
IJMMS 28:1 (2001) 1–7
PII. S0161171201011073

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

DEVELOPMENT OF SINGULARITIES IN SOLUTIONS
OF A HYPERBOLIC SYSTEM

S. A. MESSAOUDI

(Received 10 November 2000 and in revised form 20 February 2001)
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1. Introduction. For the system of nonlinear elasticity

ut(x,t)=ϕ
(
v(x,t)

)
vx(x,t), vt(x,t)=ux(x,t), (1.1)

it is well known that C1-solutions break down in finite time however smooth and small

the initial data are. This was shown by Lax [4] in 1964. In his work, the author studied

(1.1), forϕ> 0 andϕ′ > 0, and established a blowup result. MacCamy and Mizel [7] in

1967 considered the same system and proved a similar result, allowing ϕ′ to change

sign. They also showed, under appropriate conditions onϕ, that there are x-intervals,

for which the solution must exist for all time even though it blows up for values of x
outside these intervals.

Messaoudi [9] discussed the following system:

ut(x,t)=α(x)ϕ
(
v(x,t)

)
vx(x,t), vt(x,t)=ux(x,t), (1.2)

which models a transverse motion of a string with variable density. He showed that

C1-solutions develop singularities in finite time if the initial data are taken with large

enough gradients. He also discussed, in [8], a system with dissipation of the form

θt+c(θ)qx = 0, qt+σ(θ)θx =−λ(θ)q, (1.3)

which describes heat propagation in materials that predict finite propagation speed.

This phenomenon is called second sound. Here θ is the difference temperature and

q is the heat flux. He studied the Cauchy problem and proved a blowup result of the

classical solutions. We should note that, for λ constant and c(θ) = −1, (1.3) reduces

to a system describing steady shearing flows in nonlinear viscoelastic fluids. This

problem was studied by Slemrod [11] and a blowup result for classical solutions has

been established. A similar problem was also discussed by Nishibata [10], Kosiński [3],

and Zheng [12] and results concerning global existence and nonexistence have been

accomplished.
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For more general systems, it is worth mentioning the work of Li et al. [6], in which

they discussed

ut(x,t)=A
(
u(x,t)

)
ux(x,t), (1.4)

associated with decaying initial data. Here u : I×(0,T ) → Rn is a vector-valued func-

tion, A is an (n×n)-matrix, and I is an interval (bounded or unbounded). They proved

a global C1-solution for the Cauchy problem if, in addition to the local strict hyperbol-

icity condition, (1.4) is weakly linearly degenerate and the initial data satisfy, for µ > 0,

supx{(1+|x|)1+µ|u
′
0(x)|+|u0(x)|} is small enough. They also established a blowup

result to C1-solutions for nonweakly linearly degenerate systems. As they pointed out,

their work generalizes their result of [5] to the case of initial data with no compact

support but they possess certain decay properties.

In this work, we are concerned with a quasilinear hyperbolic system of the form

ut(x,t)=ϕ
(

v(x,t)
1+au(x,t)

)
vx(x,t), vt(x,t)= ux(x,t), (1.5)

where the constant a ≠ 0. In addition to its importance from the mathematical tech-

nique point of view, this system can be regarded as a relative generalization of the

one-dimensional wave equation in the sense if a= 0, (1.5) reduces to (1.1). We will con-

sider (1.5) together with initial conditions and show that C1-solutions blowup even for

small initial data. Our result cannot be directly deduced from the results of [6] since

we do not impose the same conditions regarding the size and the regularity of the

initial data (cf. [6, Theorem 1.2] and Theorem 3.1 below). This work is divided into

two parts. In part one we state, without proof, a local existence theorem. In part two

our main result is stated and proved.

2. Local existence. We consider the following Cauchy problem

ut(x,t)=ϕ
(

v(x,t)
1+au(x,t)

)
vx(x,t), (2.1)

vt(x,t)=ux(x,t), ∀x ∈R, t > 0, (2.2)

u(x,0)=u0(x), v(x,0)= v0(x), ∀x ∈R, (2.3)

where a≠ 0 and ϕ is a function satisfying

ϕ(ξ)≥ β > 0, ∀ξ ∈R. (2.4)

Proposition 2.1. Assume that ϕ is a C1 function satisfying (2.4) and let u0 and v0

in H2(R) be given such that

∣∣1+au0(x)
∣∣≥ λ > 0, ∀x ∈R. (2.5)

Then the problem (2.1), (2.2), and (2.3) has a unique local solution (u,v), on a maximal

time interval [0,T ), satisfying

u,v ∈ C([0,T ),H2(R)
)∩C1([0,T ),H1(R)

)
. (2.6)
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This result can be proved by applying a classical energy argument [1] or the non-

linear semigroup theory [2].

Remark 2.2. The functions u, v are C1 functions by the standard Sobolev embed-

ding theory.

3. Formation of singularities. We introduce the quantities and the differential

operators

r := 1
a

ln|1+au|+
∫ v/(1+au)

0
α(ξ)dξ,

s := 1
a

ln|1+au|−
∫ v/(1+au)

0
β(ξ)dξ,

∂t := ∂
∂t
−ρ

(
v

1+au
)
∂
∂x
,

Dt := ∂
∂t
+ρ

(
v

1+au
)
∂
∂x
,

(3.1)

where

ρ(ξ)=
√
ϕ(ξ), α(ξ)=

√
ϕ(ξ)

1+aξ
√
ϕ(ξ)

, β(ξ)=
√
ϕ(ξ)

1−aξ
√
ϕ(ξ)

. (3.2)

The following lemma shows, for initial data appropriately chosen, that r , s, and ρ are

well defined and |v(x,t)/(1+au(x,t))| is uniformly bounded.

Theorem 3.1. Let a and ϕ be as in Proposition 2.1. Then there exist initial data in

H2(R) satisfying (2.5), for which

∣∣∣∣∣∣
av(x,t)

1+au(x,t)

√√√√ϕ
(

v(x,t)
1+au(x,t)

)∣∣∣∣∣∣< 1,
∣∣1+au(x,t)∣∣> 0, (3.3)

and |v(x,t)/(1+au(x,t))| is uniformly bounded on R×[0,T ).

Proof. We first choose δ > 0 such that if

∣∣u0(x)
∣∣< δ, ∣∣v0(x)

∣∣< δ, ∀x ∈R, (3.4)

then ∣∣∣∣∣∣
av0(x)

1+au0(x)

√√√√ϕ
(

v0(x)
1+au0(x)

)∣∣∣∣∣∣< 1,
∣∣1+au0(x)

∣∣> 0, ∀x ∈R. (3.5)

Of course, this is possible by taking δ small enough. Then the continuity ofu,v, andϕ
implies that there exists T ′ ≤ T , such that (3.3) holds on R×[0,T ′). Let T0 := sup{T ′ :

(3.3) holds for all x ∈R, t ∈ [0,T ′)}. We have two cases, either T0 = T , this completes



4 S. A. MESSAOUDI

the proof. Or T0 < T ; in this case we estimate

∂tr = ut
1+au +α

[
vt

1+au −
v

(1+au)2aut
]

−ρ
[

ux
1+au +α

vx
1+au −α

v
(1+au)2aux

]

= 1
1+au

[(
1−aα v

1+au
)
ut−αρvx

]

+ 1
1+au

[
αvt−ρ

(
1−aα v

1+au
)
ux
]
, ∀x ∈R, t ∈ [0,T0

)
.

(3.6)

We recall that, unless otherwise stated, α, β, ρ, and ϕ are functions of v/(1+au).
By noting that αρ = (1−aαv/(1+au))ϕ, (1−aα1−aαv/(1+au))ρ =α, and using

(2.1) and (2.2), we obtain

∂tr = 0, ∀x ∈R, t ∈ [0,T0
)
. (3.7)

Similar calculations also yield

Dts = 0, ∀x ∈R, t ∈ [0,T0
)
. (3.8)

Therefore, on R×[0,T0), r and s remain constant along backward and forward char-

acteristics, respectively; hence ‖r‖∞ = ‖r0‖∞ and ‖s‖∞ = ‖s0‖∞. It is easy to see that

r(x,t)−s(x,t)=φ
(

v(x,t)
1+au(x,t)

)
, ∀x ∈R, t ∈ [0,T0

)
, (3.9)

where φ(τ) = 2
∫ τ
0

√
ϕ(ξ)/(1−a2ξ2ϕ(ξ))dξ is strictly monotone and continuous at

least in a neighborhood of zero, so it admits a continuous inverse ψ near zero. Since

the function g(ξ) = 1−a2ξ2ϕ(ξ) is continuous and g(0) = 1, one can choose γ so

that g(ξ)≥ ε > 0, for all |ξ|< γ and choose δ1 > 0 so that |ψ(τ)|< γ, for all |τ|< δ1.
Therefore, by choosing δ small enough so that (3.4) holds and ‖r0‖∞+‖s0‖∞ < δ1, we

get ∣∣r(x,t)−s(x,t)∣∣≤ ∥∥r0

∥∥∞+∥∥s0

∥∥∞ < δ1, (3.10)

consequently ∣∣∣∣∣ v(x,t)
1+au(x,t)

∣∣∣∣∣=
∣∣ψ(r −s)∣∣< γ, (3.11)

which yields

∣∣∣∣∣∣∣
av(x,t)

1+au(x,t)

√√√√ϕ
(

v(x,t)
1+au(x,t)

)∣∣∣∣∣∣∣≤ 1−ε < 1, ∀x ∈R, t ∈ [0,T0
]
. (3.12)

We then use (3.1), the boundedness of r , and the fact that 1+aξ
√
ϕ(ξ)≥ ε to conclude

that ln|1+au| is bounded onR×[0,T0]; hence |1+au|> 0. Again by continuity, there
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exists T1 > T0 such that (3.3) holds on R×[0,T1). This contradicts the maximality of

T0; hence T0 must be equal to T . Therefore (3.3) and (3.11) hold. This completes the

proof.

Theorem 3.2. Assume that, in addition to (2.4), ϕ satisfies ϕ′(0) > 0. Then there

exist initial data u0,v0 in H2(R) satisfying (3.4), for which the solution of the problem

(2.1), (2.2), and (2.3) blows up in finite time.

Proof. We take an x-partial derivative of (3.7) to get

(
∂tr

)
x = rxt−ρrxx−rxρx = 0 (3.13)

which, in turn, implies

∂trx = rxρx = ϕ′

2
√ϕrx

∂
∂x

(
v

1+au
)
. (3.14)

We then use

rx = ux
1+au +α·

∂
∂x

(
v

1+au

)
, sx = ux

1+au −β·
∂
∂x

(
v

1+au

)
, (3.15)

and substitute in (3.14) to arrive at

∂trx = ϕ′

2
√ϕ(α+β)rx

(
rx−sx

)

= ϕ′

4ϕ

(
1−a2

(
v

1+au

)2

ϕ
)
r 2
x−

ϕ′

4ϕ

(
1−a2

(
v

1+au

)2

ϕ
)
rxsx.

(3.16)

To handle the last term in (3.16), we set W :=ϕ1/4rx and substitute in (3.16), to get

∂tW =ϕ1/4 ϕ′

4aϕ

(
1−a2

(
v

1+au

)2

ϕ
)
r 2
x−ϕ1/4 ϕ′

4aϕ

(
1−a2

(
v

1+au

)2

ϕ
)
rxsx

+ 1
4
ϕ−3/4ϕ′rx∂t

(
v

1+au

)
.

(3.17)

By using (2.1) and (2.2), we see that

∂t
(

v
1+au

)
= (1+au)

(
vt−√ϕvx

)−av(ut−√ϕux)
(1+au)2

= (1+au)
(
ux−√ϕvx

)−av(ϕvx−√ϕux)
(1+au)2

=
(
ux−√ϕvx

)(
1+au+a√ϕv)

(1+au)2 .

(3.18)

Also straightforward computations lead to

sx = 1√ϕ
β

1+au
(
ux−

√
ϕvx

)=
(
ux−√ϕvx

)
1+au−av√ϕ. (3.19)
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By combining (3.17), (3.18), and (3.19), we arrive at

∂tW =ϕ−5/4ϕ′

4

(
1−a2

(
v

1+au

)2

ϕ
)
W 2. (3.20)

If we choose δ sufficiently small, the coefficient of the quadratic term in (3.20)

remains bounded away from zero; that is, ϕ−5/4ϕ′(1−a2(v/(1+au))2ϕ)/4≥ k > 0.

Consequently, (3.20) gives

∂tW ≥ kW 2. (3.21)

Therefore, by choosing initial data small enough and satisfying (3.4) with derivatives

such thatW0 > 0, (3.21) shows thatW (hence rx) blows up in finite time. This completes

the proof.

Remark 3.3. Similar result can be obtained forϕ′(0) < 0. In this case consider the

evolution of sx on the forward characteristics.

Remark 3.4. A simple integration of (3.21) shows that the largerW0 is, the quicker

the blowup takes place.
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