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SUMMARY

In this paper we consider the non-linear wave equation

utt −�ut − div(|∇u|�−2∇u)− div(|∇ut |�−2∇ut) + a|ut |m−2ut = b|u|p−2u

a; b¿0, associated with initial and Dirichlet boundary conditions. We prove, under suitable conditions
on �; �; m; p and for negative initial energy, a global non-existence theorem. This improves a result by
Yang (Math. Meth. Appl. Sci. 2002; 25:825–833), who requires that the initial energy be su�ciently
negative and relates the global non-existence of solutions to the size of �. Copyright ? 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we are concerned with the following initial boundary value problem


utt −�ut − div(|∇u|�−2∇u) − div(|∇ut |�−2∇ut)
+a|ut |m−2ut = b|u|p−2u; x∈�; t¿0

u(x; 0)= u0(x); ut(x; 0)= u1(x); x∈�
u(x; t)=0; x∈ @�; t¿0

(1)

where a; b¿0; �; �; m; p¿2, and � is a bounded domain of Rn (n¿1), with a smooth bound-
ary @�.
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Equation (1) appears in the models of non-linear viscoelasticity (see References [1–3]).
It also can be considered as a system governing the longitudinal motion of a viscoelastic
con�guration obeying a non-linear Voight model (see References [3,4]).
In the absence of viscosity and strong damping, Equation (1) becomes

utt − div(|∇u|�−2∇u) + a|ut |m−2ut = b|u|p−2u; x∈�; t¿0 (2)

For b=0, it is well known that the damping term assures global existence and decay of the
solution energy for arbitrary initial data (see References [5,6]). Then, for a=0 the source
term causes �nite time blow up of solutions with negative initial energy if p¿� (see
References [7,8]).
The interaction between the damping and the source terms was �rst considered by Levine

[9,10] in the linear damping case (�=m=2). He showed that solutions with negative initial
energy blow up in �nite time. Georgiev and Todorova [11] extended Levine’s result to the
non-linear damping case (m¿2). In their work, the authors considered (2) with �=2 and
introduced a method di�erent than the one known as the concavity method. They determined
suitable relations between m and p, for which there is global existence or alternatively �nite
time blow up. Precisely; they showed that solutions with negative energy continue to exist
globally ‘in time’ if m¿p and blow up in �nite time if p¿m and the initial energy is suf-
�ciently negative. This result was later generalized to an abstract setting and to unbounded
domains by Levine and Serrin [12] and Levine et al. [13]. In these papers, the authors showed
that no solution with negative energy can be extended on [0;∞) if p¿m and proved sev-
eral non-continuation theorems. This generalization allowed them also to apply their result to
quasilinear situations (�¿2), of which the problem in Reference [11] is a particular case. Vi-
tillaro [14] combined the arguments in References [11,12] to extend these results to situations
where the damping is non-linear and the solution has positive initial energy. Similar results
have also been established by Todorova [15,16] for di�erent Cauchy problems.
In Reference [3], Yang studied (1) and proved a blow up result under the condition

p¿max{�;m}, �¿�, and the initial energy is su�ciently negative (see condition (ii) The-
orem 2.1 of Reference [3]). In fact this condition made it clear that there exists a certain
relation between the blow-up time and |�| (see Remark 2 of Reference [3]). We should note
here that (1) corresponds to Equation (5) of [3] but the same conclusions hold for Equation
(1) of the same paper, under suitable conditions, stated in Theorem 2.3 of [3].
In this work we show that any weak solution of (1), with negative initial energy, cannot

exists for all time if p¿max{�;m}, �¿�. Therefore, our result improves the one of [3]. Our
technique of proof follows closely the argument of [17] with the modi�cations needed for our
problem.

2. BLOW UP

In order to state and prove our result, we introduce the following function space

Z = L∞([0; T );W 1; �
0 (�))∩W 1;∞([0; T );L2(�))

∩W 1; �([0; T );W 1; �
0 (�))∩W 1; m([0; T );Lm(�))

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1687–1696
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for T¿0 and the energy functional

E(t)=
1
2

∫
�
u2t dx +

1
�

∫
�

|∇u|� dx − b
p

∫
�

|u|p dx (3)

Theorem
Assume that �; �;m; p¿2 such that �¡�, and max{m; �}¡p¡r�, where r� is the Sobolev
critical exponent of W 1;�

0 (�). Assume further that

E(0)¡0 (4)

Then the solution u∈Z , of (1), cannot exist for all time.
Remark 2.1
We remind that r�= n�=(n− �), if n¿�; r�¿� if n= �, and r�=∞ if n¡�.

Remark 2.2
If the solution u is smooth enough then it blows up in �nite time.

Proof
We suppose that the solution exists for all time and we reach to a contradiction. For this
purpose we multiply Equation (1) by ut and integrate over � to obtain

E′(t)=−
∫
�

|∇ut |2 dx −
∫
�

|∇ut |� dx − a
∫
�

|ut |m dx60 (5)

for any regular solution. This remains valid for u∈Z by density argument. Hence E(t)6E(0),
∀t¿0.
By setting H (t)= − E(t), we get

0¡H (0)6H (t)6
b
p

∫
�

|u|p dx; ∀t¿0 (6)

We then de�ne

L(t)=H 1−�(t) + �
∫
�
uut dx (7)

for � small to be chosen later and

0¡�6min
(
�− 2
p

;
�− �
p(� − 1) ;

p−m
p(m− 1) ;

�− 2
2�

)
(8)

Our goal is to show that L(t) satis�es a di�erential inequality of the form

L′(t)¿�Lq(t); q¿1

This, of course, will lead to a blow up in �nite time.
By taking a derivative of (7) we obtain

L′(t)= (1− �)H−�(t)H ′(t) + �
∫
�
u2t dx + �

∫
�
uutt dx (9)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1687–1696
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By using Equation (1), the estimate (9) gives

L′(t) = (1− �)H−�(t)H ′(t) + �
∫
�
u2t dx

− �
∫
�

∇u∇ut dx − �
∫
�

|∇u|� dx

− �
∫
�

|∇ut |�−2∇ut∇u dx

− a�
∫
�

|ut |m−2utu dx + b�
∫
�

|u|p dx (10)

We then exploit Young’s inequality to get

∫
�

|ut |m−2utu dx6
�m

m

∫
�

|u|m dx + m− 1
m

�−m=(m−1)
∫
�

|ut |m dx (11)

∫
�

∇u∇ut dx6 1
4�

∫
�

|∇u|2 dx + �
∫
�

|∇ut |2 dx (12)

∫
�

|∇ut |�−1∇u dx6 ��

� − 1
∫
�

|∇u|� dx + � − 1
�

�−�=(�−1)
∫
�

|∇ut |� dx (13)

A substitution of (11)–(13) in (10) yields

L′(t)¿ (1− �)H−�(t)H ′(t) + �
∫
�
u2t dx

− �
4�

∫
�

|∇u|2 dx − ��
∫
�

|∇ut |2 dx

− �
∫
�

|∇u|� dx − � �
�

�

∫
�

|∇u|� dx

− � � − 1
�

�−�=(�−1)
∫
�

|∇ut |� dx

+ b�
∫
�

|u|p dx − a� �
m

m

∫
�

|u|m dx

− a� m− 1
m

�−m=(m−1)
∫
�

|ut |m dx (14)
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Therefore by choosing �; �; � so that



�−m=(m−1) =M1H−�(t)

�=M2H−�(t)

�−�=(�−1) =M3H−�(t)

for M1; M2, and M3 to be speci�ed later, and using (14) we arrive at

L′(t)¿ (1− �)H−�(t)H ′(t) + �
∫
�
u2t dx

− �
4M2

H�(t)
∫
�

|∇u|2 dx − �
∫
�

|∇u|� dx

− � M
−(�−1)
3

�
H�(�−1)(t)

∫
�

|∇u|� dx

− a�
m
M−(m−1)
1 H�(m−1)(t)

∫
�

|u|m dx + b�
∫
�

|u|p dx

− �
[
M2

∫
�

|∇ut |2 dx + � − 1
�

M3

∫
�

|∇ut |� dx

+ a
m− 1
m

M1
∫
�

|ut |m dx
]
H−�(t) (15)

If M =M2 + (� − 1)M3=�+ (m−1)M1=m then (15) takes the form

L′(t)¿ ((1− �)− �M)H−�(t)H ′(t) + �
∫
�
u2t dx

− �
4M2

H�(t)
∫
�

|∇u|2 dx − �
∫
�

|∇u|� dx

− � M
−(�−1)
3

�
H�(�−1)(t)

∫
�

|∇u|� dx

− a�
m
M−(m−1)
1 H�(m−1)(t)

∫
�

|u|m dx + b�
∫
�

|u|p dx (16)

We then use the embedding Lp(�) ,→Lm(�) and (6) to get

H�(m−1)(t)
∫
�

|u|m dx6
(
b
p

)�(m−1)(∫
�

|u|p dx
)m+�p(m−1)

p
(17)
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We also exploit the inequality

∫
�

|∇u|2 dx6C
(∫

�
|∇u|� dx

)2=�

the embedding W 1;�
0 (�) ,→Lp(�), and (4) to obtain

H�(t)
∫
�

|∇u|2 dx6C
(
b
p

)� (∫
�

|∇u|� dx
)p�+2

�
(18)

Since �¿� we have

∫
�

|∇u|� dx6C
(∫

�
|∇u|� dx

)�=�

consequently

H�(�−1)(t)
∫
�

|∇u|� dx6C
(
b
p

)�(�−1)(∫
�

|∇u|� dx
)p�(�−1)+�

�
(19)

where C is a constant depending on � only. By using (8) and

z	6z + 16
(
1 +

1
a

)
(z + a); ∀z¿0; 0¡	61; a¿0 (20)

we have the following

(∫
�

|u|p dx
)m+�p(m−1)

p
6
(∫

�
|∇u|� dx

)m+�p(m−1)
�

6 d
(∫

�
|∇u|� dx +H (0)

)

6 d
(∫

�
|∇u|� dx +H (t)

)
∀t¿0 (21)

(∫
�

|∇u|� dx
)p�+2

�
6 d

(∫
�

|∇u|� dx +H (t)
)
; ∀t¿0 (22)

(∫
�

|∇u|� dx
)p�(�−1)+�

�
6 d

(∫
�

|∇u|� dx +H (t)
)
; ∀t¿0 (23)
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where d=1+ 1=H (0). Inserting the estimates (17)–(19) and (21)–(23) into (16) we get

L′(t)¿ ((1− �)− �M)H−�(t)H ′(t)

+ kH (t) +
(
�+

k
2

)∫
�
u2t dx

− �C2
M2

(∫
�

|∇u|� dx +H (t)
)

− �
∫
�

|∇u|� dx

− �C3
M�−1
3

(∫
�

|∇u|� dx +H (t)
)
+
k
�

∫
�

|∇u|� dx

− �C1
Mm−1
1

(∫
�

|∇u|� dx +H (t)
)
+ b

(
�− k

p

)∫
�

|u|p dx (24)

for some constant k and

C1 =
aCd
m

(
b
p

)�(m−1)
; C2 =

Cd
4

(
b
p

)�
; C3 =

Cd
�

(
b
p

)�(�−1)
Using k= �p, we arrive at

L′(t)¿ ((1− �)− �M)H−�(t)H ′(t) + �
(
p+ 2
2

)∫
�
u2t dx

+ �

(
p− C2

M2
− C3
M�−1
3

− C1
Mm−1
1

)
H (t)

+ �

(
p
�

− C2
M2

− C3
M�−1
3

− C1
Mm−1
1

− 1
)∫

�
|∇u|� dx (25)

At this point, we choose M1; M2; M3 large enough so that

L′(t)¿ ((1− �)− �M)H−�(t)H ′(t)

+ 
�
[
H (t) +

∫
�
u2t dx +

∫
�

|∇u|� dx
]

(26)

where 
 is a positive constant (this is possible since p¿�). By choosing �¡(1 − �)=M so
that

L(0)=H 1−�(0) + �
∫
�
u0u1 dx¿0

we obtain

L(t)¿L(0)¿0; ∀t¿0

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1687–1696
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and

L′(t)¿
�
[
H (t) +

∫
�
u2t dx +

∫
�

|∇u|� dx
]

(27)

Next, it is clear that

L
1
1−� (t)62

1
1−�


H (t) + �

1
1−�

(∫
�
utu dx

) 1
1−�



By the Cauchy–Schwarz inequality and the embedding of the Lp(�) spaces we have

∣∣∣∣
∫
�
utu dx

∣∣∣∣6
(∫

�
u2 dx

)1=2(∫
�
u2t dx

)1=2

6C
(∫

�
|u|� dx

)1=� (∫
�
u2t dx

)1=2

which implies

∣∣∣∣
∫
�
utu dx

∣∣∣∣
1
1−�

6C
(∫

�
|u|� dx

) 1
(1−�)� (∫

�
u2t dx

) 1
2(1−�)

Also Young’s inequality gives

∣∣∣∣
∫
�
utu dx

∣∣∣∣
1
1−�

6C


(∫

�
|u|� dx

) �
(1−�)�

+
(∫

�
u2t dx

) �
2(1−�)




for 1=�+ 1=�=1. We take �=2(1− �), (hence �=2(1− �)=(1− 2�)) to get
∣∣∣∣
∫
�
utu dx

∣∣∣∣
1
1−�

6C


(∫

�
|u|� dx

) 2
(1−2�)�

+
∫
�
u2t dx




By Poincar�e’s inequality, we obtain

∣∣∣∣
∫
�
utu dx

∣∣∣∣
1
1−�

6C


(∫

�
|∇u|� dx

) 2
(1−2�)�

+
∫
�
u2t dx




By using (8) and (20) we deduce

(∫
�

|∇u|� dx
) 2
(1−2�)�

6
(
1 +

1
H (0)

)(∫
�

|∇u|� dx +H (t)
)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1687–1696
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Therefore

∣∣∣∣
∫
�
utu dx

∣∣∣∣
1
1−�

6C
[
H (t) +

∫
�

|∇u|� dx +
∫
�
u2t dx

]
; ∀t¿0

consequently

L
1
1−� (t)6�

[
H (t) +

∫
�

|∇u|� dx +
∫
�
u2t dx

]
(28)

where � is positive constant. A combination of (27) and (28), thus, yields

L′(t)¿�L
1
1−� (t); ∀t¿0 (29)

Integration of (29) over (0; t) gives

L
�
1−� (t)¿

1

L
−�
1−� (0)− ��

(1− �) t

hence L(t) blow up in time

T ∗6
1− �

��L
�
1−� (0)

(30)

Remark 2.3
The time estimate (30) shows that the larger L(0) is the quicker the blow up takes place.

Remark 2.4
In (6) we only require that H (0)¿0, Unlike Yang [3], where it is required that H (0)¿A, a
constant depending on the size of �. See condition (ii), Theorem 2.1 of [3].

Remark 2.5
If we consider

utt −�ut − div(�(∇u)∇u) − div(�(∇u)∇ut)
+f(ut)= g(u); x∈�; t¿0

with the initial and boundary conditions of (1) we can establish a similar blow up result
under the growth conditions of Theorem 2.3 of [3] on f; g; � and �.
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