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EXPONENTIAL DECAY OF SOLUTIONS TO A VISCOELASTIC
EQUATION WITH NONLINEAR LOCALIZED DAMPING

SAID BERRIMI, SALIM A. MESSAOUDI

Abstract. In this paper we consider the nonlinear viscoelastic equation

utt −∆u +

∫ t

0
g(t− τ)∆u(τ) dτ + a(x)|ut|mut + b|u|γu = 0,

in a bounded domain. Without imposing geometry restrictions on the bound-
ary, we establish an exponential decay result, under weaker conditions than
those in [3].

1. Introduction

Cavalcanti et al [3] studied the equation

utt −∆u +
∫ t

0

g(t− τ)∆u(τ)dτ + a(x)ut + |u|γu = 0, in Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω, γ > 0, g
is a positive function, and a : Ω → R+ is a function, which may be null on a part
of Ω. Under the condition that a(x) ≥ a0 > 0 on ω ⊂ Ω, with ω satisfying some
geometry restrictions and

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), t ≥ 0,

such that ‖g‖L1((0,∞)) is small enough, the authors obtained an exponential rate of
decay. This work extended the result of Zuazua [19], in which he considered (1.1)
with g = 0 and the linear damping is localized. Cavalcanti et al [4] considered the
equation

utt − k0∆u +
∫ t

0

div[a(x)g(t− τ)∇u(τ)]dτ + b(x)h(ut) + f(u) = 0, in Ω× (0,∞),

under similar conditions on the relaxation function g and a(x) + b(x) ≥ δ > 0, for
all x ∈ Ω. They improved the result in [3] by establishing exponential stability for
g decaying exponentially and h linear and polynomial stability for g decaying poly-
nomially and h nonlinear. Their proof, based on the use of piecewise multipliers,
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is similar to the one in [3]. Another problem, where the damping induced by the
viscosity is acting on the domain and a part of the boundary, was also discussed by
Cavalcanti et al [5] and existence and uniform decay rate results were established.
In the same direction, Cavalcanti et al [2] have also studied, in a bounded domain,
the equation

|ut|ρutt −∆u−∆utt +
∫ t

0

g(t− τ)∆u(τ)dτ − γ∆ut = 0,

with x ∈ Ω, t > 0, ρ > 0. They proved a global existence result for γ ≥ 0 and
an exponential decay for γ > 0. This last result has been extended to a situation,
where a source term is competing with the strong damping mechanism and the one
induced by the viscosity, by Messaoudi and Tatar [16]. There, the authors combined
well known methods with perturbation techniques to show that a solution with
positive but small energy exist globally and decay to the rest state exponentially.
Messaoudi [17] considered the equation

utt −∆u +
∫ t

0

g(t− τ)∆u(τ)dτ + aut|ut|m = b|u|γu, in Ω× (0,∞)

and showed, under suitable conditions on g, that solutions with negative energy
blow up in finite time if γ > m, and continue to exist if m ≥ γ. We also should
mention the work of Kavashima and Shibata [9], in which a global existence and
exponential stability of small solutions to a nonlinear viscoelastic problem has been
established.

In the absence of the viscoelastic term (g = 0), the problem has been extensively
studied and many results concerning global existence and nonexistence have been
proved. For instance, for the problem

utt −∆u + aut|ut|m = b|u|γu, in Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.2)

with m, γ ≥ 0, it is well known that, for a = 0, the source term bu|u|γ , (γ > 0)
causes finite time blow up of solutions with negative initial energy (see [1, 8]) and
for b = 0, the damping term aut|ut|m assures global existence for arbitrary initial
data (see [7, 10]). The interaction between the damping and the source terms
was first considered by Levine [11, 12] in the linear damping case (m = 0). He
showed that solutions with negative initial energy blow up in finite time. Georgiev
and Todorova [6] extended Levine’s result to the nonlinear damping case (m > 0).
In their work, the authors introduced a different method and determined suitable
relations between m and γ, for which there is global existence or alternatively finite
time blow up. Precisely; they showed that solutions with negative energy continue
to exist globally ’in time’ if m ≥ γ and blow up in finite time if γ > m and the
initial energy is sufficiently negative. Without imposing the condition that the
initial energy is sufficiently negative, Messaoudi [15] extended the blow up result
of [6] to solutions with negative initial energy only. For results of same nature, we
refer the reader to Levine and Serrin [13] and Levine and Park [14], Vitillaro [18].
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In the present work, we are concerned with

utt −∆u +
∫ t

0

g(t− τ)∆u(τ)dτ + a(x)ut|ut|m + |u|γu = 0, in Ω× (0,∞)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.3)

for m ≥ 0. We will prove an exponential decay result under weaker conditions on
both a and g. In fact we will allow a to vanish on any part of Ω (including Ω itself).
As a consequence, the geometry restriction imposed on a part of ∂Ω by Cavalcanti
et al [3] is dropped. Although this present work and [4] both improve [3], they have
different nature and use different approaches. Our method of proof is based on
the use of the perturbed energy technique. Our choice of the Lyaponov functional
made our proof easier than the one in [3, 4]. This paper is organized as follows.
In Section 2, We present some notation and material needed for our work and we
state the global existence theorem in [3]. Section 3 contains the statement and the
proof of our main result.

2. Preliminaries

In this section, we shall prepare some material needed in the proof of our result
and state, without proof, a global existence result, which may be proved by repeat-
ing the argument of [3]. We use the standard Lebesgue space Lp(Ω) and Sobolev
space H1

0 (Ω) with their usual scalar products and norms. The symbols ∇ and ∆
will stand for the gradient and the Laplacian respectively and the subscript t will
denote the time differentiation.

For the relaxation function g(t) we assume
(G1) g : R+ → R+ is a bounded C1 function such that g(0) > 0 and

1−
∫ ∞

0

g(s)ds = l > 0.

(G2) There exists a positive constant ξ such that g′(t) ≤ −ξg(t), for t ≥ 0.

Proposition 2.1. Let (u0, u1) ∈ H1
0 (Ω)×L2(Ω). Assume that g satisfies (G1) and

0 ≤ γ ≤ 2
n− 2

, n ≥ 3

γ ≥ 0, n = 1, 2 .
(2.1)

Then problem (1.3) has a unique global solution,

u ∈ C([0, ∞);H1
0 (Ω))

ut ∈ C([0, ∞);L2(Ω)) ∩ Lm+2
a (Ω× (0, ∞)),

(2.2)

where Lm+2
a is the weighted Lebesgue space.

Remark 2.2. Condition (2.1) is needed so that the nonlinearity is Lipschitz from
H1(Ω) to L2(Ω). Condition (G1) is necessary to guarantee the hyperbolicity of the
system (1.3).

Now, we introduce the energy

E(t) :=
1
2

(
1−

∫ t

0

g(s)ds
)
‖∇u(t)‖22 +

1
2
‖ut‖22 +

1
2
(g ◦∇u)(t) +

1
γ + 2

‖u‖γ+2
γ+2, (2.3)
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where

(g ◦ v)(t) =
∫ t

0

g(t− τ)‖v(t)− v(τ)‖22dτ. (2.4)

Remark 2.3. Multiplying equation (1.3) by ut and integrating over Ω, then using
integration by parts and hypotheses (G1) and (G2), we obtain, after some manip-
ulations,

E ′(t) ≤ −
( ∫

Ω

a(x)|ut|m+2dx− 1
2
(g′ ◦ ∇u)(t) +

1
2
g(t)‖∇u(t)‖2

)
≤ −

∫
Ω

a(x)|ut|m+2dx +
1
2
(g′ ◦ ∇u)(t) ≤ 0.

(2.5)

This implies that “modified” energy is uniformly bounded (by E(0)) and is decreas-
ing in t.

We will also use the embedding H1
0 (Ω) ↪→ Lq(Ω) for 2 ≤ q ≤ 2n/(n − 2) if

n ≥ 3 or q ≥ 2 if n = 1, 2 and Lr(Ω) ↪→ Lq(Ω), for q < r. We will use the same
embedding constant denoted by Cp; i.e.

‖v‖q ≤ Cp‖∇v‖2, ‖v‖q ≤ Cp‖v‖r. (2.6)

3. Exponential decay

Before we state and prove our main result, we prove the following lemma.

Lemma 3.1. Let m ≤ 2/(n − 2), for n ≥ 3. Then there exists a constant C
depending on Cp, ‖a‖∞, E(0), and m only, such that the solution (2.2) satisfies∫

Ω

a(x)|u|m+2dx ≤ C
(
‖∇u‖22 + ‖u‖γ+2

γ+2

)
(3.1)

Proof. If m ≤ γ then we have two cases either ‖u‖m+2 ≤ 1, in which case∫
Ω

a(x)|u|m+2dx ≤ ‖a‖∞‖u‖m+2
m+2 ≤ ‖a‖∞‖u‖2m+2 ≤ C2

p‖a‖∞‖∇u‖22; (3.2)

or ‖u‖m+2 > 1, in which case∫
Ω

a(x)|u|m+2dx ≤ ‖a‖∞‖u‖m+2
m+2 ≤ ‖a‖∞‖u‖γ+2

m+2 ≤ Cγ+2
p ‖a‖∞‖u‖γ+2

γ+2 . (3.3)

If m > γ then∫
Ω

a(x)|u|m+2dx ≤ Cm+2
p ‖a‖∞‖∇u‖m+2

2 ≤ Cm+2
p ‖a‖∞‖∇u‖22

(2E(t)
l

)m/2

≤ Cm+2
p ‖a‖∞

(2E(0)
l

)m/2‖∇u‖22

Combining (3.2), (3.3) with the above inequality, we complete the proof. �

Theorem 3.2. Let (u0, u1) ∈ H1
0 (Ω) × L2(Ω). Assume that g satisfies (G1) and

(G2), such that

0 ≤ max{m, γ} ≤ 2
n− 2

, n ≥ 3.

Then there exist positive constants k and K, such that the solution given by (2.2)
satisfies E(t) ≤ Ke−kt for all t ≥ 0.
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Proof. We define the function

F (t) := E(t) + ε1Ψ(t) + ε2χ(t) (3.4)

where ε1 and ε2 are positive constants to be specified later and

Ψ(t) :=
∫

Ω

uut dx

χ(t) := −
∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ))dτ dx .

It is straightforward to see that for ε1 and ε2 small, we have

α1F (t) ≤ E(t) ≤ α2F (t), (3.5)

holds for two positive constants α1 and α2. In fact

F (t) ≤ E(t) + (ε1/2)
∫

Ω

|ut|2dx + (ε1/2)
∫

Ω

|u|2dx

+ (ε2/2)
∫

Ω

|ut|2dx + (ε2/2)
∫

Ω

( ∫ t

0

g(t− τ)(u(t)− u(τ))dτ
)2

dx

≤ E(t) + (ε1/2)
∫

Ω

|ut|2dx + (ε1/2)Cp

∫
Ω

|∇u|2dx

+ (ε2/2)
∫

Ω

|ut|2dx + (ε2/2)Cp(1− l)(g ◦ ∇u)(t)

≤ 1
α1
E(t)

(3.6)

where E(t) is the energy, and

F (t) ≥ E(t)− (ε1/2)
∫

Ω

|ut|2dx− (ε1/2)
∫

Ω

|u|2dx

− (ε2/2)
∫

Ω

|ut|2dx− (ε2/2)Cp(1− l)(g ◦ ∇u)(t)

≥ 1
2
l‖∇u(t)‖22 +

1
2
‖ut‖22 +

1
2
(g ◦ ∇u)(t) +

1
γ + 2

‖u‖γ+2
γ+2

− ε1 + ε2

2

∫
Ω

|ut|2dx− (
ε1

2
)Cp

∫
Ω

|∇u|2dx− (
ε2

2
)Cp(1− l)(g ◦ ∇u)(t)

≥ 1
α1
E(t)

for ε1 and ε2 small enough. Using equation (1.3), we easily see that

Ψ′(t) =
∫

Ω

(uutt + u2
t )dx

=
∫

Ω

u2
t dx−

∫
Ω

|∇u|2dx +
∫

Ω

∇u(t)
∫ t

0

g(t− τ)∇u(τ)dτ dx

−
∫

Ω

|u|γ+2dx−
∫

Ω

a(x)|ut|mutudx

(3.7)

We now estimate the third term in the right-hand side of (3.7) as follows:∫
Ω

∇u(t).
∫ t

0

g(t− τ)∇u(τ)dτ dx
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≤ 1
2

∫
Ω

|∇u(t)|2dx +
1
2

∫
Ω

( ∫ t

0

g(t− τ)|∇u(τ)|dτ
)2

dx

≤ 1
2

∫
Ω

|∇u(t)|2dx +
1
2

∫
Ω

( ∫ t

0

g(t− τ)(|∇u(τ)−∇u(t)|+ |∇u(t)|)dτ
)2

dx .

Using Cauchy-Schwarz and Young’s inequality, and
∫ t

0
g(τ)dτ ≤

∫∞
0

g(τ)dτ = 1− l,
we obtain that for any η > 0,∫

Ω

( ∫ t

0

g(t− τ)(|∇u(τ)−∇u(t)|+ |∇u(t)|)dτ
)2

dx

≤
∫

Ω

( ∫ t

0

g(t− τ)(|∇u(τ)−∇u(t)|dτ
)2

dx +
∫

Ω

( ∫ t

0

g(t− τ)|∇u(t)|dτ
)2

dx

+ 2
∫

Ω

( ∫ t

0

g(t− τ)(|∇u(τ)−∇u(t)|dτ
)( ∫ t

0

g(t− τ)|∇u(t)|dτ
)
dx

≤ (1 + η)
∫

Ω

( ∫ t

0

g(t− τ)|∇u(t)|dτ
)2

dx

+ (1 +
1
η
)
∫

Ω

( ∫ t

0

g(t− τ)(|∇u(τ)−∇u(t)|dτ
)2

dx

≤ (1 +
1
η
)
∫

Ω

∫ t

0

g(t− τ)dτ

∫ t

0

g(t− τ)|∇u(τ)−∇u(t)|2dτ dx

+ (1 + η)
∫

Ω

|∇u(t)|2
( ∫ t

0

g(t− τ)dτ
)2

dx

≤ (1 + η)(1− l)2
∫

Ω

|∇u(t)|2dx

+ (1 +
1
η
)(1− l)

∫
Ω

∫ t

0

g(t− τ)|∇u(τ)−∇u(t)|2dτ dx .

For the fifth term of the right-hand side of (3.7), we use Young’s inequality and
Lemma 3.1 to get∫

Ω

a(x)|ut|mutudx ≤ δ

∫
Ω

a(x)|u|m+2dx + c(δ)
∫

Ω

a(x)|ut|m+2dx

≤ c(δ)
∫

Ω

a(x)|ut|m+2dx + δC{‖∇u‖22 + ‖u‖γ+2
γ+2}

(3.8)

By combining (3.7)–(3.8), we have

Ψ′(t)

≤
∫

Ω

u2
t dx−

∫
Ω

|∇u|2dx−
∫

Ω

|u|γ+2dx +
1
2

∫
Ω

|∇u(t)|2dx

+
1
2
(1 + η)(1− l)2

∫
Ω

|∇u(t)|2dx + c(δ)
∫

Ω

a(x)|ut|m+2dx + δCp‖∇u‖22

+ δCp‖u‖γ+2
γ+2}+

1
2
(1 +

1
η
)(1− l)

∫
Ω

∫ t

0

g(t− τ)|∇u(τ)−∇u(t)|2dτ dx

≤
∫

Ω

u2
t dx−

∫
Ω

|∇u|2dx−
∫

Ω

|u|γ+2dx +
1
2
[1 + (1 + η)(1− l)2]

∫
Ω

|∇u(t)|2dx
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+
1
2
(1 +

1
η
)(1− l)(g ◦ ∇u)(t) + c(δ)

∫
Ω

a(x)|ut|m+2dx + δC{‖∇u‖22 + ‖u‖γ+2
γ+2}

By choosing η = l/(1− l) and δ = l /4C, the above inequality becomes

Ψ′(t) ≤
∫

Ω

u2
t dx− l

4

∫
Ω

|∇u|2dx− 4− l

4

∫
Ω

|u|γ+2dx +
1− l

2l
(g ◦ ∇u)(t)

+ c(δ)
∫

Ω

a(x)|ut|m+2dx.

(3.9)

Next we estimate

χ′(t) = −
∫

Ω

utt

∫ t

0

g(t− τ)(u(t)− u(τ))dτ dx

−
∫

Ω

ut

∫ t

0

g′(t− τ)(u(t)− u(τ))dτ dx− (
∫ t

0

g(s)ds)
∫

Ω

u2
t dx

=
∫

Ω

∇u(t).(
∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτ)dx

−
∫

Ω

(
∫ t

0

g(t− τ)∇u(τ)dτ).(
∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτ)dx

+
∫

Ω

a(x)ut(t)
∫ t

0

g(t− τ)(u(t)− u(τ))dτ dx

+
∫

Ω

|u|γu

∫ t

0

g(t− τ)(u(t)− u(τ))dτ dx

−
∫

Ω

ut

∫ t

0

g′(t− τ)(u(t)− u(τ))dτ dx− (
∫ t

0

g(s)ds)
∫

Ω

u2
t dx

(3.10)

Similarly to (3.7), we estimates the right-hand side terms of the above inequality.
So for δ > 0, we have: For the first term,

−
∫

Ω

∇u(t).(
∫ t

0

g(t− τ)(∇u(t)−∇u(τ))dτ)dx ≤ δ

∫
Ω

|∇u|2dx +
1− l

4δ
(g ◦ ∇u)(t).

(3.11)
For the second term,∫

Ω

( ∫ t

0

g(t− s)∇u(s)ds
)( ∫ t

0

g(t− s)(∇u(t)−∇u(s))ds
)
dx

≤ δ

∫
Ω

∣∣ ∫ t

0

g(t− s)∇u(s)ds
∣∣2dx +

1
4δ

∫
Ω

∣∣ ∫ t

0

g(t− s)(∇u(t)−∇u(s))ds
∣∣2dx

≤ δ

∫
Ω

( ∫ t

0

g(t− s)(|∇u(t)−∇u(s)|+ |∇u(t)|)ds
)2

dx

+
1
4δ

(
∫ t

0

g(t− s)ds)
∫

Ω

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2ds dx .

≤ δ

∫
Ω

( ∫ t

0

g(t− s)|∇u(t)−∇u(s)|ds
)2

dx

+ 2δ(1− l)2
∫

Ω

|∇u|2dx +
1
4δ

(1− l)(g ◦ ∇u)(t)

≤ (2δ +
1
4δ

)(1− l)(g ◦ ∇u)(t) + 2δ(1− l)2
∫

Ω

|∇u|2dx .
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For the third term,∫
Ω

a(x)ut(t)
∫ t

0

g(t− τ)(u(t)−u(τ))dτ dx ≤ δ‖a‖∞
∫

Ω

u2
t dx+

Cp(1− l)
4δ

(g ◦∇u)(t).

For the fourth term,∫
Ω

|u|γu

∫ t

0

g(t− τ)(u(t)− u(τ))dτ dx

≤ δ

∫
Ω

|u|2(γ+1)dx +
1
4δ

∫
Ω

( ∫ t

0

g(t− τ)(u(t)− u(τ))dτ
)2

dx

(3.12)

We use (2.1) (2.3) and (2.5) to obtain∫
Ω

|u|2(γ+1)dx ≤ Cp‖∇u‖2(γ+1)
2 ≤ Cp(

E(0)
l

)2γ‖∇u‖22 (3.13)

By inserting (3.13) in (3.12), we get∫
Ω

|u|γu

∫ t

0

g(t−τ)(u(t)−u(τ))dτ dx ≤ δCp(
E(0)

l
)2γ‖∇u‖22 +

Cp(1− l)
4δ

(g◦∇u)(t) .

For the fifth term,

−
∫

Ω

ut

∫ t

0

g′(t− τ)(u(t)− u(τ))dτ dx

≤ δ

∫
Ω

|ut|2dx +
g(0)
4δ

Cp

∫
Ω

∫ t

0

−g
′
(t− s)|∇u(t)−∇u(s)|2ds dx .

(3.14)

Combining (3.10)–(3.14) yields

χ′(t)

≤ δ{1 + 2(1− l)2 + Cp(
E(0)

l
)2γ}‖∇u‖22

[1− l

2δ
+ 2δ(1− l) +

Cp(1− l)
2δ

]
(g ◦ ∇u)(t)

+
g(0)
4δ

Cp(−(g′ ◦ ∇u)(t)) +
[
δ(1 + ‖a‖∞)−

∫ t

0

g(s)ds
] ∫

Ω

u2
t dx .

(3.15)
Since g(0) > 0 then there exists t0 > 0 such that∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = g0 > 0, ∀t ≥ t0. (3.16)

Using (3.4), (3.9), (3.15), and (3.16), we obtain

F ′(t)

≤ −(1− ε1c(δ))
∫

Ω

a(x)|ut|m+2dx

−
[
ε2{g0 − δ(1 + ‖a‖∞)} − ε1

] ∫
Ω

u2
t dx− ε1

4− l

4

∫
Ω

|u|γ+2dx

−
[ε1l

4
− ε2δ{1 + 2(1− l)2 + Cp(

E(0)
l

)2γ}
]
‖∇u‖22

+
[1
2
− ε1(1− l)

2ξl
− ε2{

g(0)
4δ

Cp +
(1− l)Cp

2δξ
+

1− l

2δξ
+

2δ(1− l)
ξ

}
]
(g′ ◦ ∇u)(t).
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Now, we choose δ so small that

g0 − δ(1 + ‖a‖∞) >
1
2
g0

4
l
δ{1 + 2(1− l)2 + Cp(

E(0)
l

)2γ} <
1
4
g0.

Whence δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying
1
4
g0ε2 < ε1 <

1
2
g0ε2 (3.17)

will make

k1 = ε2{g0 − δ(1 + ‖a‖∞)} − ε1 > 0

k2 =
ε1l

4
− ε2δ{1 + 2(1− l)2 + Cp(

E(0)
l

)2γ} > 0.

We then pick ε1 and ε2 so small that (3.5) and (3.17) remain valid and

1− ε1c(δ) > 0,

1
2
− ε1(1− l)

2ξl
− ε2{

g(0)
4δ

Cp +
(1− l)Cp

2δξ
+

1− l

2δξ
+

2δ(1− l)
ξ

} > 0

Therefore, we arrive at F ′(t) ≤ −βE(t) for all t ≥ t0. This inequality and (3.5)
yield F ′(t) ≤ −βα1F (t), for all t ≥ t0. A simple integration leads to

F (t) ≤ F (t0)eβα1t0e−βα1t, ∀t ≥ t0.

This inequality and (3.5) yields

E(t) ≤ α2F (t0)eβα1t0e−βα1t, ∀t ≥ t0,

which completes the proof. �

Remark 3.3. Note that our result is proved without imposing any restriction on
the size of ‖g‖L1 . Also note that the function a may vanish on the whole domain
Ω. In other words, contrary to [3], measure (ω) can be zero. As a consequence, no
geometry restriction on the boundary has been assumed.
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