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In the classical theory of heat propagation, the flux is usually given by Newton's
laws. As a result, we get a parabolic equation: namely the heat equation (équation
de chaleur). An other approach in the modern theory, is to assume that the heat
flux satisfies Cattanco's law and instead we obtain a hyperbolic system describing
the propagation of the hear. Such a phenomenon, that occurs in some materials, is
called propagation guided by Second Sound.  © 1996 Academic Press, Inc.

In the absence of deformation, heat propagation in a unidimensional
case is given by the following equation of balance of energy

e, +q,=0, (0.1)

where e is the internal energy and g is the heat flux (e and g are functions
of x and ¢ and subscripts indicate partial derivatives).

We assume that e depends on the absolute temperature and g satisfies
the Cattaneo! law; ie.,

e=e4(0) ' (0.2)
1(0)g,+q=—x(0)0,, (0.3)

where 7 and k are positive functions. By substituting in (0.1), we get

eo()0,= —q, (0.4)
where

eo(8)>0 (0.5)

is assumed to hold and consequently the system (0.4), (0.5) is hyperbolic.

Global existence and decay of classical solutions, for smooth and small
initial data, have been established by Coleman er al. [2]. In their paper,
the authors used a classical energy argument to prove their res” ™\ As they

~—
! This phenomenon is called Second Sound. See, e.g., [12].
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pointed out, Kato’s method based on semigroup theory [5] is also
applicable to their initial-value problem.

In the case of large initial data, one expects that classical solutions blow
up in finite time due to the formation of shock waves. This phenomenon
is often found in hyperbolic and coupled hyperbolic-parabolic systems
(See, e.g., [3, 4, 6-8]).

It is also interesting to note that a global existence and decay to equi-
librium state result, to the one-dimensional nonlinear thermoelasticity—
where the heat flux is given by (0.3)—was proved by Tarabek [9] in 1989,

In this work, we prove a blow up result to the above system. Our argu-
ment to accomplish this will be very close to the one used by Slemrod [8]
and Hrusa and Messaoudi [4].

This paper will be divided into two sections. In the first one, we state a

local existence theorem. In the second section, our main result will be
presented.

1. LocAL EXISTENCE

We consider the following Cauchy problem

0,(x, 1) = —c(0(x, 1)) q.(x, 1) (L1)
9/(x, 1) = —a(0(x, 1)) 0,(x, 1) =~ 40(x, 1)) q(x, 1), (12)
0(x, 0)=04(x),  g(x,0)=gy(x), (1.3)

xeR, 120.

PROPOSITION.  Assume that ¢, 0, and A are C? positive Sunctions, with
Ay)<y, VyeR, (1.4)

and let 6y and q,€ HY(R) be given. Then the initial value problem (1.1)-(1.3)
has a unique local solution (8, q), on a maximal time interval [0, T), satisfy-
ing

0, g€ C([0, T); HY(R))n CX([0, T); H'(R)). (15)
For a proof of this result, we can use a classical energy argument [2],
as well as the nonlinear semigroup theory presented by Hughes et al. [5].

Remark 1.1. The Sobolev embedding theorem implies that # and q are
in CY(Rx [0, 7).

Remark 12. 1Ifec, a, 2 a/\:"+l functions and 6,, g, € H*(R). Then the
solution (6, q) e [H"(IR)]’.

-
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By choosing initial data small enough (in L™ norm), we are guaranteed
to have

plp—-lﬂ

a:=inf >0. (2.28)
2a
We set

pp~'"
M: max|~+——(r+s)—- S /l (2.29)

o L L

m ;= max | ==~ f’—[2+2a(’r+s)}f

43049 [ wpm . (230)

(We note that these maxima exist since they depend only on 8 and ¢.)
Thus, we have

8,F>aF*— M |F|—m. (231)
We then use
MIR<E P el Mo (2.32)
=2 2a '
to obtain
a,1~*;§ (F*— BY) (2.33)
whgre
M?* 2m
B= —‘;-2— + '-;- (2.34)

From Lemma 3.1 of [8], it suffices to choose 8, and g, small enough in
the L™ norm and with positive derivatives such that g5(x) +a(0y(x)) fo(x)
is large enough to make F blow up in a time T< L.

Remark 2.3. A similar result can also be obtained for certain initial-
boundary value problem,
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2. FORMATION OF SINGULARITIES
This section is devoted to the statement and a proof to our main result.

We first begin with a lemma which gives a pointwise upper bound on the
solution in terms of the initial data.

LEMMA. Assume that ¢, o, and A are as in the proposition and let 6,
go€ HX(R) be given. Then any solution (0, q) to problems (1.1)-(1.3) satisfies

max {1005, 01+ la(x, 01} <7 max (106001 +laul}, (21)
where I is a positive constant independent of 0 and q.
Proof. We first introduce the quantities

r(x, 1) =q(x, 1) + 4(0(x, 1))

(2.2)
s(x, £) =q(x, 1) — A(B(x, 1)),
where
a 0
a:=f—, A0)={ () d (23)
4 0
and the differential operators
0 0 0 0
a,--—'a-’*'P(o) P D,-=-a"t—l?(0) F (24)
where
p=./oc (2.5)
and simple and straightforward computations lead to
S+r
d0,r=D,s= —A0)g= —A(0) (——2——> (2.6)
We then define /
R(1):=max |r(x, 1),  S(¢) :=max |s(x, 1)]. @27

(The maxima in (2.7) are attained because R and S die at infipi*~)

~—
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The last term in (2.22) can be handled as follows

._3,2 A
B——z——- 7 (r+s)o,(r—s)
ap—3/2
== (r=A4)3,(r—s) (2.22)
t,—~3/2 —~3/2
=22 1o, (r—s)— e ad,(r—s)

=o[r [* wommie dc] —ar [T Wo =N dg

~3, f: (X Ap=2)(€) de. (2.23)

We note that
9,(r—s)

2,0= 3

By combining (2.22), (2.23), we get

'a—142
0,0= -—e“%;-—¢ [; 2 (r+s)]

13 040 [T@wm@ dros @2

where
® ® o :
rimr [T o= [° [ pon (Fead)] @ar @2
1] 0
Now, we are ready to conclude our proof. For this purpose, we set

Fi=0—7 ' (2.26)
Hence (2.24) gives :

1. =172

o F=-E2— F1y -<r+s)j (Xp=>P)(&) d

A X prp—lﬂ
[2+ (r+s)— e f]F

ta=1/2 [
~Lr f’[ -;;(r+s)]f. ‘ @)
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For any t€(0, T), we can choose x, and x, so that
R(t)=|r(x,, 8)l,  |s(x;, O)|. (2.8)
Therefore, for any A (0, 1), we have
R(t—h) 2 |r(x, —hp(6(x,, 1)), t — h)|, (2.9)
S(t—h) 2 1s(x;, + hp(6(x,, 1)), t — h)|. (2.10)

By substracting (2.9), (2.10) from (2.8), dividing the resulting inequalities
by A, and letting & go to zero, we obtain

RO 12,r(x, 0 <L TR(1)+5(0)] @11)

S(t) < |D,s(x, 1)] <-22 [R(1) +S(1)], (2.12)
for almost every te [0, T); hence (2.11), (2.12) yield

2 LR+ 501 <YLR() + S(0)) (2.13)

for almost every te [0, T).
A straightforward integration—using Gronwall’s inequality—Ileads to

[R(1) + S()]<[R(0) + S(0)]e™, Vte[O, T]. (2.14)
Therefore (2.1) follows.

Remark 2.1. 0, c, and A need not be positive on R. It suffices that (1.4)
holds near equilibrium. In this case, we choose the initial data small
enough and make a slight, but not crucial modification in the proof.

THEOREM. Let 0, c, and A be as in the proposition. Assume Surther that

p'(0)<0. (2.15)

Then, for any L >0, there exist initial data 0, and go € H¥R) for which the
solution (0, q) blows up in finite T < L.

Remark 22. An analogous result can be obtained if (2.15) is replaced
by p'(0) > 0. ~
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Proof. We first take an x-partial derivative of (2.6) to get

(alr)xarlx+prxx+p'0xrx

A A
= == (re+5,)—5 (r+50,. (2.16)

2 2

We then use
r,—38y
0x=-~2—a— (2.17)
to obtain
re—35,
O,re+p'r, = o

A A Fo—S, . ;
=-3 (f.,+sx)—§ (r+s) 5 (2.18)

Straigthforward calculations then give
5= l-8(r—) (2.19)
x 2 p t § . .
and substitution in (2.18) yields

drem = =L i =0)=[ 45 )|

4ap 2
A A o0,(r—s)
+[ s (r+s)] = (220)
We now introduce
b =p~r, (221

and substitute in (2.20) to obtain

t.—1/2 '
__Pp 2 é {_1_
J,0= > ] [24—2“ (rfs)]lp

PR A_X
+ ) {2 o (r+s)] 0,(r——s).m (2.22)




JOURNAL. OF D.IFFERBNTML BQUATIONS 130, 92-99 (1996)
ARTICLE No. 0133

Formation of Singularities in Heat Propagation Guided
by Second Sound

MEssAoUDI A. SALIM

University of Biskra, P.O. Box 145, Biskra, Algeria
Received August 17, 1992

In the classical theory of heat propagation, the flux is usually given by Newton's
laws. As a result, we get a parabolic equation: namely the heat equation {équation
de chaleur). An other approach in the modern theory, is to assume that the heat
flux satisfies Cattaneo’s law and instead we obtain a hyperbolic system describing
the propagation of the hear. Such a phenomenon, that eccurs in some materials, is
called propagation guided by Second Sound.  © 1996 Academic Press, Inc.

In the absence of deformation, heat propagation in a unidimensional
case is given by the following equation of balance of energy

e,+q,=0, _ (0.1)

where e is the internal energy and g is the heat flux (e and g are functions
of x and ¢ and subscripts indicate partial derivatives).

We assume that e depends on the absolute temperature and ¢ satisfies
the Cattaneo' law; ie.,

e=e¢ey(0) {0.2)
W0)g,+q= —x(0)0,, (03)

where 7 and « are positive functions. By substituting in (0.1), we get

e(0)0,= —q, (0.4)
where

es(8)>0 (0.5)

is assumed to hold and consequently the system (0.4), (0.5) is hyperbolic.

Global existence and decay of classical solutions, for smooth and small
initial data, have been established by Coleman et al. [2]. In their paper,
the authors used a classical energy argument to prove their res’ ™\ As they

“—
! This phenomenon is called Second Sound. See, e.g., [1,2].
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pointed out, Kato’s method based on semigroup theory [5] is also
applicable to their initial-value problem.

In the case of large initial data, one expects that classical solutions blow
up in finite time due to the formation of shock waves. This phenomenon
is often found in hyperbolic and coupled hyperbolic-parabolic systems
(See, e.g, [3, 4, 6-8]).

It is also interesting to note that a global existence and decay to equi-
librium state result, to the one-dimensional nonlinear thermoelasticity—
where the heat flux is given by (0.3)—was proved by Tarabek [9] in 1989.

In this work, we prove a blow up result to the above system. Our argu-
ment to accomplish this will be very close to the one used by Slemrod [8]
and Hrusa and Messaoudi [4].

This paper will be divided into two sections. In the first one, we state a
local existence theorem. In the second section, our main result will be
presented.

I. LocAL EXISTENCE

We consider the following Cauchy problem

0,(x, 1) = —c(D(x, 1)) q.(x, 1) (L)

q:(x, 1) = —a(0(x, 1)) 0,(x, 1) — A0(x, 1)) q(x, 1), (1.2)
0(x,0)=0o(x),  g(x, 0)=qy(x), (1.3)
xelR, r=0.

PROPOSITION.  Assume that ¢, g, and A are C? positive functions, with
A(y) <y, VyeR, (14)

and let 0y and g, € H*(R) be given. Then the initial value problem (1.1)-(1.3)
has a unique local solution (0, q), on a maximal time interval [0, T), satisfy-
ing

0, g€ C([0, T); H¥(R)) N C'([0, T); H'(R)). (1.5)

For a proof of this result, we can use a classical energy argument [2],
as well as the nonlinear semigroup theory presented by Hughes et al. [5]

Remark 1.1. The Sobolev embedding theorem implies that @ and q are
in C(Rx[0, 7).

Remark 12. Ife,a,Aa  “**! functions and 0o, go€ H*(R). Then the
solution (6, ¢) e [ H*(R)]2.
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2. FORMATION OF SINGULARITIES

This section is devoted to the statement and a proof to our main result.
We first begin with a lemma which gives a pointwise upper bound on the

solution in terms of the initial data.

LEMMA. Assume that c, g, and A are as in the proposition and let 0,,
go€ H*(R) be given. Then any solution (8, q) to problems (1.1)~(1.3) satisfies

@%{qun+wuuN}srn?xumun+wann.

where I is a positive constant independent of 0 and q.

Proof. We first introduce the quantities

r(x, t) =q(x, t) + A(6(x, 1))
s(x, t) = q(x, t) — A(0(x, 1)),

p 0
wm (2 4@= w0

and the differential operators

where

0

17 i) 2
511=5;+P(0) e D.1=‘a—t—P(0) e

where

pi=./ac

and simple and straightforward computations lead to

d,r=D,s= —MB)q= —A(0) (”').

T2
We then define

R(1) :=max |r(x, t)|, S(t) = max |s(x, £)}.

(The maxima in (2.7) are attained because R and § die at infini*~)

(2.1)

(2.2)

(2.3)

(24)

(2.5)

(2.6)

@27)
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For any te (0, T'), we can choose x, and x, so that
R(t)=|r(x;, O, ls(x,, 1)), (2.8)
Therefore, for any he (0, t), we have
R(t—h) 2 |r(x, — hp(O(x,, 1)), t —h)|, (2.9)
S(t—h) 2 Is(x, + hp(8(x,, 1)), t — h)|. (2.10)

By substracting (2.9), (2.10) from (2.8), dividing the resulting inequalities
by A, and letting & go to zero, we obtain

R, 7(x,, )] s% [R(1) + S(1)] @.11)

S() < 1D,s(xz, O <L [R() +S(1)], (212)
for almost every te [0, T); hence (2.11), (2.12) yield

%[R(t)+S(t)] <yY[R(2)+ S()], (2.13)

for almost every 1€ [0, T).
A straightforward integration—using Gronwall’s inequality—leads to

{R(1)+ S(1)] <[ R(0) + S(0)]e”, ¥te[0, T]. (2.14)
Therefore (2.1) follows.

Remark 2.1. g, ¢, and A need not be positive on R. It suffices that (1.4)
holds near equilibrium. In this case, we choose the initial data small
enough and make a slight, but not crucial modification in the proof.

THEOREM. Let o, ¢, and A be as in the proposition. Assume Sfurther that
P'(0)<0. (2.15)

Then, for any L >0, there exist initial data 0, and go€ H*(R) for which the
solution (0, q) blows up in finite T < L.

Remark 2.2.  An analogous result can be obtained if (2.15) is replaced
by p'(0)>0. ~
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Proof. We first take an x-partial derivative of (2.6) to get
(al r)x = rlx + prxx + p'axrx

A A
= ——i (r,,+s,,)-—-2- (r+5)0,.

We then use
6, ="
to obtain
o,r,+p'ry Lx 2_:"
= —% (_r"+s"')'% (r+s) ';“—;-fi

Straigthforward calculations then give'
8= -1 a,(r—s)
x 2 p ¢

and substitution in (2.18) yields

' ' X
8,r,.= —p'(rx)l-zi—’; ra,(r-—.f:)-—[--+2--;l (r+s)] T,

2

A X d,(r—s)
+{2 % (r+s)] 2

We now introduce
¢ =p~'Pr,

and substitute in (2.20) to obtain

_ e [ALK ]
2, — @ [2+2a(r+s) @

P IA_N _
+ 5 {2 a (r+s)] o,(r s).m

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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The list term in (2.22) can be handled as follows

e

p X _

T 7m (r+s)0,(r—3s)
-

n '
(r—A)0,(r—s) (2.22)

= r3,(r —35)— ” AD,(r—3)

=o[r [T wo-nxe) dt] AN GL
0 [}
~a,[° apm YO @23)

We note that
’ o,(r—s
2,0= —-'-(—i-—l
By combining (2.22), (2.23), we get

L g [A K )]
0,¢ T P2~ {2+2u(r+s) &

e [T@eom@dras 020
where

fomr [ wo=mye)- [ |7 (Beua)|0ar @29

Now. we are ready to conclude our proof. For this purpose, we set

P g A ® (-
a,Fs r-——-w—zz-—' F2+§' (f+3)'jo (Ap 3/2)(6)‘1: -

[‘ X rae- ”pz;mf]p

27" 2

Fi=®—f (2.26)
Hence (2.24) gives
\ p” AL { +—— (r+s)}f. e
} .
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By choosing initial data small enough (in L* norm), we are guaranteed
to have

plp—lﬂ

a:=inf >0. (2.28)
20
We set
'._ A ll p'p-lﬂ
M :=max 2+2m(r+.s')-- S f (2.29)
- e, ALK
m ;= max S f [2+2a(r+s)f
) ®
+-2—(r+s)-I (l’p”’)(f)dﬁ‘. (2.30)
[+]

(We note that these maxima exist since they depend only on 6 and q.)
Thus, we have

9,F>aF*— M |F| —m. (231)
We then use
MR <8 P4 M2 (232)
=2 2a )
to obtain
a,Fa‘—z‘ (F*— BY) (2.33)
where
M?* 2m
B = 4 2.
a* + a (2.34)

From Lemma 3.1 of {8], it suffices to choose 8, and g, small enough in
the L* norm and with positive derivatives such that g5(x) +a(fo(x)) fo(x)
is large enough to make F blow up in a time T < L.

Remark 23. A similar result can also be obtained for certain initial-
boundary value problem.
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