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AbstractIn this work we consider an initial one-point boundary value problem to
the heat equation with the Bessel operator ut − (uxx + 1

xux) = |u|p−2u.
We first prove a local existence result. Then we show that the solution blows up
in finite time.

1 Introduction

In [3] Denche and Marhoune considered the following linear problem

ut − (uxx + 1
xux) = f(x, t), x ∈ (0, l), 0 < t < T,

u(l, t) = 0,
∫ l

l1
u(x, t)dx = 0, 0 ≤ l1 ≤ l, 0 < t < T

u(x, 0) = φ(x), x ∈ I.
and proved the existence of a strong solution. Their work relatively improves
earlier results by Benuar and Yurchuk [2]. Also a similar problem containing
∂x(a(x, t)ux) instead of the Bessel operator, has been investigated by Kartynnik
[4] and Yurchuk [5]. In these papers the methods of proof were essentially based
on operator techniques. The authors defined an operator L from a space E into
another space F, and then showed that L is a linear homeomophism. This allowed
them to prove their existence results.

In this paper we are concerned with the local existence and the finite time
blow up of weak solutions of a semilinear one-point boundary value problem for
the heat equation with the Bessel operator. So we consider the following problem,

ut − (uxx + 1
xux) = |u|p−2u, x ∈ I = (0, 1), t > 0,

u(1, t) = 0, t ≥ 0
u(x, 0) = φ(x), x ∈ I,

(1.1)
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where φ ∈ H. Here, H is the Banach space obtained by completing the space
F = {v ∈ C1([0, 1]) / v(1) = 0} with respect to the norm

||v||2H =
∫ 1

0

x[v2(x) + |v′(x)|2]dx. (1.2)

We also define the weighted Banach space E to contain all functions v satisfying

||v||2E =
∫ 1

0

xv2(x)dx <∞. (1.3)

Problem (1.1) is obtained from the study of the radial solutions of the following
two-dimensional heat problem

ut − (uyy + uzz) = |u|p−2u, (y, z) ∈ D, t > 0,
u = 0, (y, z) ∈ ∂D, t ≥ 0

u(y, z, 0) = φ(y, z), (y, z) ∈ D,

where D is the unit disk centered at the origin.
In order to establish our local existence result for (1.1), we first prove an

existence theorem of weak solutions for the related linear problem.

2 The linear Problem

In this section we consider the linear problem

ut − (uxx + 1
xux) = f(x, t), x ∈ I, t ∈ (0, T ),
u(1, t) = 0, t ∈ [0, T ]

u(x, 0) = φ(x), x ∈ I,
(2.1)

where f ∈ L2(0, T ;E), ie
∫ T

0

∫ 1

0
x(f(x, t))2dxdt <∞. We start with a lemma that

gives an equivalent norm to (1.2).
Lemma 2.1. For v in H, we have∫ 1

0

xv2(x)dx ≤ 4
∫ 1

0

x(vx(x))2dx. (2.2)

Proof. It is easy to see that for each v in F we have

0 =
∫ 1

0

(xv2)xdx =
∫ 1

0

(v2 + 2xvvx)dx;

hence we get ∫ 1

0

xv2dx ≤
∫ 1

0

v2dx = −2
∫ 1

0

xvvxdx.

By using Young’s inequality we obtain∫ 1

0

xv2dx ≤ | − 2
∫ 1

0

xvvxdx| ≤ 2
∫ 1

0

xv2
xdx+

1
2

∫ 1

0

xv2dx.
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Therefore (2.2) is established for each v in F . This inequality remains valid for v
in H since F is dense in H.
Remark This is Poincare’s inequality for the space H.
Theorem 2.2. Let f be in L2(0, T ;E). Then problem (2.1) has a unique weak
solution

u ∈ L∞(0, T ;H), ut ∈ L2(0, T ;E). (2.3)

Moreover ∀ t ∈ [0, T ], we have∫ 1

0

xux
2(x, t)dx+

∫ t

0

∫ 1

0

xu2
t (x, s)dxds ≤

C

∫ 1

0

x(φx(x))2dx+ C

∫ t

0

∫ 1

0

x|f(x, s)||ut(x, s)|dxds, (2.4)

where C is a constant independent of u and t.
Proof. By multiplying equation (2.1) by x we obtain

(xu)t − (xux)x = xf(x, t). (2.5)

We then use Galerkin method to prove our theorem. For this purpose let (ei)∞i=1be
a basis of H {H is a Hilbert space}and Hm be the finite dimensional subspace
spanned by {e1, e2, ..., em}. We would like to approximate the solution by functions
lying in these spaces, having the forms

um(x, t) :=
m∑

i=1

αi(t)ei (2.6)

and satisfying

m∑
i=1

α
′

i(t)
∫ 1

0

xeiejdx+
m∑

i=1

αi(t)
∫ 1

0

xe
′

ie
′

jdx =

∫ 1

0

xf(x, t)ejdx, 0 < t < T, j = 1, 2, ...m (2.7)

m∑
i=1

αi(0)
∫ 1

0

xeiejdx =
∫ 1

0

xφ(x)ejdx, j = 1, 2, ...m. (2.8)

The standard theory for the Ordinary Differential Equations guarantees the ex-
istence of functions α′is such that um, defined by (2.6), satisfies (2.7), (2.8). We
then substitute ej by ∂um/∂t in (2.7) and integrate over (0, t) to get

1
2

∫ 1

0

x(∂xum(x, t))2dx+
∫ t

0

∫ 1

0

x(∂tum(x, s))2dxds ≤ 1
2

∫ 1

0

x(φx(x))2dx

+
∫ t

0

∫ 1

0

x|f(x, s)||∂tum(x, s)|dxds, ∀ t ∈ [0, T ]. (2.9)
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By using the Schwarz inequality we conclude that (um) is bounded in L∞(0, T ;H)
and (∂tum) is bounded in L2(0, T ;E); so we can extract subsequences { still de-
noted by (um) and (∂tum)}such that um converges weakly ∗ to a function u in
L∞(0, T ;H) and ∂tum converges weakly to ut in L2(0, T ;E).

Since, by virtue of (2.7), we have

d

dt

∫ 1

0

xum(x, t)ejdx+
∫ 1

0

x∂xum(x, t)e′jdx =
∫ 1

0

xf(x, t)ejdx,

for each m ≥ j then it is easy to see that, for each j ≥ 1 and for almost every
t ∈ [0, T ], u satisfies

d

dt

∫ 1

0

xu(x, t)ejdx+
∫ 1

0

xux(x, t)e′jdx =
∫ 1

0

xf(x, t)ejdx. (2.10)

Therefore, for each ψ ∈ H and for almost every t ∈ [0, T ], we get

d

dt

∫ 1

0

xu(x, t)ψ(x)dx+
∫ 1

0

xux(x, t)ψ′(x)dx =
∫ 1

0

xf(x, t)ψ(x)dx. (2.11)

The uniqueness can be established in the usual way by supposing the existence of
two solutions having for difference w which satisfies

(xw)t − (xwx)x = 0, w(x, 0) = 0. (2.12)

By multiplying (2.11) by w and integrating over I we get

d

dt

∫ 1

0

xw2(x, t)dx ≤ −
∫ 1

0

xw2
x(x, t)dx,

which yields ∫ 1

0

xw2(x, t)dx ≤
∫ 1

0

xw2(x, 0)dx = 0

Therefore
∫ 1

0
xw2(x, t)dx = 0; hence w ≡ 0.

The estimate (2.4) is a direct result of (2.9) and the sequential lower semicontinuity
of the norm function.

3 The Semilinear Problem

In this section we state and prove the local existence result to problem (1.1). We
first start with the following
Lemma 3.1 If v ∈ H and 2 < p < 3 then |v|p−2v ∈ E.
Proof First we note that by virtue of lemma 5.42 of [1] and using a density
argument we have

sup{x(v(x))2, 0 < x < 1} ≤ 4
∫ 1

0

xv2(x)dx+ 4
∫ 1

0

x|v(x)||v′(x)|dx.
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By using the Schwarz inequality and lemma 2.1, this yields

sup{x|v(x)|2, 0 < x < 1} ≤ C

∫ 1

0

x|v′(x)|2dx. (3.1)

By evaluating the E-norm of |v|p−2v we have∫ 1

0

x|v(x)|2p−2dx =
∫ 1

0

xp−1|v(x)|2(p−1)x2−pdx

≤
(
sup{x|v(x)|2, 0 < x < 1}

)p−1
∫ 1

0

x2−pdx

≤ C

3− p
(||v||H)2p−2 <∞,

by virtue of (3.1). This completes the proof.

Theorem 3.2 Let φ ∈ H and 2 < p < 3, then for T ∗ < T problem (1.1)
has a unique local solution u with the property

u ∈ L∞(0, T ∗;H), ut ∈ L2(0, T ∗;E) (3.2)

Proof We prove this theorem by using a fixed point argument. For T > 0 and
M > 0, we define the class of functions W = W (M,T ) = {w ∈ L∞(0, T ;H) with
w(x, 0) = φ} such that

N(w,wt, T ) = sup{||w(., t)||2H , 0 < t < T}+
∫ T

0

∫ 1

0

x|wt(x, t)|2dxdt ≤M2. (3.3)

We then define a map h : W → H which associates to each v ∈ W the solution u
of the linear problem

ut − (uxx + 1
xux) = |v|p−2v, x ∈ I, t > 0
u(1, t) = 0, t ≥ 0

u(x, 0) = φ(x), x ∈ I.
(3.4)

It follows from lemma 3.1 and theorem 2.2 that (3.4) has a unique solution u
satisfying ∫ 1

0

xux
2(x, t)dx+

∫ t

0

∫ 1

0

xu2
t (x, s)dxds ≤

C

∫ 1

0

x|φ′(x)|2dx+ C

∫ t

0

∫ 1

0

x|v(x, s)|2p−2dxds, ∀ t ∈ [0, T ].

This, in turn, implies that

sup{||u(., t)||2H , 0 < t < T}+
∫ T

0

∫ 1

0

xu2
t (x, t)dxdt ≤ Γ + CTM2p−2, (3.5)
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where Γ is a constant depending on the H-norm of φ only. By taking M large
enough and T ∗ small enough, (3.5) yields

N(u, ut, T
∗) ≤M2;

hence hmapsW into itself. To show that h is a contraction for T ∗ small enough, we
consider v1, v2 ∈W and the corresponding images u1 and u2. It is straightforward
to see that U = u1 − u2 satisfies

Ut − (Uxx + 1
xUx) = |v1|p−2v1 − |v2|p−2v2, x ∈ I, t > 0

U(1, t) = 0, t ≥ 0
U(x, 0) = 0, x ∈ I.

(3.6)

We multiply (3.6) by xUt and integrate over I × (0, t) to get

1
2

∫ 1

0

xUx
2(x, t)dx+

∫ t

0

∫ 1

0

xU2
t (x, s)dxds ≤

∫ t

0

∫ 1

0

x|Ut|||v1|p−2v1 − |v2|p−2v2|(x, s)dxds.

Schwarz inequality then leads to∫ 1

0

xUx
2(x, t)dx+

∫ t

0

∫ 1

0

xU2
t (x, s)dxds ≤

∫ t

0

∫ 1

0

x{|v1|p−2v1 − |v2|p−2v2}2(x, s)dxds. (3.7)

We now estimate the RHS of (3.7) as follows. Taking V = v1 − v2, we obtain∫ 1

0

x{|v1|p−2v1 − |v2|p−2v2}2dx ≤ C1

∫ 1

0

x|V |2{|v1|2p−4 + |v2|2p−4},

where C1 is a constant independent of v1, v2 and t. Thus we have, by virtue of
(3.1), ∫ 1

0

x{|v1|p−2v1 − |v2|p−2v2}2dx

≤ C1

(
sup{x|V |2, 0 < x < 1}

) ∫ 1

0

{|v1|2p−4 + |v2|2p−4}dx

≤ C

(∫ 1

0

x|Vx|2dx
) ∫ 1

0

{|v1|2p−4 + |v2|2p−4}dx, (3.8)

Next we evaluate∫ 1

0

|v1|2p−4 =
∫ 1

0

xp−2|v1|2p−4x2−pdx

≤
(
sup{x|v1|2, 0 < x < 1}

)p−2
∫ 1

0

x2−pdx
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≤ C
1

3− p

[∫ 1

0

x(
∂v1
∂x

)2dx
]p−2

≤ CM2(p−2). (3.9)

By combining (3.8) and (3.9) we arrive at∫ T∗

0

∫ 1

0

x{|v1|p−2v1 − |v2|p−2v2}2dxds ≤ (3.10)

CT ∗M2(p−2) sup{||V (., t)||2H , 0 < t < T}

Therefore (3.7) and (3.10) give

N(U,Ut, T
∗) ≤ CT ∗M2(p−2)N(V, Vt, T

∗). (3.11)

Choosing T ∗ small enough that CT ∗M2(p−2) < 1, makes the map h a contraction
from W into itself. The Contraction Mapping Theorem then guarantees the exis-
tence of a fixed point u, which is the desired solution of (1.1). The proof is then
complete.

4 The Finite Time Blow Up

In this section we show that the solution (3.2) blows up in finite time if

E0 :=
1
2

∫ 1

0

x(φx(x))2dx− 1
p

∫ 1

0

x|φ(x)|pdx ≤ 0. (4.1)

Theorem 4.1. Let 2 < p < 3 then for any nonzero φ ∈ H satisfying (4.1), the
solution, given in (3.2), blows up in finite time.
Proof.

If we set

G(t) := −1
2

∫ 1

0

x(ux(x, t))2dx+
1
p

∫ 1

0

x|u(x, t)|pdx,

multiply equation (1.1) by −xut and integrate over I we get

G′(t) =
∫ 1

0

xut
2(x, t)dx ≥ 0,

for any regular solution of (1.1). This identity remains valid for the solution (3.2)
by a simple density argument. So we have

0 ≤ −E0 = G(0) ≤ G(t). (4.2)

We then define

L(t) :=
1
2

∫ 1

0

xu2(x, t)dx (4.3)

and differentiate to obtain

L′(t) =
∫ 1

0

xuut(x, t)dx =
∫ 1

0

xu(uxx +
1
x
ux + |u|p−2u)(x, t)dx.
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=
∫ 1

0

x|u|pdx−
∫ 1

0

x(ux)2dx = 2G(t) + (1− 2
p
)
∫ 1

0

x|u|pdx

≥ (1− 2
p
)
[
G(t) +

∫ 1

0

x|u|pdx
]
. (4.4)

Next we estimate

Lp/2(t) ≤ 2−p/2

[∫ 1

0

xu2dx

]p/2

≤ C

[
(
∫ 1

0

x|u|pdx)2/p(
∫ 1

0

xdx)(p−2)/p

]p/2

Lp/2(t) ≤ 2
∫ 1

0

x|u|pdx ≤ 2
[
G(t) +

∫ 1

0

x|u|pdx
]
. (4.5)

A combination of (4.4) and (4.5) then yields

Lp/2(t) ≤ 2p
p− 2

L′(t). (4.6)

We then integrate (4.6) over (0, t) to get

Lp/2−1(t) ≥ 1
L1−p/2(0)− γt

, (4.7)

where γ = (p2 − 4)/4p.. Therefore (4.7) shows that L blows up in a time
T ∗ ≤ L1−p/2(0)/γ. This completes the proof.

From the previous result we have the following
Corollary 4.2. If there exists t0 ≥ 0, for which

1
2

∫ 1

0

x|ux(x, t0)|2dx−
1
p

∫ 1

0

x|u(x, t0)|pdx = 0 (4.8)

then the solution, given by (3.2), either remains equal to zero for all time t ≥ t0
or blows up in finite time t∗ > t0.
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