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In this paper, we consider the nonlinearly damped semilinear wave equation

utt ��uþ autð1þ jutj
m�2Þ ¼ bujujp�2

associated with initial and Dirichlet boundary conditions. We prove that any solution,
with sufficiently negative initial energy, blows up in finite time if p>m.
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1 INTRODUCTION

In this paper, we are concerned with the following initial boundary

value problem

utt ��uþ autð1þ jutj
m�2Þ ¼ bujujp�2, x 2 �, t > 0

uðx, tÞ ¼ 0, x 2 @�, t � 0

uðx, 0Þ ¼ u0ðxÞ, utðx, 0Þ ¼ u1ðxÞ, x 2 �,

ð1Þ
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where a, b>0, p, m>2, and � is bounded domain of Rn
ðn � 1Þ, with

a smooth boundary @�. For b¼ 0, it is well known that the damping

term assures global existence for arbitrary initial data (see [3,5]). If

a¼ 0, then the source term bujujp�2 causes finite time blow up of

solutions with negative initial energy (see [1,4,6,7]).

The interaction between the damping and the source terms was first

considered by Levine [6,7] in linear damping case (m¼ 2). He showed

that solutions with negative initial energy blow up in finite time.

Recently Georgiev and Todorova [2] extended Levine’s result to the

nonlinear case, where the damping term is given by autjutj
m�2,

m>2. In their work, the authors introduced a different method

than the famous concavity method and determined suitable relations

between m and p, for which there is global existence or alternatively

finite time blow up. Precisely, they showed that solutions with negative

energy continue to exist globally ‘in time’ if m� p and blow up in finite

time if p>m and the initial energy is sufficiently negative.

This result has been lately generalized to an abstract setting and to

unbounded domains by Levine and Serrin [8] and Levine et al. [9]. In

these papers, the authors showed that no solution with negative initial

energy can be extended on ½0,1Þ if p>m and proved several noncon-

tinuation theorems. This generalization allowed them also to apply

their noncontinuation results to quasilinear situations, of which the

result of [2] is a particular case. As they pointed out in [8], their result

improved the result of [2] by not requiring that the initial energy be suf-

ficiently negative but on the other hand the result of [2] showed that the

noncontinuation implies a blow up. Messaoudi [11] used a slightly dif-

ferent technique to prove the same result of [2] without imposing the

condition that the initial energy is sufficiently negative.

Vitillaro [12] combined the arguments in [2] and [8] to extend these

results to situations where the damping is nonlinear and the solution

has positive initial energy.

In this work we show that any solution of (1) with sufficiently nega-

tive initial energy blows up in finite time.We shall start by stating a local

result, which is considered to be standard for such problems (see [10]).

THEOREM 1.1 Suppose that m� 2, p>2, and

p � 2
n� 1

n� 2
, n � 3: ð2Þ
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Assume further that

ðu0, u1Þ 2 H
1
0 ð�Þ � L2ð�Þ ð3Þ

Then the problem (1) has a unique local solution

u 2 C ð0,TÞ;H1
0 ð�Þ

� �
, ut 2 C ½0,TÞ;L2ð�Þ

� �
\ Lmð�� ð0,TÞÞ, ð4Þ

T is small.

2 MAIN RESULT

In this section, we show that the solution (4) blows up in finite time if

p>m and �E(0) is sufficiently large, where

EðtÞ :¼
1

2

Z
�

½u2t þ jruj2�ðx, tÞdx�
b

p

Z
�

juðx, tÞjpdx: ð5Þ

LEMMA 2.1 Suppose that (2) holds. Then there exists a positive con-

stant C>1 depending on � only such that

kuksp � Cðkruk22 þ kukppÞ ð6Þ

for any u 2 H1
0 ð�Þ and 2 � s � p.

Proof If kukp � 1 then kuk
s
p � kuk2p � Ckruk22 by Sobolev embedding

theorems. If kukp > 1 then kuksp � kukpp. Therefore (6) follows.

We set

HðtÞ :¼ �EðtÞ

and use, throughout this paper, C to denote a generic positive constant

depending on a, m, p, and � only. As a result of (5), (6), and the

lemma, we have

COROLLARY 2.2 Let the assumptions of the lemma hold. Then we have

uk ksp� C HðtÞ
�� ��þ utk k22þ uk kpp

� �
ð7Þ

for any u 2 H1
0 ð�Þ and 2 � s � p.
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THEOREM 2.3 Let the conditions of the Theorem 1.1 be fulfilled.

Assume further that p>m and �E(0) is large enough then the solution

(4) blows up in finite time.

Proof

We multiply Eq. (1.1) by ut and integrate over � to get

E 0ðtÞ ¼ �a

Z
�

utðx, tÞ
�� ��mdxþ Z

�

utðx, tÞ
�� ��2dx� �

, ð8Þ

for any regular solution of (1). This identity remains valid for solutions

(4) by a simple density argument. So we have

0 < Hð0Þ � HðtÞ �
b

p
uk kpp: ð9Þ

We then define

LðtÞ :¼ eatH1��ðtÞ þ "eat
Z
�

uutðx, tÞdx ð10Þ

for " small to be chosen late and

0 < � � min
ðp� 2Þ

2p
,
ðp�mÞ

pðm� 1Þ

	 

: ð11Þ

By taking a derivative of (10) and using Eq. (1) we obtain

L0ðtÞ :¼ eatð1��ÞH��ðtÞH 0ðtÞþ aeatH1��ðtÞþ "eat
Z
�

½u2t �jruj2�ðx, tÞdx

þ "beat
Z
�

juðx, tÞjpdx� a"

Z
�

jutj
m�2utuðx, tÞdx: ð12Þ

We then exploit Young’s inequality

XY �
�r

r
Xr þ

�� q

q
Yq, X ,Y , � 0, � > 0,

1

r
þ
1

q
¼ 1
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with r¼m and q¼m/(m� 1) to estimate the last term in (12) as follows

Z
�

utj jm�1 uj jdx �
�m

m
uk kmmþ

m� 1

m
��m=ðm�1Þ utk kmm

which yields, by substitution in (12),

L0ðtÞ � eat ð1� �ÞH��ðtÞH 0ðtÞ � a
m� 1

m
"��m=ðm�1Þkutk

m
m

� �

þ "eat pHðtÞ þ
p

2

Z
�

½u2t þ jruj2�ðx, tÞdx

� �

þ "eat
Z
�

½u2t � jruj2�ðx, tÞdx� "aeat
�m

m
kukmm, 8� > 0: ð13Þ

By noting that H 0ðtÞ � akutk
m
m, we get

L0ðtÞ � eat ð1� �ÞH��ðtÞ �
m� 1

m
"��m=ðm�1Þ

� �
H 0ðtÞ

þ "eat
p

2
� 1

� � Z
�

jruj2ðx, tÞdxþ "eatpHðtÞ

þ "eat
p

2
þ 1

� � Z
�

u2t ðx, tÞdx� "aeat
�m

m
kukmm, 8� > 0: ð14Þ

We then take � so that ��m/(m� 1)
¼ kH��(t), for large k to be specified

later, and substitute in (14) to arrive at

L0ðtÞ�eat ð1��Þ�
m�1

m
"k

� �
H��ðtÞH 0ðtÞþ"

p

2
þ1

� �
eat
Z
�

u2t ðx,tÞdx

þ"
p

2
�1

� �
eat
Z
�

jruj2ðx,tÞdxþ"eat pHðtÞ�
k1�m

m
aH�ðm�1ÞðtÞkukmm

� �
:

ð15Þ

By exploiting (9) and the inequality kukmm � Ckukmp , we obtain

H�ðm�1ÞðtÞkukmm �
b

p

� �� m�1ð Þ

Ckukmþ�pðm�1Þ
p ,
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hence (15) yields

L0ðtÞ � eat ð1� �Þ �
m� 1

m
"k

� �
H��ðtÞH 0ðtÞ þ "

p

2
þ 1

� �
eat
Z
�

u2t ðx, tÞdx

þ "
p

2
� 1

� �
eat
Z
�

jruj2ðx, tÞdx

þ "eat pHðtÞ �
k1�m

m
a
b

p

� ��ðm�1Þ

Ckukmþ�pðm�1Þ
p

" #
: ð16Þ

We then use Corollary 2.2 and (11), for s¼mþ �p(m� 1)<p, to

deduce from (16)

L0ðtÞ � eat ð1� �Þ �
m� 1

m
"k

� �
H��ðtÞH 0ðtÞ

þ "
p

2
þ 1

� �
eat
Z
�

u2t ðx, tÞdxþ "
p

2
� 1

� �
eat
Z
�

jruj2ðx, tÞdx

þ "eat pHðtÞ �
k1�m

m
�
b

p

� ��ðm�1Þ

C HðtÞ þ kutk
2
2 þ kukpp

n o" #
:

ð17Þ

At this point, we choose k large enough so that (17) becomes

L0ðtÞ � eat ð1� �Þ �
m� 1

m
"k

� �
H��ðtÞH 0ðtÞ þCeat HðtÞ þ kutk

2
2þkukpp

h i
:

ð18Þ

We then pick " > 0 small enough so that ð1� �Þ � "kðm� 1Þ=m � 0

and L(0)>0. Therefore (18) takes the form

L0ðtÞ � Ceat HðtÞ þ kutk
2
2 þ kukpp

h i
; ð19Þ

hence

LðtÞ � Lð0Þ > 0, 8t � 0: ð20Þ
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Next we estimate the second term in (10) as follows

Z
�

uutðx, tÞdx

����
���� � kuk2kutk2 � Ckukpkutk2

which implies

Z
�

uutðx, tÞdx

����
����1=ð1��Þ

� Ckuk1=ð1��Þ
p kutk

1=ð1��Þ
2 :

Again Young’s inequality gives

Z
�

uutðx, tÞdx

����
����1=ð1��Þ

� C kuk	=ð1��Þ
p þ kutk


=ð1��Þ
2

h i
, ð21Þ

for1=	þ 1=
 ¼ 1.Wetake
 ¼ 2ð1� �Þ, toget	=ð1� �Þ ¼2=ð1� 2�Þ �

p by (11). Therefore (21) becomes

Z
�

uutðx, tÞdx

����
����1=ð1��Þ

� C kuksp þ kutk
2
2

h i
,

where s ¼ 2=ð1� 2�Þ � p. By using Corollary 2.2 we obtain

Z
�

uutðx, tÞdx

����
����1=ð1��Þ

� � HðtÞ þ kukpp þ kutk
2
2

h i
, 8t � 0: ð22Þ

Consequently we have

L1=ð1��ÞðtÞ ¼ eatH1��ðtÞ þ "eat
Z
�

uutðx, tÞdx

� �1=ð1��Þ

� 21ð1��Þeat=ð1��Þ HðtÞ þ

Z
�

uutðx, tÞdx

����
����1=ð1��Þ

 !

� Ceat=ð1��Þ HðtÞ þ kukpp þ kutk
2
2

� �
:

ð23Þ

We then combine (19) and (23), to arrive at

L0ðtÞ � Ce��at=ð1��ÞL1=ð1��ÞðtÞ ð24Þ

NONLINEAR WAVE EQUATION 275



A simple integration of (24) over (0, t) yields

L�=ð1��ÞðtÞ �
1

L��=ð1��Þð0Þ � Cð1� e��at=ð1��ÞÞ
ð25Þ

Therefore by choosing the initial data so that L�=ð1��Þð0Þ > 1=C, L(t)

blows up in a time

T� �
ð1� �Þ ln½C=ðC � L��=ð1��Þð0ÞÞ�

�a
ð26Þ

Remark 2.1 The estimate (26) shows that the larger L(0) is, the

quicker the blow up takes place.

Remark 2.2 By following the steps of the proof of Theorem 2.3

closely, one can easily see that this result holds for 1 < m < p, p > 2,

Therefore this method is a unified one to both linear and nonlinear

damping cases.
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