Global non-existence of solutions of a class of wave equations with non-linear damping and source terms

Salim A. Messaoudi^{1,*,†} and Belkacem Said Houari^{2,‡}

¹ Mathematical Sciences Department, KFUPM, Dhahran 31261, Saudi Arabia ² Université Badji Mokhtar, Département de Mathématiques, B.P. 12 Annaba 23000, Algerie

Communicated by H. A. Levine

SUMMARY

In this paper we consider the non-linear wave equation

$$u_{tt} - \Delta u_t - \text{div}(|\nabla u|^{\alpha - 2} \nabla u) - \text{div}(|\nabla u_t|^{\beta - 2} \nabla u_t) + a|u_t|^{m-2} u_t = b|u|^{p-2} u$$

a,b>0, associated with initial and Dirichlet boundary conditions. We prove, under suitable conditions on α,β,m,p and for negative initial energy, a global non-existence theorem. This improves a result by Yang (*Math. Meth. Appl. Sci.* 2002; **25**:825–833), who requires that the initial energy be sufficiently negative and relates the global non-existence of solutions to the size of Ω . Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS: non-linear damping; non-linear source; negative initial energy; global non-existence

1. INTRODUCTION

In this paper we are concerned with the following initial boundary value problem

$$\begin{cases}
 u_{tt} - \Delta u_t - \operatorname{div}(|\nabla u|^{\alpha - 2} \nabla u) - \operatorname{div}(|\nabla u_t|^{\beta - 2} \nabla u_t) \\
 + a|u_t|^{m - 2} u_t = b|u|^{p - 2} u, \quad x \in \Omega, \quad t > 0 \\
 u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in \Omega \\
 u(x, t) = 0, \quad x \in \partial \Omega, \quad t > 0
\end{cases} \tag{1}$$

where a, b > 0, $\alpha, \beta, m, p > 2$, and Ω is a bounded domain of \mathbb{R}^n $(n \ge 1)$, with a smooth boundary $\partial \Omega$.

^{*}Correspondence to: Salim A. Messaoudi, Mathematical Sciences Department, KFUPM, Dhahran 31261, Saudi Arabia.

[†]E-mail: messaoud@kfupm.edu.sa

[‡]E-mail: saidhouarib@yahoo.fr

Equation (1) appears in the models of non-linear viscoelasticity (see References [1–3]). It also can be considered as a system governing the longitudinal motion of a viscoelastic configuration obeying a non-linear Voight model (see References [3,4]).

In the absence of viscosity and strong damping, Equation (1) becomes

$$u_{tt} - \operatorname{div}(|\nabla u|^{\alpha - 2} \nabla u) + a|u_t|^{m - 2} u_t = b|u|^{p - 2} u, \quad x \in \Omega, \ t > 0$$
 (2)

For b=0, it is well known that the damping term assures global existence and decay of the solution energy for arbitrary initial data (see References [5,6]). Then, for a=0 the source term causes finite time blow up of solutions with negative initial energy if $p>\alpha$ (see References [7,8]).

The interaction between the damping and the source terms was first considered by Levine [9,10] in the linear damping case ($\alpha = m = 2$). He showed that solutions with negative initial energy blow up in finite time. Georgiev and Todorova [11] extended Levine's result to the non-linear damping case (m>2). In their work, the authors considered (2) with $\alpha=2$ and introduced a method different than the one known as the concavity method. They determined suitable relations between m and p, for which there is global existence or alternatively finite time blow up. Precisely; they showed that solutions with negative energy continue to exist globally 'in time' if $m \ge p$ and blow up in finite time if p > m and the initial energy is sufficiently negative. This result was later generalized to an abstract setting and to unbounded domains by Levine and Serrin [12] and Levine et al. [13]. In these papers, the authors showed that no solution with negative energy can be extended on $[0,\infty)$ if p>m and proved several non-continuation theorems. This generalization allowed them also to apply their result to quasilinear situations ($\alpha > 2$), of which the problem in Reference [11] is a particular case. Vitillaro [14] combined the arguments in References [11,12] to extend these results to situations where the damping is non-linear and the solution has positive initial energy. Similar results have also been established by Todorova [15,16] for different Cauchy problems.

In Reference [3], Yang studied (1) and proved a blow up result under the condition $p > \max\{\alpha, m\}$, $\alpha > \beta$, and the initial energy is sufficiently negative (see condition (ii) Theorem 2.1 of Reference [3]). In fact this condition made it clear that there exists a certain relation between the blow-up time and $|\Omega|$ (see Remark 2 of Reference [3]). We should note here that (1) corresponds to Equation (5) of [3] but the same conclusions hold for Equation (1) of the same paper, under suitable conditions, stated in Theorem 2.3 of [3].

In this work we show that any weak solution of (1), with negative initial energy, cannot exists for all time if $p > \max\{\alpha, m\}$, $\alpha > \beta$. Therefore, our result improves the one of [3]. Our technique of proof follows closely the argument of [17] with the modifications needed for our problem.

2. BLOW UP

In order to state and prove our result, we introduce the following function space

$$Z = L^{\infty}([0,T); W_0^{1,\alpha}(\Omega)) \cap W^{1,\infty}([0,T); L^2(\Omega))$$
$$\cap W^{1,\beta}([0,T); W_0^{1,\beta}(\Omega)) \cap W^{1,m}([0,T); L^m(\Omega))$$

for T > 0 and the energy functional

$$E(t) = \frac{1}{2} \int_{\Omega} u_t^2 dx + \frac{1}{\alpha} \int_{\Omega} |\nabla u|^{\alpha} dx - \frac{b}{p} \int_{\Omega} |u|^p dx$$
 (3)

Theorem

Assume that $\alpha, \beta, m, p \ge 2$ such that $\beta < \alpha$, and $\max\{m, \alpha\} , where <math>r_{\alpha}$ is the Sobolev critical exponent of $W_0^{1,\alpha}(\Omega)$. Assume further that

$$E(0) < 0 \tag{4}$$

Then the solution $u \in \mathbb{Z}$, of (1), cannot exist for all time.

Remark 2.1

We remind that $r_{\alpha} = n\alpha/(n-\alpha)$, if $n > \alpha$, $r_{\alpha} > \alpha$ if $n = \alpha$, and $r_{\alpha} = \infty$ if $n < \alpha$.

Remark 2.2

If the solution u is smooth enough then it blows up in finite time.

Proof

We suppose that the solution exists for all time and we reach to a contradiction. For this purpose we multiply Equation (1) by u_t and integrate over Ω to obtain

$$E'(t) = -\int_{\Omega} |\nabla u_t|^2 dx - \int_{\Omega} |\nabla u_t|^{\beta} dx - a \int_{\Omega} |u_t|^m dx \le 0$$
 (5)

for any regular solution. This remains valid for $u \in Z$ by density argument. Hence $E(t) \leq E(0)$, $\forall t \geq 0$.

By setting H(t) = -E(t), we get

$$0 < H(0) \leqslant H(t) \leqslant \frac{b}{p} \int_{\Omega} |u|^p \, \mathrm{d}x, \quad \forall t \geqslant 0$$
 (6)

We then define

$$L(t) = H^{1-\sigma}(t) + \varepsilon \int_{\Omega} u u_t \, \mathrm{d}x \tag{7}$$

for ε small to be chosen later and

$$0 < \sigma \leqslant \min\left(\frac{\alpha - 2}{p}, \frac{\alpha - \beta}{p(\beta - 1)}, \frac{p - m}{p(m - 1)}, \frac{\alpha - 2}{2\alpha}\right) \tag{8}$$

Our goal is to show that L(t) satisfies a differential inequality of the form

$$L'(t) \geqslant \xi L^q(t), \quad q > 1$$

This, of course, will lead to a blow up in finite time.

By taking a derivative of (7) we obtain

$$L'(t) = (1 - \sigma)H^{-\sigma}(t)H'(t) + \varepsilon \int_{\Omega} u_t^2 dx + \varepsilon \int_{\Omega} u u_{tt} dx$$
 (9)

Copyright © 2004 John Wiley & Sons, Ltd.

Math. Meth. Appl. Sci. 2004; 27:1687-1696

By using Equation (1), the estimate (9) gives

$$L'(t) = (1 - \sigma)H^{-\sigma}(t)H'(t) + \varepsilon \int_{\Omega} u_t^2 dx$$

$$-\varepsilon \int_{\Omega} \nabla u \nabla u_t dx - \varepsilon \int_{\Omega} |\nabla u|^{\alpha} dx$$

$$-\varepsilon \int_{\Omega} |\nabla u_t|^{\beta - 2} \nabla u_t \nabla u dx$$

$$-a\varepsilon \int_{\Omega} |u_t|^{m-2} u_t u dx + b\varepsilon \int_{\Omega} |u|^p dx$$
(10)

We then exploit Young's inequality to get

$$\int_{\Omega} |u_t|^{m-2} u_t u \, \mathrm{d}x \leq \frac{\delta^m}{m} \int_{\Omega} |u|^m \, \mathrm{d}x + \frac{m-1}{m} \, \delta^{-m/(m-1)} \int_{\Omega} |u_t|^m \, \mathrm{d}x \tag{11}$$

$$\int_{\Omega} \nabla u \nabla u_t \, \mathrm{d}x \leq \frac{1}{4\mu} \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x + \mu \int_{\Omega} |\nabla u_t|^2 \, \mathrm{d}x \tag{12}$$

$$\int_{\Omega} |\nabla u_t|^{\beta - 1} \nabla u \, \mathrm{d}x \leq \frac{\lambda^{\beta}}{\beta - 1} \int_{\Omega} |\nabla u|^{\beta} \, \mathrm{d}x + \frac{\beta - 1}{\beta} \lambda^{-\beta/(\beta - 1)} \int_{\Omega} |\nabla u_t|^{\beta} \, \mathrm{d}x \tag{13}$$

A substitution of (11)-(13) in (10) yields

$$L'(t) \ge (1 - \sigma)H^{-\sigma}(t)H'(t) + \varepsilon \int_{\Omega} u_{t}^{2} dx$$

$$-\frac{\varepsilon}{4\mu} \int_{\Omega} |\nabla u|^{2} dx - \mu \varepsilon \int_{\Omega} |\nabla u_{t}|^{2} dx$$

$$-\varepsilon \int_{\Omega} |\nabla u|^{\alpha} dx - \varepsilon \frac{\lambda^{\beta}}{\beta} \int_{\Omega} |\nabla u|^{\beta} dx$$

$$-\varepsilon \frac{\beta - 1}{\beta} \lambda^{-\beta/(\beta - 1)} \int_{\Omega} |\nabla u_{t}|^{\beta} dx$$

$$+b\varepsilon \int_{\Omega} |u|^{\beta} dx - a\varepsilon \frac{\delta^{m}}{m} \int_{\Omega} |u|^{m} dx$$

$$-a\varepsilon \frac{m - 1}{m} \delta^{-m/(m - 1)} \int_{\Omega} |u_{t}|^{m} dx$$

$$(14)$$

Therefore by choosing δ, μ, λ so that

$$\begin{cases} \delta^{-m/(m-1)} = M_1 H^{-\sigma}(t) \\ \mu = M_2 H^{-\sigma}(t) \\ \lambda^{-\beta/(\beta-1)} = M_3 H^{-\sigma}(t) \end{cases}$$

for M_1, M_2 , and M_3 to be specified later, and using (14) we arrive at

$$L'(t) \geq (1 - \sigma)H^{-\sigma}(t)H'(t) + \varepsilon \int_{\Omega} u_{t}^{2} dx$$

$$-\frac{\varepsilon}{4M_{2}} H^{\sigma}(t) \int_{\Omega} |\nabla u|^{2} dx - \varepsilon \int_{\Omega} |\nabla u|^{\alpha} dx$$

$$-\varepsilon \frac{M_{3}^{-(\beta-1)}}{\beta} H^{\sigma(\beta-1)}(t) \int_{\Omega} |\nabla u|^{\beta} dx$$

$$-\frac{a\varepsilon}{m} M_{1}^{-(m-1)} H^{\sigma(m-1)}(t) \int_{\Omega} |u|^{m} dx + b\varepsilon \int_{\Omega} |u|^{p} dx$$

$$-\varepsilon \left[M_{2} \int_{\Omega} |\nabla u_{t}|^{2} dx + \frac{\beta - 1}{\beta} M_{3} \int_{\Omega} |\nabla u_{t}|^{\beta} dx \right]$$

$$+ a \frac{m-1}{m} M_{1} \int_{\Omega} |u_{t}|^{m} dx + H^{-\sigma}(t)$$

$$(15)$$

If $M = M_2 + (\beta - 1)M_3/\beta + (m-1)M_1/m$ then (15) takes the form

$$L'(t) \geqslant ((1 - \sigma) - \varepsilon M)H^{-\sigma}(t)H'(t) + \varepsilon \int_{\Omega} u_t^2 dx$$

$$-\frac{\varepsilon}{4M_2} H^{\sigma}(t) \int_{\Omega} |\nabla u|^2 dx - \varepsilon \int_{\Omega} |\nabla u|^{\alpha} dx$$

$$-\varepsilon \frac{M_3^{-(\beta - 1)}}{\beta} H^{\sigma(\beta - 1)}(t) \int_{\Omega} |\nabla u|^{\beta} dx$$

$$-\frac{a\varepsilon}{m} M_1^{-(m - 1)} H^{\sigma(m - 1)}(t) \int_{\Omega} |u|^m dx + b\varepsilon \int_{\Omega} |u|^p dx$$
(16)

We then use the embedding $L^p(\Omega) \hookrightarrow L^m(\Omega)$ and (6) to get

$$H^{\sigma(m-1)}(t) \int_{\Omega} |u|^m \, \mathrm{d}x \le \left(\frac{b}{p}\right)^{\sigma(m-1)} \left(\int_{\Omega} |u|^p \, \mathrm{d}x\right)^{\frac{m+\sigma p(m-1)}{p}} \tag{17}$$

We also exploit the inequality

$$\int_{\Omega} |\nabla u|^2 \, \mathrm{d}x \le C \left(\int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x \right)^{2/\alpha}$$

the embedding $W_0^{1,\alpha}(\Omega) \hookrightarrow L^p(\Omega)$, and (4) to obtain

$$H^{\sigma}(t) \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x \leq C \left(\frac{b}{p}\right)^{\sigma} \left(\int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x\right)^{\frac{p\sigma+2}{\alpha}} \tag{18}$$

Since $\alpha > \beta$ we have

$$\int_{\Omega} |\nabla u|^{\beta} \, \mathrm{d}x \leq C \left(\int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x \right)^{\beta/\alpha}$$

consequently

$$H^{\sigma(\beta-1)}(t) \int_{\Omega} |\nabla u|^{\beta} \, \mathrm{d}x \leq C \left(\frac{b}{p}\right)^{\sigma(\beta-1)} \left(\int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x\right)^{\frac{p\sigma(\beta-1)+\beta}{\alpha}} \tag{19}$$

where C is a constant depending on Ω only. By using (8) and

$$z^{\nu} \leq z + 1 \leq \left(1 + \frac{1}{a}\right)(z + a), \quad \forall z \geq 0, \, 0 < \nu \leq 1, \, a \geq 0$$
 (20)

we have the following

$$\left(\int_{\Omega} |u|^{p} dx\right)^{\frac{m+\sigma p(m-1)}{p}} \leq \left(\int_{\Omega} |\nabla u|^{\alpha} dx\right)^{\frac{m+\sigma p(m-1)}{\alpha}}$$

$$\leq d \left(\int_{\Omega} |\nabla u|^{\alpha} dx + H(0)\right)$$

$$\leq d \left(\int_{\Omega} |\nabla u|^{\alpha} dx + H(t)\right) \quad \forall t \geq 0 \tag{21}$$

$$\left(\int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x\right)^{\frac{p\sigma+2}{\alpha}} \leq d\left(\int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x + H(t)\right), \quad \forall t \geqslant 0$$
 (22)

$$\left(\int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x\right)^{\frac{p\sigma(\beta-1)+\beta}{\alpha}} \leq d\left(\int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x + H(t)\right), \quad \forall t \geqslant 0$$
 (23)

where d = 1 + 1/H(0). Inserting the estimates (17)–(19) and (21)–(23) into (16) we get

$$L'(t) \ge ((1 - \sigma) - \varepsilon M)H^{-\sigma}(t)H'(t)$$

$$+kH(t) + \left(\varepsilon + \frac{k}{2}\right) \int_{\Omega} u_t^2 dx$$

$$-\frac{\varepsilon C_2}{M_2} \left(\int_{\Omega} |\nabla u|^{\alpha} dx + H(t)\right) - \varepsilon \int_{\Omega} |\nabla u|^{\alpha} dx$$

$$-\frac{\varepsilon C_3}{M_3^{\beta-1}} \left(\int_{\Omega} |\nabla u|^{\alpha} dx + H(t)\right) + \frac{k}{\alpha} \int_{\Omega} |\nabla u|^{\alpha} dx$$

$$-\frac{\varepsilon C_1}{M_1^{m-1}} \left(\int_{\Omega} |\nabla u|^{\alpha} dx + H(t)\right) + b \left(\varepsilon - \frac{k}{p}\right) \int_{\Omega} |u|^p dx \tag{24}$$

for some constant k and

$$C_1 = \frac{aCd}{m} \left(\frac{b}{p}\right)^{\sigma(m-1)}, \quad C_2 = \frac{Cd}{4} \left(\frac{b}{p}\right)^{\sigma}, \quad C_3 = \frac{Cd}{\beta} \left(\frac{b}{p}\right)^{\sigma(\beta-1)}$$

Using $k = \varepsilon p$, we arrive at

$$L'(t) \ge ((1-\sigma) - \varepsilon M)H^{-\sigma}(t)H'(t) + \varepsilon \left(\frac{p+2}{2}\right) \int_{\Omega} u_t^2 dx$$

$$+ \varepsilon \left(p - \frac{C_2}{M_2} - \frac{C_3}{M_3^{\beta-1}} - \frac{C_1}{M_1^{m-1}}\right) H(t)$$

$$+ \varepsilon \left(\frac{p}{\alpha} - \frac{C_2}{M_2} - \frac{C_3}{M_3^{\beta-1}} - \frac{C_1}{M_1^{m-1}} - 1\right) \int_{\Omega} |\nabla u|^{\alpha} dx$$
(25)

At this point, we choose M_1, M_2, M_3 large enough so that

$$L'(t) \ge ((1 - \sigma) - \varepsilon M)H^{-\sigma}(t)H'(t)$$

$$+ \gamma \varepsilon \left[H(t) + \int_{\Omega} u_t^2 \, \mathrm{d}x + \int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x \right]$$
(26)

where γ is a positive constant (this is possible since $p > \alpha$). By choosing $\varepsilon < (1 - \sigma)/M$ so that

$$L(0) = H^{1-\sigma}(0) + \varepsilon \int_{\Omega} u_0 u_1 \, \mathrm{d}x > 0$$

we obtain

$$L(t) \geqslant L(0) > 0, \quad \forall t \geqslant 0$$

and

$$L'(t) \geqslant \gamma \varepsilon \left[H(t) + \int_{\Omega} u_t^2 \, \mathrm{d}x + \int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x \right]$$
 (27)

Next, it is clear that

$$L^{\frac{1}{1-\sigma}}(t) \leqslant 2^{\frac{1}{1-\sigma}} \left\{ H(t) + \varepsilon^{\frac{1}{1-\sigma}} \left(\int_{\Omega} u_t u \, \mathrm{d}x \right)^{\frac{1}{1-\sigma}} \right\}$$

By the Cauchy-Schwarz inequality and the embedding of the $L^p(\Omega)$ spaces we have

$$\left| \int_{\Omega} u_t u \, \mathrm{d}x \right| \leq \left(\int_{\Omega} u^2 \, \mathrm{d}x \right)^{1/2} \left(\int_{\Omega} u_t^2 \, \mathrm{d}x \right)^{1/2}$$
$$\leq C \left(\int_{\Omega} |u|^{\alpha} \, \mathrm{d}x \right)^{1/\alpha} \left(\int_{\Omega} u_t^2 \, \mathrm{d}x \right)^{1/2}$$

which implies

$$\left| \int_{\Omega} u_t u \, \mathrm{d}x \right|^{\frac{1}{1-\sigma}} \leq C \left(\int_{\Omega} |u|^{\alpha} \, \mathrm{d}x \right)^{\frac{1}{(1-\sigma)\alpha}} \left(\int_{\Omega} u_t^2 \, \mathrm{d}x \right)^{\frac{1}{2(1-\sigma)}}$$

Also Young's inequality gives

$$\left| \int_{\Omega} u_t u \, \mathrm{d}x \right|^{\frac{1}{1-\sigma}} \leq C \left[\left(\int_{\Omega} |u|^{\alpha} \, \mathrm{d}x \right)^{\frac{\mu}{(1-\sigma)\alpha}} + \left(\int_{\Omega} u_t^2 \, \mathrm{d}x \right)^{\frac{\theta}{2(1-\sigma)}} \right]$$

for $1/\mu + 1/\theta = 1$. We take $\theta = 2(1 - \sigma)$, (hence $\mu = 2(1 - \sigma)/(1 - 2\sigma)$) to get

$$\left| \int_{\Omega} u_t u \, \mathrm{d}x \right|^{\frac{1}{1-\sigma}} \leq C \left[\left(\int_{\Omega} |u|^{\alpha} \, \mathrm{d}x \right)^{\frac{2}{(1-2\sigma)\alpha}} + \int_{\Omega} u_t^2 \, \mathrm{d}x \right]$$

By Poincaré's inequality, we obtain

$$\left| \int_{\Omega} u_t u \, \mathrm{d}x \right|^{\frac{1}{1-\sigma}} \leq C \left[\left(\int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x \right)^{\frac{2}{(1-2\sigma)\alpha}} + \int_{\Omega} u_t^2 \, \mathrm{d}x \right]$$

By using (8) and (20) we deduce

$$\left(\int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x\right)^{\frac{2}{(1-2\sigma)\alpha}} \leqslant \left(1 + \frac{1}{H(0)}\right) \left(\int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x + H(t)\right)$$

Copyright © 2004 John Wiley & Sons, Ltd.

Therefore

$$\left| \int_{\Omega} u_t u \, \mathrm{d}x \right|^{\frac{1}{1-\sigma}} \leqslant C \left[H(t) + \int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x + \int_{\Omega} u_t^2 \, \mathrm{d}x \right], \quad \forall t \geqslant 0$$

consequently

$$L^{\frac{1}{1-\sigma}}(t) \leqslant \Gamma \left[H(t) + \int_{\Omega} |\nabla u|^{\alpha} \, \mathrm{d}x + \int_{\Omega} u_t^2 \, \mathrm{d}x \right]$$
 (28)

where Γ is positive constant. A combination of (27) and (28), thus, yields

$$L'(t) \geqslant \xi L^{\frac{1}{1-\sigma}}(t), \quad \forall t \geqslant 0$$
 (29)

Integration of (29) over (0,t) gives

$$L^{\frac{\sigma}{1-\sigma}}(t) \geqslant \frac{1}{L^{\frac{-\sigma}{1-\sigma}}(0) - \frac{\xi\sigma}{(1-\sigma)}t}$$

hence L(t) blow up in time

$$T^* \leqslant \frac{1 - \sigma}{\xi \sigma L^{\frac{\sigma}{1 - \sigma}}(0)} \tag{30}$$

Remark 2.3

The time estimate (30) shows that the larger L(0) is the quicker the blow up takes place.

Remark 2.4

In (6) we only require that H(0)>0, Unlike Yang [3], where it is required that H(0)>A, a constant depending on the size of Ω . See condition (ii), Theorem 2.1 of [3].

Remark 2.5

If we consider

$$u_{tt} - \Delta u_t - \operatorname{div}(\sigma(\nabla u)\nabla u) - \operatorname{div}(\beta(\nabla u)\nabla u_t) + f(u_t) = g(u), \quad x \in \Omega, \ t > 0$$

with the initial and boundary conditions of (1) we can establish a similar blow up result under the growth conditions of Theorem 2.3 of [3] on f, g, σ and β .

ACKNOWLEDGEMENTS

The first author would like to express his sincere thanks to KFUPM for its continuous support.

REFERENCES

1. Andrews G. On the existence of solutions to the equation $u_{tt} - u_{xxt} = \sigma(u_x)_x$. Journal of Differential Equations 1980; 35:200–231.

Copyright © 2004 John Wiley & Sons, Ltd.

Math. Meth. Appl. Sci. 2004; 27:1687-1696

- Ang DD, Dinh APN. Strong solutions of quasilinear wave equation with non-linear damping. SIAM Journal on Mathematical Analysis 1988; 19:337–347.
- 3. Yang Z. Blow up of solutions for a class of non-linear evolution equations with non-linear damping and source terms. *Mathematical Methods in the Applied Sciences* 2002; **25**:825–833.
- 4. Kavashima S, Shibata Y. Global Existence and exponential stability of small solutions to non-linear viscoelasticity. *Communications in Mathematical Physics* 1992; **148**:189–208.
- Haraux A, Zuazua E. Decay estimates for some semilinear damped hyperbolic problems. Archives for Rational Mechanics and Analysis 1988; 150:191–206.
- 6. Kopackova M. Remarks on bounded solutions of a semilinear dissipative hyperbolic equation. *Commentationes Mathematicae Universitatis Carolinae* 1989; **30**(4):713–719.
- 7. Ball J. Remarks on blow up and non-existence theorems for non-linear evolutions equations. *Quarterly Journal of Mathematics Oxford Series* 1977; **28**(2):473–486.
- 8. Kalantarov VK, Ladyzhenskaya OA. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type. *Journal of Soviet Mathematics* 1978; **10**:53–70.
- 9. Levine HA. Instability and non-existence of global solutions of non-linear wave equation of the form $Pu_{tt} = Au + F(u)$. Transactions of the American Mathematical Society 1974; 192:1–21.
- 10. Levine HA. Some additional remarks on the non-existence of global solutions to non-linear wave equation. SIAM Journal on Mathematical Analysis 1974; 5:138–146.
- 11. Georgiev V, Todorova G. Existence of solutions of the wave equation with non-linear damping and source terms. *Journal of Differential Equations* 1994; **109**:295–308.
- 12. Levine HA, Serrin J. A global non-existence theorem for quasilinear evolution equation with dissipation. *Archives for Rational Mechanics and Analysis* 1997; **137**:341–361.
- 13. Levine HA, Ro Park S. Global existence and global non-existence of solutions of the Cauchy problem for a non-linearly damped wave equation. *Journal of Mathematical Analysis and Applications* 1998; **228**:181–205.
- 14. Vitillaro E. Global non-existence theorems for a class of evolution equations with dissipation. Archives for Rational Mechanics Analysis 1999; 149:155–182.
- 15. Todorova G. Cauchy problem for a non-linear wave with non-linear damping and source terms. *Comptes Rendus de Academie des Sciences Paris Serie I* 1998; **326**:191–196.
- 16. Todorova G. Stable and unstable sets for the Cauchy problem for a non-linear wave with non-linear damping and source terms. *Journal of Mathematical Analysis and Applications* 1999; **239**:213–226.
- 17. Messaoudi SA. Blow up in a non-linearly damped wave equation. Mathematische Nachrichten 2001; 231:1-7.