
||u||mm , for all δ > 0 .

(2.10)

Of course (2.10) remains valid even if δ is time dependant since the integral is taken
over the x variable. Therefore by taking δ so that δ−m/(m−1) = kH−α(t), for large k
to be specified later, and substituting in (2.10) we arrive at

L′(t) ≥
[
(1 − α)− m− 1

m
εk

]
H−α(t)H ′(t) + ε

(p
2
+ 1
)∫

Ω

u2t (x, t) dx

+ ε
(p
2
− 1
) ∫

Ω

|∇u|2(x, t) dx+ ε

[
pH(t)− k1−m

m
aHα(m−1)(t) ||u||mm

]
.

(2.11)

By exploiting (2.6) and the inequality ||u||mm ≤ C ||u||mp , we obtain

Hα(m−1)(t) ||u||mm ≤
(
b

p

)α(m−1)

C ||u||m+αp(m−1)
p ,

hence (2.11) yields

L′(t) ≥
[
(1− α)− m− 1

m
εk

]
H−α(t)H ′(t) + ε

(p
2
+ 1
)∫

Ω

u2t (x, t) dx

+ ε
(p
2
− 1
) ∫

Ω

|∇u|2(x, t) dx

+ ε

[
pH(t)− k1−m

m
a

(
b

p

)α(m−1)

C ||u||m+αp(m−1)
p

]
.

(2.12)

We then use Corollary 2.2 and (2.8), for s = m+αp(m−1) ≤ p, to deduce from (2.12)

L′(t) ≥
[
(1− α)− m− 1

m
εk

]
H−α(t)H ′(t) + ε

(p
2
+ 1
)∫

Ω

u2t (x, t) dx

+ ε
(p
2
− 1
) ∫

Ω

|∇u|2(x, t) dx(2.13)

+ ε
[
pH(t)− C1k

1−m
{
H(t) + ||ut||22 + ||u||pp

}]
,
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where C1 = a
(

b
p

)α(m−1)

C/m. By noting that

H(t) =
b

p
||u||pp −

1
2
||ut||22 −

1
2
||∇u||22

and writing p = (p + 2)/2 + (p − 2)/2, (2.13) yields

L′(t) ≥
[
(1− α)− m− 1

m
εk

]
H−α(t)H ′(t) +

p− 2
4

||∇u||22

+ ε

[(
p+ 2
2

− C1k
1−m

)
H(t) +

(
p− 2
2p

b− C1k
1−m

)
||u||pp

+
(
p + 6
4

− C1k
1−m

)
||ut||22

]
(2.14)

At this point, we choose k large enough so that the coefficients of H(t), ||ut||22, and
||u||pp in (2.14) are strictly positive; hence we get

L′(t) ≥
[
(1− α)− m− 1

m
εk

]
H−α(t)H ′(t) + εγ

[
H(t) + ||ut||22 + ||u||pp

]
,(2.15)

where γ > 0 is the minimum of these coefficients. Once k is fixed (hence γ), we pick
ε small enough so that (1− α)− εk(m− 1)/m ≥ 0 and

L(0) = H1−α(0) + ε

∫
Ω

u0u1(x) dx > 0 .

Therefore (2.15) takes the form

L′(t) ≥ γε
[
H(t) + ||ut||22 + ||u||pp

]
.(2.16)

Consequently we have

L(t) ≥ L(0) > 0 , for all t ≥ 0 .

Next we would like to show that

L′(t) ≥ ΓL1/(1−α)(t) , for all t ≥ 0 ,(2.17)

where Γ is a positive constant depending on εγ and C (the constant of Lemma 2.1).
Once (2.17) is established, we obtain in a standard way the finite time blow up of L(t),
hence of u (see [1] for instance).
To prove (2.17), we first estime∣∣∣∣

∫
Ω

uut(x, t) dx
∣∣∣∣ ≤ ||u||2 ||ut||2 ≤ C ||u||p ||ut||2

which implies ∣∣∣∣
∫
Ω

uut(x, t) dx
∣∣∣∣
1/(1−α)

≤ C ||u||1/(1−α)
p ||ut||1/(1−α)

2 .
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Again Young’s inequality gives us∣∣∣∣
∫
Ω

uut(x, t) dx
∣∣∣∣
1/(1−α)

≤ C
[
||u||µ/(1−α)

p + ||ut||θ/(1−α)
2

]
,(2.18)

for 1/µ+ 1/θ = 1. We take θ = 2(1− α), to get µ/(1− α) = 2/(1− 2α) ≤ p by (2.8).
Therefore (2.18) becomes∣∣∣∣

∫
Ω

uut(x, t) dx
∣∣∣∣
1/(1−α)

≤ C
[||u||sp + ||ut||22

]
,

where s = 2/(1− 2α) ≤ p. By using Corollary 2.2 we obtain∣∣∣∣
∫
Ω

uut(x, t) dx
∣∣∣∣
1/(1−α)

≤ C
[
H(t) + ||u||pp + ||ut||22

]
, for all t ≥ 0 .(2.19)

Finally by noting that

L1/(1−α)(t) =
(
H1−α(t) + ε

∫
Ω

uut(x, t) dx
)1/(1−α)

≤ 21/(1−α)

(
H(t) +

∣∣∣∣
∫
Ω

uut(x, t) dx
∣∣∣∣
1/(1−α)

)

and combining it with (2.16) and (2.19), the inequality (2.17) is established. This
completes the proof. ✷
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