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SUMMARY
In this paper we consider the non-linear wave equation
un — Auy — div(|Vu|*">Vu) — div(| VP 72V ) + alud ™ *us = blu|P"*u
a,b>0, associated with initial and Dirichlet boundary conditions. We prove, under suitable conditions
on a, f,m, p and for negative initial energy, a global non-existence theorem. This improves a result by
Yang (Math. Meth. Appl. Sci. 2002; 25:825-833), who requires that the initial energy be sufficiently

negative and relates the global non-existence of solutions to the size of 2. Copyright © 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we are concerned with the following initial boundary value problem
g — Auy — div(|Vu|*2Vu) — div(|Vu, P2 Vu,)
+alu|"2u; = blu|Pu, x€€Q, t>0
u(x,0)=uo(x), u(x,0)=uy(x), x€
u(x,t)=0, xe€dQ, t>0

(1)

where a,b>0, o, f,m, p>2, and €2 is a bounded domain of R" (r>1), with a smooth bound-
ary 0S).
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Equation (1) appears in the models of non-linear viscoelasticity (see References [1-3]).
It also can be considered as a system governing the longitudinal motion of a viscoelastic
configuration obeying a non-linear Voight model (see References [3.4]).

In the absence of viscosity and strong damping, Equation (1) becomes

uy — div(|Vu|*2Vu) + alu,|" " *u, = blu|"~*u, xef, t>0 (2)

For 5=0, it is well known that the damping term assures global existence and decay of the
solution energy for arbitrary initial data (see References [5,6]). Then, for a=0 the source
term causes finite time blow up of solutions with negative initial energy if p>o (see
References [7,8]).

The interaction between the damping and the source terms was first considered by Levine
[9,10] in the linear damping case (v =m =2). He showed that solutions with negative initial
energy blow up in finite time. Georgiev and Todorova [11] extended Levine’s result to the
non-linear damping case (m>2). In their work, the authors considered (2) with =2 and
introduced a method different than the one known as the concavity method. They determined
suitable relations between m and p, for which there is global existence or alternatively finite
time blow up. Precisely; they showed that solutions with negative energy continue to exist
globally ‘in time’ if m> p and blow up in finite time if p>m and the initial energy is suf-
ficiently negative. This result was later generalized to an abstract setting and to unbounded
domains by Levine and Serrin [12] and Levine et al. [13]. In these papers, the authors showed
that no solution with negative energy can be extended on [0,00) if p>m and proved sev-
eral non-continuation theorems. This generalization allowed them also to apply their result to
quasilinear situations («>2), of which the problem in Reference [11] is a particular case. Vi-
tillaro [14] combined the arguments in References [11,12] to extend these results to situations
where the damping is non-linear and the solution has positive initial energy. Similar results
have also been established by Todorova [15,16] for different Cauchy problems.

In Reference [3], Yang studied (1) and proved a blow up result under the condition
p>max{a,m}, o> f, and the initial energy is sufficiently negative (see condition (ii) The-
orem 2.1 of Reference [3]). In fact this condition made it clear that there exists a certain
relation between the blow-up time and |€2| (see Remark 2 of Reference [3]). We should note
here that (1) corresponds to Equation (5) of [3] but the same conclusions hold for Equation
(1) of the same paper, under suitable conditions, stated in Theorem 2.3 of [3].

In this work we show that any weak solution of (1), with negative initial energy, cannot
exists for all time if p> max{o,m}, «> f. Therefore, our result improves the one of [3]. Our
technique of proof follows closely the argument of [17] with the modifications needed for our
problem.

2. BLOW UP

In order to state and prove our result, we introduce the following function space

Z=L>([0,T); Wy ()N W>2([0,T); L*(2))
N0, T); Wy P () n ([0, T); L"(2))
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for 7>0 and the energy functional

I I b
E(t)zi/ﬂutzdx+&/Q|Vu|‘°‘dx—;/Q|u|de 3)

Theorem
Assume that o, fi,m, p>2 such that f <o, and max{m,a} < p<r,, where r, is the Sobolev
critical exponent of WOI’“(Q). Assume further that

E(0)<0 4)
Then the solution u € Z, of (1), cannot exist for all time.

Remark 2.1
We remind that r, =na/(n —a), if n>a, r,>0 if n=0, and r,=cc0 if n<o.

Remark 2.2
If the solution u is smooth enough then it blows up in finite time.

Proof
We suppose that the solution exists for all time and we reach to a contradiction. For this
purpose we multiply Equation (1) by u, and integrate over {2 to obtain

E’(Z):—/ﬂ|Vu1\2dx—/Q|Vu,\ﬁdx—a/Q\u,\’”dxgo (5)

for any regular solution. This remains valid for u € Z by density argument. Hence E(¢)<E(0),
V=0.

By setting H(t)= — E(t), we get
O<H(0)<H(t)<f)/g|u|”dx, vt=0 (6)
We then define
L(t):Hl’”(t)—i—s/Quutdx (7)

for ¢ small to be chosen later and

o—2 oa—p p—m oc—Z)
p p(B-1) p(m—1) 2o

Our goal is to show that L(¢) satisfies a differential inequality of the form
L'(0)=EL(t), g¢>1

8)

O0<o< min(

This, of course, will lead to a blow up in finite time.
By taking a derivative of (7) we obtain

L'(t)=(1 — o)H *()H'(t) + .s/

ufdx—&—s/uu,,dx 9)
Q Q

Copyright © 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1687-1696
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By using Equation (1), the estimate (9) gives

L'()=(1 —a)H"’(t)H’(t)%—a/ u? dx
Q

—S/VuVu,dx—g/ |Vul* dx
Q Q

- 8/ |V, |P2Vu, Vu dx
0

—as/ \ut\’”’zutudx—f—bs/ u]? dx
Q Q

We then exploit Young’s inequality to get

/‘”t|m 2utudx<7/‘”|mdx+ 5 m/(m— 1)/|u |m

1
/VuVu,dx<—/|Vu|2dx+u/|Vut|2dx
0 4p Jo 0
n/} 71
/\Vut|ﬁ*1Vudx<ﬁ/ |Vulf dx + ﬁﬁﬂ/wl)/ |V, |P dx
Q Q Q
A substitution of (11)—(13) in (10) yields

L'(t) > (l—a)H_“(t)H(t)—H;/ dx

——/|Vu|2dx ,us/\Vul| dx
o [ vt ae o [ (wul g
— u - u
0 B
—sﬁ_lﬂrww”>/ﬁvdex
p 0
5m
+b8/|u|1’dx—a8—/\u|’"dx
Q m Jo
[t ax
Q

(10)

(1)

(12)

(13)

(14)
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Therefore by choosing d, 1, 4 so that

5—m/(m—l) :MIH—a(t)
p=MH"(t)
JPB=D = My H (1)

for My, M,, and M; to be specified later, and using (14) we arrive at

L'(t)=(1 fJ)H*“(t)H’(t)—i-s/ u? dx
Q

—LH“(z)/ |Vu|2dx—£/ Vu|* dx
M, Q Q

(B=1)
—8M 5 HV= 1)(t)/\Vu\ﬁdJc

_aingi(”lil)Ha(m_l)(t)/ |I,{|mdx+b8/ |u‘pdx
" Q Q

Q ﬁ Q

AWMMP1W) (15)

If M=M,+ (f — 1)M;/ + (m—1)M;/m then (15) takes the form

L'(t) = (1 —a)—eM)H*“(t)H'(t)—l-e/ufdx
Q

_LHG(t)/ |Vu|2dx—8/ Vul* dx
M, 0 Q

M (B-1)
_ ﬁ HoB~ ”(t)/\Vu\ﬁ

_@Mﬁ’"*”H”(m—l)(t)/ |u|’”dx+be/ |u|? dx (16)
m Q Q

We then use the embedding L?(2) < L™(2) and (6) to get

b o(m—1) m+op(m—1)
oo [upracs (2) 0 ([rar) (17)

Copyright © 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1687-1696
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We also exploit the inequality

2/o
/|Vu|2dx<c</ |Vu|°‘dx>
Q Q

the embedding W,*(2) < L?(£2), and (4) to obtain

po+2

Ha(t)/Q|Vu|2dx<C<2)a(/Q|Vu|“dx> :

Since o> f§ we have

Bla
/|Vu|ﬁdx<C</ |Vu“dx>
Q 0

consequently

b a(p—1)
H“(B’”(t)/ vuﬂdxgc(> (/ |Vu|°‘dx>
Q p Q

where C is a constant depending on €2 only. By using (8) and

po(f=D+p

1
2'<z+ 1< <1 + a) (z+a), Vz=0,0<v<l1,a=0
we have the following

m+aop(m—1) m+aop(m—1)

(/qudx) "< (/Q|Vu|°‘dx>

<d(/ |Vu|“dx+H(O)>
Q
<d(/ |Vu|°‘dx+H(t)) V>0
Q
po+2
(/ |Vu|“dx> ’ <d( |Vu|°‘dx+H(t)), V=0
Q Q
po(B—D+p
(/ |Vu|°‘dx) <d< |Vu|“dx+H(t)), V=0
Q Q

Copyright © 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004;
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where d =1+ 1/H(0). Inserting the estimates (17)—(19) and (21)—(23) into (16) we get

L'(t) = (1 —o)—eM)H °(t)H'(¢)

+kH(t) + e+§ /u,zdx
2) Jo
_j‘% (/ |Vu|°‘dx+H(t)> —g/ Vu|* dx
2 Q Q
C k
-2 (/ Vu“dx+H(t)> +f/|Vu|‘“dx
M; Q % Jo

8C1 o . E
- (/Q|Vu| dx+H(t)) +b<a p)/ﬂu|pdx (24)

for some constant & and

a(m—1) a a(f—1)
) ). e
m \p 4 \p B

Using k=¢p, we arrive at

2
G, C; C;
telp- 2 -2 - H(t
<p My  mf~! M{'”) )
p G Cs Ci /
+elf-==-—_ 1 Vu|* dx 25
b<oc M, Mffl M{"’l ) Q| ul (23)

At this point, we choose M, M,, M; large enough so that

L'(t) 2 (1 — o) —eM)H"(1)H'(1)

+7e [H(t)+/gu,2dx+/g|w|“dx} (26)

where 7 is a positive constant (this is possible since p>a). By choosing ¢<(1 — ¢)/M so
that

L(O):HI_J(O) + 8/ Uol dx>0
Q

we obtain

L(t)>L(0)>0, Vt=>0

Copyright © 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1687-1696
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and
L'(t)=ye {H(z)—i—/ufdx—i—/ |Vu|“dx] 27)
Q Q

Next, it is clear that

1
1 1 1 T—c
Li-a(t)<21-0o {H(t)—i—sl—“ (/ u,udx) }
Q
By the Cauchy—Schwarz inequality and the embedding of the L”({2) spaces we have
12 12
/u,udx’<</u2dx> </u[2dx>
Q Q Q
1/a 1/2
cef ) ([0
Q Q

which implies

1

1 1
T-0 (I—o)a 2(1—0)
/utudx‘ <C</ |u|“dx> (/ ufdx)
Q Q Q

Also Young’s inequality gives

1 _m _0

-0 (I—0)x 2(1—0)

o  <e|(forar) (Lo
Q Q Q

for 1/u+1/0=1. We take 0=2(1 — ¢), (hence u=2(1 —o)/(1 —20)) to get

1170 (17220)05
/u,udx’ <C (/ |u|°‘dx) +/u,2dx
Q Q Q

By Poincaré’s inequality, we obtain

/ uudx
Q

By using (8) and (20) we deduce

2
(/Q|Vu| dx) < (1+H(O)> (/Q|Vu| dx-l—H(t))

Copyright © 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1687-1696
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Therefore

1
T—0o
/u,udx’ <C[H(t)+/Vu“dx+/u,2dx}, V=0
Q Q Q

consequently

1
Li-o(t)<T [H(t) +/ |Vul*dx + / u? dx} (28)
Q 0
where ' is positive constant. A combination of (27) and (28), thus, yields
1
L'(t)=¢,L1-0(t), Vt=0 (29)

Integration of (29) over (0,¢) gives
1

LT () > =

LT (0) - (1-0)

t

hence L(t) blow up in time
re 120 (30)
SoLT=7(0)

Remark 2.3
The time estimate (30) shows that the larger L(0) is the quicker the blow up takes place.

Remark 2.4
In (6) we only require that H(0)>0, Unlike Yang [3], where it is required that H(0)> A4, a
constant depending on the size of ). See condition (ii), Theorem 2.1 of [3].

Remark 2.5
If we consider

uy — Auy — div(a(Vu)Vu) — div((Vu)Vu,)
+f(u)=9g(u), x€Q, t>0

with the initial and boundary conditions of (1) we can establish a similar blow up result
under the growth conditions of Theorem 2.3 of [3] on f,g,0 and f.
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