
Math. Nachr. 260, 58 – 66 (2003) / DOI 10.1002/mana.200310104

Blow up and global existence in a nonlinear viscoelastic wave equation
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In this paper the nonlinear viscoelastic wave equation

utt − ∆u +

∫ t

0

g(t − τ )∆u(τ ) dτ + aut |ut|m−2 = bu |u|p−2

associated with initial and Dirichlet boundary conditions is considered. Under suitable conditions on g, it is
proved that any weak solution with negative initial energy blows up in finite time if p > m. Also the case
of a stronger damping is considered and it is showed that solutions exist globally for any initial data, in the
appropriate space, provided that m ≥ p.
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1 Introduction

In this paper we are concerned with the following initial boundary value problem .

utt − ∆u +
∫ t

0

g(t − τ)∆u(τ) dτ + aut |ut|m−2 = bu |u|p−2 , x ∈ Ω , t > 0 ,

u(x, t) = 0 , x ∈ ∂Ω , t ≥ 0 ,

u(x, 0) = u0(x) , ut(x, 0) = u1(x) , x ∈ Ω ,

(1.1)

where a, b > 0, p > 2, m ≥ 1, and Ω is a bounded domain of R
n (n ≥ 1), with a smooth boundary ∂Ω. In

the absence of the viscoelastic term (g = 0), the problem has been extensively studied and results concerning
existence and nonexistence have been established. For a = 0, the source term bu |u|p−2 causes finite time blow
up of solutions with negative initial energy (see [2], [8]). For b = 0, the damping term aut |ut|m−2 assures
global existence for arbitrary initial data (see [7], [9]). The interaction between the damping and the source terms
was first considered by Levine [10], [11] in the linear damping case (m = 2). He showed that solutions with
negative initial energy blow up in finite time. Georgiev and Todorova [6] extended Levine’s result to the nonlinear
damping case (m > 2). In their work, the authors introduced a different method and determined suitable relations
between m and p for which there is global existence or alternatively finite time blow up. More precisely: they
showed that solutions with any initial data continue to exist globally “in time” if m ≥ p and blow up in finite time
if p > m and the initial energy is sufficiently negative. Without imposing the condition that the initial energy is
sufficiently negative, Messaoudi [17] extended the blow up result of [6] to solutions with negative initial energy
only. For results of the same nature, we refer the reader to Levine and Serrin [12], Levine, Park, and Serrin [13],
and Vitillaro [19].

In the presence of the viscoelastic term (g �= 0), Cavalcanti et al. [4] studied (1.1) for m = 2, and a localized
damping a(x)ut (a(x) can be null on a part of the boundary). They obtained an exponential rate of decay by
assuming that the kernel g is of exponential decay. This work extended the result of Zuazua [20] in which he
considered (1.1) with g = 0 and the linear damping is localized. When the damping is caused only by the memory
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term (a = 0), an exponential decay result can be obtained, at least for small initial data, by following the idea of
proof established by Monuz Rivera in [18]. In this paper, Monuz Rivera proved that the first and the second-order
energies of the solution to a viscoelastic plate, decay exponentially provided that the kernel of the memory decays
exponentially. In the same direction, Cavalcanti et al [3] have also studied the following system

|ut|ρ utt − ∆u − ∆utt +
∫ t

0

g(t − τ)∆u(τ) dτ − γ∆ut = 0 , x ∈ Ω , t > 0 ,

ρ > 0. They proved a global existence result for γ ≥ 0 and an exponential decay for γ > 0. Related to our work,
we also mention the work of Wei J. Liu [15] in which he used the multiplier techniques to establish an expo-
nential decay result in the higher dimensional thermoeviscoelasticity. The same method was also used in [16] to
prove, under appropriate conditions on the coupling parameters and relaxation function, a partial exact controlla-
bility result for a linear thermoviscoelastic model. These last results generalize earlier ones [14] established for
thermoelasticity.

Finally, it is also worth mentionning the work of Aassila et al [1] and Cavalcanti et al [5]. In his work, Aaassila
established an asymptotic stability and decay rates, for solutions of the wave equation in star-shaped domains,
were established by combination of memory effect and damping mechanism. In [5], an existence and decay result
for viscoelastic problems with nonlinear boundary damping has been proved.

In this article, we establish a blow up result for solutions with negative initial energy and m < p. Our technique
of proof is similar to the one in [17] with some necessary modifications due the nature of the problem treated
here. We also prove global existence for arbitrary initial data (in the appropriate space) if m ≥ p.

We first state a local result existence theorem which can be established by combination of the arguments in [3]
and [6].

Theorem 1.1 Suppose that m ≥ 1, p > 2 and let (u0, u1) ∈ H1
0 (Ω) × L2(Ω) be given. Assume further that

max{m, p} ≤ 2(n − 1)
n − 2

, n ≥ 3 (1.2)

and g is a C1 function satisfying

1 −
∫ ∞

0

g(s) ds = l > 0 . (1.3)

Then problem (1.1) has a unique local solution

u ∈ C
(
[0, Tm); H1

0 (Ω)
)
, ut ∈ C

(
[0, Tm); L2(Ω)

) ∩ Lm+1(Ω × 0, Tm)
)
, (1.4)

for some Tm > 0.

Remark 1.2 Condition (1.2) is needed to establish the local existence result (see [3], [6]). In fact under this
condition, the nonlinearity is Lipschitz from H1(Ω) to L2(Ω). Condition (1.3) is necessary to guarantee the
hyperbolicity and well-posedness of the system (1.1).

2 Blow up

In this section we state and prove our main result. For this purpose we define

E(t) =
1
2
||ut||22 +

1
2

(
1 −

∫ t

0

g(s) ds

)
||∇u||22 +

1
2

(g ◦ ∇u)(t) − b

p
||u||pp , (2.1)

where

(g ◦ v)(t) =
∫ t

0

g(t − τ) ||v(t) − v(τ)||22 dτ

and make the following extra assumptions on g

g(s) ≥ 0 , g′(s) ≤ 0 ,

∫ ∞

0

g(s) ds <
(p/2) − 1

(p/2)− 1 + (1/2p)
. (2.2)
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Theorem 2.1 Suppose that m > 1, p > max{2, m} satisfying (1.2). Assume further that (2.2) holds and

E0 =
1
2
||u1||22 +

1
2
||∇u0||22 −

b

p
||u0||pp < 0 . (2.3)

Then the solution (1.4) blows up in finite time

T ∗ ≤ 1 − α

Γα[L(0)]α/(1−α)
, (2.4)

where Γ and α are positive constant with α < 1 and L is given by (2.12) below.

Remark 2.2 By following the steps of the proof of Theorem 2.1 closely, one can easily see that the blow-up
result holds even for m = 1 (damping caused only by viscosity). A small modification is needed in the proof.

Remark 2.3 A careful examination of the proof shows that a similar result can be established without condi-
tion (2.2)3 provided that E0 is sufficiently negative and

∫∞
0

g(s) ds < 1.

Remark 2.4 Condition (2.2)3 shows that there is a strong relation between the nonlinearity in the source and
the damping caused by the viscosity. More precisely the closer the value of

∫∞
0

g(s) ds to 1, the larger p should
be in order to guarantee the blow up.

In order to carry the proof of Theorem 2.1, we need the following

Lemma 2.5 Suppose that (1.2) holds. Then there exists a positive constant C > 1 depending on Ω only such
that

||u||sp ≤ C
(||∇u||22 + ||u||pp

)
(2.5)

for any u ∈ H1
0 (Ω) and 2 ≤ s ≤ p.

P r o o f. If ||u||p ≤ 1 then ||u||sp ≤ ||u||2p ≤ C ||∇u||22 by Sobolev embedding theorems. If ||u||p > 1 then
||u||sp ≤ ||u||pp. Therefore (2.5) follows.

We set

H(t) := −E(t)

and use, throughout this paper, C to denote a generic positive constant depending on Ω only. As a result of (2.1)
and (2.5), we have

Corollary 2.6 Let the assumptions of the lemma hold. Then we have the following

||u||sp ≤ C
(−H(t) − ||ut||22 − (g ◦ ∇u)(t) + ||u||pp

)
, for all t ∈ [0, T ) , (2.6)

for any u(., t) ∈ H1
0 (Ω) and 2 ≤ s ≤ p.

P r o o f of Theorem 2.1. By multiplying equation (1.1) by −ut and integrating over Ω we obtain

d

dt

{
−1

2

∫
Ω

|∇ut|2 dx − 1
2

∫
Ω

|ut|2 dx +
b

p

∫
Ω

|u|p dx

}

+
∫ t

0

g(t − τ)
∫

Ω

∇ut(t).∇u(τ) dx dτ = a

∫
Ω

|ut|m dx ,

(2.7)

for any regular solution. This result can be extended to weak solutions by density argument. But∫ t

0

g(t − τ)
∫

Ω

∇ut(t).∇u(τ) dx dτ (2.8)

=
∫ t

0

g(t − τ)
∫

Ω

∇ut(t).[∇u(τ) −∇u(t)] dx dτ +
∫ t

0

g(t − τ)
∫

Ω

∇ut(t).∇u(t) dx dτ =
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= −1
2

∫ t

0

g(t − τ)
d

dt

∫
Ω

|∇u(τ) −∇u(t)|2 dx dτ +
∫ t

0

g(τ)
(

d

dt

1
2

∫
Ω

|∇u(t)|2 dx

)
dτ

= −1
2

d

dt

[∫ t

0

g(t − τ)
∫

Ω

|∇u(τ) −∇u(t)|2 dx dτ

]
+

1
2

d

dt

[∫ t

0

g(τ)
∫

Ω

|∇u(t)|2 dx dτ

]

+
1
2

∫ t

0

g′(t − τ)
∫

Ω

|∇u(τ) −∇u(t)|2 dx dτ − 1
2

g(t)
∫

Ω

|∇u(t)|2 dx dτ .

We then insert (2.8) in (2.7) to get

d

dt

{
−1

2

∫
Ω

|∇ut|2 dx − 1
2

∫
Ω

|ut|2 dx +
b

p

∫
Ω

|u|p dx

}

− 1
2

d

dt

[∫ t

0

g(t − τ)
∫

Ω

|∇u(τ) −∇u(t)|2 dx dτ

]
+

1
2

d

dt

[∫ t

0

g(τ) ||∇u(t)||2 dτ

]

= a

∫
Ω

|ut|m dx − 1
2

∫ t

0

g′(t − τ)
∫

Ω

|∇u(τ) −∇u(t)|2 dx dτ +
1
2

g(t) ||∇u(t)||2 .

(2.9)

By using the definition of H(t), the estimate (2.9) becomes

H ′(t) = a

∫
Ω

|ut|m dx − 1
2

(g′ ◦ ∇u)(t) +
1
2

g(t) ||∇u(t)||2 ≥ 0 . (2.10)

Consequently we have

0 < H(0) ≤ H(t) ≤ b

p
||u||pp , (2.11)

by virtue of (2.1), (2.10). We then define

L(t) := H1−α(t) + ε

∫
Ω

uut(x, t) dx (2.12)

for ε small to be chosen later and

0 < α ≤ min
{

(p − 2)
2p

,
(p − m)
p(m − 1)

}
. (2.13)

By taking a derivative of (2.12) and using Equation (1.1) we obtain

L′(t) = (1 − α)H−α(t)
{

a ||ut||mm − 1
2

(g′ ◦ ∇u)(t) +
1
2

g(t) ||∇u||22
}

+ ε

∫
Ω

[
u2

t − |∇u|2](x, t) dx + ε

∫ t

0

g(t − τ)
∫

Ω

∇u(t).∇u(τ) dx dτ

+ εb

∫
Ω

|u(x, t)|p dx − aε

∫
Ω

|ut|m−2 utu(x, t) dx

≥ a(1 − α)H−α(t) ||ut||mm + ε

∫
Ω

[
u2

t − |∇u|2](x, t) dx

+ εb

∫
Ω

|u(x, t)|p dx − aε

∫
Ω

|ut|m−2 utu(x, t) dx

+ ε

∫ t

0

g(t − τ)
∫

Ω

∇u(t).[∇u(τ) −∇u(t)] dx dτ + ε

∫ t

0

g(t − τ) ||∇u(t)||22 dτ .

(2.14)
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By using Schwarz inequality, (2.14) takes the form

L′(t) ≥ a(1 − α)H−α(t) ||ut||mm + ε

∫
Ω

[
u2

t − |∇u|2](x, t) dx

+ εb

∫
Ω

|u(x, t)|p dx − aε

∫
Ω

|ut|m−2utu(x, t) dx

− ε

∫ t

0

g(t − τ) ||∇u(t)||2 ||∇u(τ) −∇u(t)||2 dτ

+ ε

∫ t

0

g(t − τ) ||∇u(t)||22 dτ .

(2.15)

We then exploit Young’s inequality to estimate the fifth term in the RHS of (2.15) and use (2.1) to substitute for
b
∫
Ω |u(x, t)|p dx; hence (2.15) becomes

L′(t) ≥ a(1 − α)H−α(t) ||ut||mm + ε

∫
Ω

u2
t (x, t) dx

− ε

(
1 −

∫ t

0

g(s) ds

)
||∇u(t)||22

+ ε

(
pH(t) +

p

2
(g ◦ ∇u)(t) +

p

2
||ut||22 +

p

2

(
1 −

∫ t

0

g(s) ds

)
||∇u(t)||22

)

− aε

∫
Ω

|ut|m−2 utu(x, t) dx − εβ(g ◦ ∇u)(t) − ε

4β

∫ t

0

g(s) ds ||∇u(t)||22

≥ a(1 − α)H−α(t) ||ut||mm + ε
(
1 +

p

2

)∫
Ω

u2
t (x, t) dx + εpH(t)

+ ε
(p

2
− β

)
(g ◦ ∇u)(t) − aε

∫
Ω

|ut|m−2 utu(x, t) dx

+ ε

((p

2
− 1
)
−
(

p

2
− 1 +

1
4β

)∫ t

0

g(s) ds

)
||∇u(t)||22 ,

(2.16)

for some number β with 0 < β < p/2. By recalling (2.2), the estimate (2.16) reduces to

L′(t) ≥ a(1 − α)H−α(t) ||ut||mm + ε
(
1 +

p

2

)∫
Ω

u2
t (x, t) dx + εpH(t)

+ εa1(g ◦ ∇u)(t) + εa2 ||∇u(t)||22 − aε

∫
Ω

|ut|m−2utu(x, t) dx

(2.17)

where

a1 =
p

2
− β > 0 , a2 =

(p

2
− 1
)
−
(

p

2
− 1 +

1
4β

)∫ ∞

0

g(s) ds > 0 .

To estimate the last term of (2.17), we use again Young’s inequality

XY ≤ δr

r
Xr +

δ−q

q
Y q , X , Y ≥ 0 , for all δ > 0 ,

1
r

+
1
q

= 1

with r = m and q = m/(m − 1). So we have∫
Ω

|ut|m−1 |u| dx ≤ δm

m
||u||mm +

m − 1
m

δ−m/(m−1) ||ut||mm
which yields, by substitution in (2.17),

L′(t) ≥ a

[
(1 − α)H−α(t) − m − 1

m
εδ−m/(m−1)

]
||ut||mm + ε

(
1 +

p

2

)∫
Ω

u2
t (x, t) dx

+ εa1(g ◦ ∇u)(t) + εa2 ||∇u(t)||22 + εpH(t) − εa
δm

m
||u||mm , for all δ > 0 .

(2.18)
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Of course (2.18) remains valid even if δ is time dependant since the integral is taken over the x variable.
Therefore by taking δ so that δ−m/(m−1) = kH−α(t), for large k to be specified later, and substituting in (2.18)
we arrive at

L′(t) ≥ a

[
(1 − α) − m − 1

m
εk

]
H−α(t) ||ut||mm + ε

(p

2
+ 1
)∫

Ω

u2
t (x, t) dx

+ εa1(g ◦ ∇u)(t) + εa2 ||∇u(t)||22 + ε

[
pH(t) − k1−m

m
aHα(m−1)(t) ||u||mm

]
.

(2.19)

By exploiting (2.11) and the inequality ||u||mm ≤ C ||u||mp , we obtain

Hα(m−1)(t) ||u||mm ≤
(

b

p

)α(m−1)

C ||u||m+αp(m−1)
p ,

hence (2.19) yields

L′(t) ≥ a

[
(1 − α) − m − 1

m
εk

]
H−α(t) ||ut||mm

+ ε
(p

2
+ 1
)∫

Ω

u2
t (x, t) dx + εa1(g ◦ ∇u)(t) + εa2 ||∇u(t)||22

+ ε

[
pH(t) − k1−m

m
a

(
b

p

)α(m−1)

C ||u||m+αp(m−1)
p

]
.

(2.20)

We then use Corollary 2.6 and (2.13), for s = m + αp(m − 1) ≤ p, to deduce from (2.20)

L′(t) ≥ a

[
(1 − α) − m − 1

m
εk

]
H−α(t) ||ut||mm

+ ε
(p

2
+ 1
)∫

Ω

u2
t (x, t) dx + εa1(g ◦ ∇u)(t) + εa2 ||∇u(t)||22

+ ε
[
pH(t) − C1k

1−m
{−H(t) − ||ut||22 − (g ◦ ∇u)(t) + ||u||pp

}]
≥ a

[
(1 − α) − m − 1

m
εk

]
H−α(t) ||ut||mm

+ ε
(p

2
+ 1 + C1k

1−m
)
||ut||22 + ε

(
a1 + C1k

1−m
)
(g ◦ ∇u)(t)

+ εa2 ||∇u(t)||22 + ε
(
p + C1k

1−m
)
H(t) − εC1k

1−m ||u||pp

(2.21)

where C1 = a
(

b
p

)α(m−1)

C/m. By noting that

H(t) ≥ b

p
||u||pp −

1
2
||ut||22 −

1
2
||∇u||22 −

1
2

(g ◦ ∇u)(t)

and writing p = 2a3 + (p − 2a3), where a3 = min{a1, a2}, the estimate (2.21) yields

L′(t) ≥ a

[
(1 − α) − m − 1

m
εk

]
H−α(t) ||ut||mm + ε

(p

2
+ 1 + C1k

1−m − a3

)
||ut||22

+ ε
(
a1 + C1k

1−m − a3

)
(g ◦ ∇u)(t) + ε(a2 − a3) ||∇u(t)||22

+ ε
(
p − 2a3 + C1k

1−m
)
H(t) + ε

(
2ba3

p
− C1k

1−m

)
||u||pp .

(2.22)

At this point, we choose k large enough so that (2.22) becomes

L′(t) ≥ a

[
(1 − α) − m − 1

m
εk

]
H−α(t) ||ut||mm

+ εγ
[
H(t) + ||ut||22 + ||u||pp + (g ◦ ∇u)(t)

]
,

(2.23)

c© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



64 Messaoudi: Nonlinear viscoelastic wave equation

where γ > 0 is the minimum of the coefficients of H(t), ||ut||22, ||u||pp, and (g ◦∇u)(t) in (2.23). Once k is fixed
(hence γ), we pick ε small enough so that

(1 − α) − εk(m − 1)/m ≥ 0

and

L(0) = H1−α(0) + ε

∫
Ω

u0u1(x) dx > 0 .

Therefore (2.23) takes the form

L′(t) ≥ εγ
[
H(t) + ||ut||22 + ||u||pp + (g ◦ ∇u)(t)

]
. (2.24)

Consequently we have

L(t) ≥ L(0) > 0 , for all t ≥ 0 .

We now estimate∣∣∣∣
∫

Ω

uut(x, t) dx

∣∣∣∣ ≤ ||u||2 ||ut||2 ≤ C ||u||p ||ut||2
which implies∣∣∣∣

∫
Ω

uut(x, t) dx

∣∣∣∣
1/(1−α)

≤ C ||u||1/(1−α)
p ||ut||1/(1−α)

2 .

Again Young’s inequality gives us∣∣∣∣
∫

Ω

uut(x, t) dx

∣∣∣∣
1/(1−α)

≤ C
[
||u||µ/(1−α)

p + ||ut||θ/(1−α)
2

]
, (2.25)

for 1/µ + 1/θ = 1. We take θ = 2(1 − α), to get µ/(1 − α) = 2/(1 − 2α) ≤ p by (2.14). Therefore (2.25)
becomes ∣∣∣∣

∫
Ω

uut(x, t) dx

∣∣∣∣
1/(1−α)

≤ C
[||u||sp + ||ut||22

]
,

where s = 2/(1 − 2α) ≤ p. By using Corollary 2.6 we obtain∣∣∣∣
∫

Ω

uut(x, t) dx

∣∣∣∣
1/(1−α)

≤ C
[
H(t) + ||u||pp + ||ut||22 + (g ◦ ∇u)(t)

]
, for all t ≥ 0 . (2.26)

Therefore we have

L1/(1−α)(t) =
(

H1−α(t) + ε

∫
Ω

uut(x, t) dx

)1/(1−α)

≤ 21/(1−α)

(
H(t) +

∣∣∣∣
∫

Ω

uut(x, t) dx

∣∣∣∣
1/(1−α)

)

≤ C
[
H(t) + ||u||pp + ||ut||22 + (g ◦ ∇u)(t)

]
, for all t ≥ 0 .

(2.27)

By combining (2.24) and (2.27) we arrive

L′(t) ≥ ΓL1/(1−α)(t) , for all t ≥ 0 , (2.28)

where Γ is a positive constant depending only on εγ and C (the constant of Lemma 2.5). A simple integration of
(2.28) over (0, t) then yields

Lα/(1−α)(t) ≥ 1
L −α/(1−α)(0) − Γtα/(1 − α)

. (2.29)

Therefore (2.29) shows that L(t) blows up in a time given by the estimate (2.4) above. This completes the proof.

Remark 2.7 The estimate (2.4) shows that the larger L(0) is, the quicker the blow up takes place.
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3 Global existence

In this section we show that solution (1.4) is global if m ≥ p.

Theorem 3.1 Assume that (2.3) holds and 2 ≤ p ≤ m. Assume further that

m ≤ 2(n − 1)
n − 2

, n ≥ 3 . (3.1)

Then for any (u0, u1) ∈ H1
0 (Ω) × L2(Ω), problem (1.1) has a unique solution

u ∈ C
(
[0,∞); H1

0 (Ω)
)
, ut ∈ C

(
[0,∞); L2(Ω)

) ∩ Lm+1(Ω × (0,∞)
)
. (3.2)

P r o o f. Similar to [6], we set

F (t) = −H(t)+
2b

p
||u||pp =

1
2
||ut||22 +

1
2

(
1 −

∫ t

0

g(s) ds

)
||∇u||22 +

1
2

(g ◦∇u)(t)+
b

p
||u||pp .

By differentiating F (t) and using (2.10), we get

F ′(t) = −a

∫
Ω

|ut|m dx +
1
2

(g′ ◦ ∇u)(t) − 1
2

g(t) ||∇u(t)||2 + 2b

∫
Ω

|u|p−2 uut dx .

By using Young’s inequality, we obtain

F ′(t) ≤ − a ||ut||mm +
1
2

(g′ ◦ ∇u)(t) − 1
2

g(t) ||∇u(t)||2 + δ ||ut||pp + Cδ ||u||pp
≤ − a ||ut||mm + δ ||ut||pp + Cδ ||u||pp

where δ > 0 and Cδ is a constant depending on δ. By noting that m ≥ p we easily see that

F ′(t) ≤ −a ||ut||mm + Cδ ||ut||pm + Cδ ||u||pp
where C = C(Ω, p, m) is the embedding constant. At this point we distinguish two cases

1) Either ||ut||mm > 1 so we choose δ so small that −a ||ut||mm + Cδ ||ut||pm ≤ 0; hence F ′(t) ≤ Cδ ||u||pp.
2) Or ||ut||mm ≤ 1, in this case we have F ′(t) ≤ Cδ + Cδ ||u||pp.
Therefore in either case we have

F ′(t) ≤ c1 + Cδ ||u||pp ≤ c1 + CδF (t) . (3.3)

A simple integration of (3.3) yields

F (t) ≤
(

F (0) +
c1

Cδ

)
eCδt .

The last estimate together with the continuation principle completes our proof.
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