Blow up in the Cauchy problem for a nonlinearly damped wave equation

Salim A. Messaoudi
Mathematical Sciences Department
KFUPM, Dhahran 31261
Saudi Arabia.
Email : messaoud@kfupm.edu.sa

Abstract

In this paper we consider the Cauchy problem for the nonlinearly damped wave equation with nonlinear source $$
u_{t t}-\Delta u+a u_{t}\left|u_{t}\right|^{m-2}=b u|u|^{p-2}
$$ $p>m$. We prove that given any time $T>0$, there exist always initial data with sufficiently negative initial energy, for which the solution blows up in time $\leq T$. This result improves an earlier one by Todorova [11]. Keywords : Nonlinear damping, Nonlinear source, Negative initial energy, blow up, finite time. AMS Classification : 35 L 45

1 Introduction

In this paper we are concerned with the following initial value problem

$$
\begin{gather*}
u_{t t}-\Delta u+a u_{t}\left|u_{t}\right|^{m-2}=b u|u|^{p-2}, \quad x \in \mathbb{R}^{n}, \quad t>0 \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in \mathbb{R}^{n},
\end{gather*}
$$

where $a, b>0$, and $p, m>2$. For the initial boundary value problem, it is well known that if $b=0$ then the damping term $a u_{t}\left|u_{t}\right|^{m-2}$ assures global existence for arbitrary initial data (see [4], [6]). If $a=0$ then the source term $b u|u|^{p-2}$ causes finite time blow up of solutions with negative initial energy (see [1], [5], [7], [8]).

The interaction between the damping and the source terms, for the IBVP, was first considered by Levine [7], [8] in the linear damping case ($m=2$). He showed that solutions with negative initial energy cannot be global in time. Georgiev and Todorova [3] extended Levine's result to the nonlinear damping case ($m>2$). In their work, the authors introduced a different method and determined suitable relations between m and p, for which there is global existence or alternatively finite time blow up. Precisely they showed that solutions with negative energy continue to exist
globally 'in time' if $m \geq p$ and blow up in finite time if $p>m$ and the initial energy is sufficiently negative. This result was improved by Levine and Serrin [9] and Messaoudi [10]. In their work, Levine and Serrin [9] treated an abstract problem, showed that no solution with negative energy can be extended on $[0, \infty)$ if $p>m$, and proved several noncontinuation theorems. This generalization allowed them to apply their results to quasilinear situations, of which problem (1.1) is a particular case.

For solutions with positive initial energy, we mention the blow up results of Todorova [12] and Vitillaro [13]. In his paper, Vitillaro also studied an abstract problem and established many existence and nonexistence results to the semilinear, as well as quasilinear, cases.

In all above results, the boundedness of the domain played an essential role because of the usage of the injection of the L^{p} spaces. In a recent work, Todorova [11] treated the Cauchy problem (1.1) for compactly supported initial data. She showed that the weak solution of (1.1) exists globally' in time ' if $m \geq p$ and it blows up in finite time for any initial data with negative energy if $p>m>n p /(n+p+1)$. When $m<n p /(n+p+1)$ the solution blows up if the initial energy is sufficiently negative and $\int u_{0} u_{1} \geq 0$. She also established a similar result for (1.1) with a source of the form $b u|u|^{p-2}-q^{2}(x) u$ under a suitable condition on $q(x)$.

In this work, we show that the condition $\int u_{0} u_{1} \geq 0$ is unnecessary and the result can be proved without it. We do not consider the same functional as in [11] and show that given any time $T>0$, there exist initial data, with sufficiently negative energy, for wich the solution blows up in a time $t^{*} \leq T$. We first state a local result (See [3] and [11]).
Theorem 1. Suppose that $m>2, p>2$, and

$$
\begin{equation*}
p \leq \frac{2(n-1)}{n-2}, \quad n \geq 3 \tag{1.2}
\end{equation*}
$$

Then for any initial data

$$
\begin{equation*}
\left(u_{0}, u_{1}\right) \in H_{0}^{1}\left(\mathbb{R}^{n}\right) \times L^{2}\left(\mathbb{R}^{n}\right) \tag{1.3}
\end{equation*}
$$

with suppu $\left(u_{0}\right) \cup \operatorname{supp}\left(u_{1}\right) \subset B_{R}(0)$, then there exists $T_{m}>0$ such that problem (1.1) has a unique local solution

$$
\begin{equation*}
u \in C\left(\left[0, T_{m}\right) ; H_{0}^{1}\left(\mathbb{R}^{n}\right)\right), \quad u_{t} \in C\left(\left[0, T_{m}\right) ; L^{2}\left(\mathbb{R}^{n}\right)\right) \cap L^{m}\left(\mathbb{R}^{n} \times\left(0, T_{m}\right)\right) \tag{1.4}
\end{equation*}
$$

Remark 1.1 The exponent (1.2) is the cut for p needed to establish the local existence. See relation (2.6) in [3].

2 Main Result.

In this section we show that the solution (1.4) blows up in finite time if $p>m$ and the initial energy

$$
\begin{equation*}
E_{0}:=\frac{1}{2} \int\left[u_{1}^{2}+\left|\nabla u_{0}\right|^{2}\right](x) d x-\frac{b}{p} \int\left|u_{0}(x)\right|^{p} d x \tag{2.5}
\end{equation*}
$$

is negative enough.
Lemma 2.1. Suppose that (1.2) holds and $p>1$. Then there exists a positive constant C depending on n and p only such that

$$
\begin{equation*}
\|u\|_{p} \leq C(L)^{1 / p-1 / p^{*}}\|\nabla u\|_{2}, \quad p^{*}=2 n /(n-2) \tag{2.6}
\end{equation*}
$$

for any $u \in H^{1}\left(\mathbb{R}^{n}\right)$, with $\operatorname{supp}(u) \subset B_{L}(0)$.
Proof. If $u \in H^{1}\left(\mathbb{R}^{n}\right)$ then $u \in L^{p^{*}}\left(\mathbb{R}^{n}\right)$, and $\|u\|_{p^{*}} \leq C_{1}\|\nabla u\|_{2}$, where C_{1} is a constant depending on n (See theorem IX. 9 of [2]). But $\|u\|_{p} \leq C_{2}(L)^{1 / p-1 / p^{*}}$ $\|u\|_{p^{*}}$, for any $p \leq p^{*}$, where C_{2} is a constant depending on n, p, and p^{*}. Therefore (2.2) follows.

Remark 2.2. For the case $n<3$, we have

$$
\begin{equation*}
\|u\|_{p} \leq C(L)^{1 / p+1 / 2}\|\nabla u\|_{2}, \quad n=1 \tag{2.7}
\end{equation*}
$$

by theorem IX. 12 of [2] and

$$
\begin{equation*}
\|u\|_{p} \leq C\|\nabla u\|_{2}, \quad n=2 \tag{2.8}
\end{equation*}
$$

by corollary IX. 11 of [2], C is a constant depending on n and p only.
Remark 2.3. Without loss of generality, L and R (below) are taken larger than or equal to one.
Lemma 2.4. Suppose that $2 \leq s \leq p$ and (1.2) holds if $n \geq 3$. Then there exists a positive constant C depending on n and p only such that

$$
\begin{equation*}
\|u\|_{p}^{s} \leq C(L)^{1 / p+1 / 2}\left(\|\nabla u\|_{2}^{2}+\|u\|_{p}^{p}\right) \tag{2.9}
\end{equation*}
$$

for any $u \in H^{1}\left(\mathbb{R}^{n}\right)$, with supp $(u) \subset B_{L}(0)$.
Proof. If $\|u\|_{p} \leq 1$ then $\|u\|_{p}^{s} \leq\|u\|_{p}^{2}$. From (2.2), it follows that $\|u\|_{p}^{s} \leq$ $C(L)^{1 / p+1 / 2}\|\nabla u\|_{2}^{2}$. If $\|u\|_{p}>1$ then $\|u\|_{p}^{s} \leq\|u\|_{p}^{p}$. Therefore (2.5) follows.

We set

$$
\begin{equation*}
H(t):=-\frac{1}{2} \int\left[u_{t}^{2}+|\nabla u|^{2}\right](x, t) d x+\frac{b}{p} \int|u(x, t)|^{p} d x . \tag{2.10}
\end{equation*}
$$

As a consequence of (2.5), (2.6), of fact that $\operatorname{supp}\left(u_{0}\right) \cup \operatorname{supp}\left(u_{1}\right) \subset B_{R}(0)$, and of finite speed propagation, we have
Corollary 2.5. Let the assumptions of theorem 1 hold. Then the solution defined by (1.4) satisfies

$$
\begin{equation*}
\|u\|_{p}^{s} \leq C(R+t)^{1 / p+1 / 2}\left(|H(t)|+\left\|u_{t}\right\|_{2}^{2}+\|u\|_{p}^{p}\right) \tag{2.11}
\end{equation*}
$$

Theorem 2. Suppose that $p>m>2$ and (1.2) holds if $n \geq 3$. Then for any $R \geq 1$ and $T>0$ there exists $M>0$ such that for initial data $\left(u_{0}, u_{1}\right)$ satisfying (1.3), with $\operatorname{supp}\left(u_{0}\right) \cup \operatorname{supp}\left(u_{1}\right) \subset B_{R}(0)$, and

$$
\begin{equation*}
E_{0}<-M \tag{2.12}
\end{equation*}
$$

the solution (1.4) blows up in a time $t^{*} \leq T$.
Remark 2.5. Note that we do not require $\int u_{0} u_{1} \geq 0$.

Proof.

We multiply equation (1.1) by $-u_{t}$ and integrate over \mathbb{R}^{n} to get

$$
H^{\prime}(t)=a \int\left|u_{t}(x, t)\right|^{m} d x
$$

for almost every t in $[0, T)$ since $H(t)$ is absolutely continuous (see [2]). So we have

$$
\begin{equation*}
0<-E_{0}=H(0) \leq H(t) \leq \frac{b}{p}\|u\|_{p}^{p} \tag{2.13}
\end{equation*}
$$

for every t in $[0, T)$, by virtue of (2.6). We then define

$$
\begin{equation*}
J(t):=H^{1-\alpha}(t)+\varepsilon \int u u_{t}(x, t) d x \tag{2.14}
\end{equation*}
$$

for ε small to be chosen later and

$$
\begin{equation*}
0<\alpha \leq \min \left\{\frac{(p-2)}{2 p}, \frac{(p-m)}{p(m-1)}\right\} \tag{2.15}
\end{equation*}
$$

By taking the derivative of (2.10) and using equation (1.1) we obtain

$$
\begin{align*}
J^{\prime}(t) & :=(1-\alpha) H^{-\alpha}(t) H^{\prime}(t)+\varepsilon \int\left[u_{t}^{2}-|\nabla u|^{2}\right](x, t) d x \tag{2.16}\\
& +\varepsilon b \int|u(x, t)|^{p} d x-a \varepsilon \int\left|u_{t}\right|^{m-2} u_{t} u(x, t) d x .
\end{align*}
$$

We then exploit Young's inequality

$$
X Y \leq \frac{\delta^{r}}{r} X^{r}+\frac{\delta^{-q}}{q} Y^{q}, \quad X, Y \geq 0, \delta>0, \quad \frac{1}{r}+\frac{1}{q}=1
$$

for $r=m$ and $q=m /(m-1)$ to estimate the last term in (2.12) as follows

$$
\int\left|u_{t}\right|^{m-1}|u| d x \leq \frac{\delta^{m}}{m}\|u\|_{m}^{m}+\frac{m-1}{m} \delta^{-m /(m-1)}\left\|u_{t}\right\|_{m}^{m}
$$

A substitution in (2.12) yields

$$
\begin{align*}
& J^{\prime}(t) \geq\left[(1-\alpha) H^{-\alpha}(t)-\frac{m-1}{m} \varepsilon \delta^{-m /(m-1)}\right] H^{\prime}(t)+\varepsilon \int\left[u_{t}^{2}-|\nabla u|^{2}\right](x, t) d x \\
& \quad+\varepsilon\left[p H(t)+\frac{p}{2} \int_{\Omega}\left[u_{t}^{2}+|\nabla u|^{2}\right](x, t) d x\right]-\varepsilon a \frac{\delta^{m}}{m}\|u\|_{m}^{m}, \quad \forall \delta>0 . \tag{2.17}
\end{align*}
$$

Of course (2.13) remains valid even if δ is time dependent since the integral is taken over the x variable. Therefore by taking δ so that $\delta^{-m /(m-1)}=k H^{-\alpha}(t)$, for large k to be specified later, and substituting in (2.13) we arrive at

$$
\begin{equation*}
J^{\prime}(t) \geq\left[(1-\alpha)-\frac{m-1}{m} \varepsilon k\right] H^{-\alpha}(t) H^{\prime}(t)+\varepsilon\left(\frac{p}{2}+1\right) \int u_{t}^{2}(x, t) d x \tag{2.18}
\end{equation*}
$$

$$
+\varepsilon\left(\frac{p}{2}-1\right) \int|\nabla u|^{2}(x, t) d x+\varepsilon\left[p H(t)-\frac{k^{1-m}}{m} a H^{\alpha(m-1)}(t)\|u\|_{m}^{m}\right] .
$$

By exploiting (2.9) and the inequality

$$
\|u\|_{m}^{m} \leq C\|u\|_{p}^{m}(R+t)^{n(p-m) / p}
$$

we obtain

$$
H^{\alpha(m-1)}(t)\|u\|_{m}^{m} \leq C\left(\frac{b}{p}\right)^{\alpha(m-1)}(R+t)^{n(p-m) / p}\|u\|_{p}^{m+\alpha p(m-1)}
$$

hence (2.14) yields

$$
\begin{align*}
& J^{\prime}(t) \geq\left[(1-\alpha)-\frac{m-1}{m} \varepsilon k\right] H^{-\alpha}(t) H^{\prime}(t)+\varepsilon\left(\frac{p}{2}+1\right) \int u_{t}^{2}(x, t) d x \tag{2.19}\\
&+\varepsilon\left(\frac{p}{2}-1\right) \int|\nabla u|^{2}(x, t) d x \\
&+ \varepsilon\left[p H(t)-C \frac{k^{1-m}}{m} a\left(\frac{b}{p}\right)^{\alpha(m-1)}(R+t)^{n(p-m) / p}\|u\|_{p}^{m+\alpha p(m-1)}\right] .
\end{align*}
$$

We then use corollary 2.5 , for $s=m+\alpha p(m-1) \leq p$, to deduce from (2.15)

$$
\begin{align*}
& J^{\prime}(t) \geq\left[(1-\alpha)-\frac{m-1}{m} \varepsilon k\right] H^{-\alpha}(t) H^{\prime}(t)+\varepsilon\left(\frac{p}{2}+1\right) \int u_{t}^{2}(x, t) d x \tag{2.20}\\
& +\varepsilon\left(\frac{p}{2}-1\right) \int|\nabla u|^{2}(x, t) d x \\
& \quad+\varepsilon\left[p H(t)-C_{1} k^{1-m}(R+T)^{\beta}\left\{H(t)+\left\|u_{t}\right\|_{2}^{2}+\|u\|_{p}^{p}\right\}\right], \forall t \leq T,
\end{align*}
$$

where $C_{1}=C a\left(\frac{b}{p}\right)^{\alpha(m-1)} / m$. and $\beta=n(p-m) / p+1 / p+1 / 2$. At this point, we choose k large enough so that (2.16) takes the form

$$
\begin{equation*}
J^{\prime}(t) \geq\left[(1-\alpha)-\frac{m-1}{m} \varepsilon k\right] H^{-\alpha}(t) H^{\prime}(t)+\varepsilon \gamma\left[H(t)+\left\|u_{t}\right\|_{2}^{2}+\|u\|_{p}^{p}\right] \tag{2.21}
\end{equation*}
$$

where $\gamma>0$ is a constant depending on C_{1}, k, and $(R+T)^{\beta}$. Once k is fixed (hence γ), we pick ε small enough so that $(1-\alpha)-\varepsilon k(m-1) / m \geq 0$ and

$$
J(0)=H^{1-\alpha}(0)+\varepsilon \int u_{0} u_{1}(x) d x>0
$$

Therefore (2.17) becomes

$$
\begin{equation*}
J^{\prime}(t) \geq \gamma \varepsilon\left[H(t)+\left\|u_{t}\right\|_{2}^{2}+\|u\|_{p}^{p}\right] . \tag{2.22}
\end{equation*}
$$

Consequently we have

$$
J(t) \geq J(0)>0, \quad \forall t \leq T
$$

Next we estime

$$
\left|\int u u_{t}(x, t) d x\right| \leq\|u\|_{2}\left\|u_{t}\right\|_{2} \leq C(R+T)^{n(p-2) / 2 p}\|u\|_{p}\left\|u_{t}\right\|_{2}
$$

which implies

$$
\left|\int u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C(R+T)^{\nu}\|u\|_{p}^{1 /(1-\alpha)}\left\|u_{t}\right\|_{2}^{1 /(1-\alpha)}
$$

where $\nu=n(p-2) / 2 p(1-\alpha)$. Again Young's inequality gives us

$$
\begin{equation*}
\left|\int u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C(R+T)^{\nu}\left[\|u\|_{p}^{\mu /(1-\alpha)}+\left\|u_{t}\right\|_{2}^{\theta /(1-\alpha)}\right], \tag{2.23}
\end{equation*}
$$

for $1 / \mu+1 / \theta=1$. We take $\theta=2(1-\alpha)$, to get $\mu /(1-\alpha)=2 /(1-2 \alpha) \leq p$ by (2.9). Therefore (2.19) becomes

$$
\left|\int u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C(R+T)^{\nu}\left[\|u\|_{p}^{s}+\left\|u_{t}\right\|_{2}^{2}\right],
$$

where $s=2 /(1-2 \alpha) \leq p$. By using corollary 2.5 we obtain

$$
\begin{equation*}
\left|\int u u_{t}(x, t) d x\right|^{1 /(1-\alpha)} \leq C(R+T)^{\nu+1 / p+1 / 2}\left[H(t)+\|u\|_{p}^{p}+\left\|u_{t}\right\|_{2}^{2}\right], \quad \forall t \leq T \tag{2.24}
\end{equation*}
$$

Finally note that

$$
\begin{gather*}
J^{1 /(1-\alpha)}(t)=\left(H^{1-\alpha}(t)+\varepsilon \int u u_{t}(x, t) d x\right)^{1 /(1-\alpha)} \\
\leq 2^{1 /(1-\alpha)}\left(H(t)+\left|\int u u_{t}(x, t) d x\right|^{1 /(1-\alpha)}\right) \\
\leq C(R+T)^{\nu+1 / p+1 / 2}\left[H(t)+\|u\|_{p}^{p}+\left\|u_{t}\right\|_{2}^{2}\right], \quad \forall t \leq T . \tag{2.25}
\end{gather*}
$$

A combination of (2.18) and (2.21) then yields

$$
\begin{equation*}
J^{\prime}(t) \geq \Gamma J^{1 /(1-\alpha)}(t), \quad \forall t \leq T \tag{2.26}
\end{equation*}
$$

where $\Gamma=\varepsilon \gamma / C(R+T)^{\nu+1 / p+1 / 2}$. A direct integration over $(0, \quad t)$ gives

$$
\begin{equation*}
J^{\alpha /(1-\alpha)}(t) \geq \frac{1}{J^{-\alpha /(1-\alpha)}(0)-\alpha \Gamma t /(1-\alpha)}, \quad \forall t \leq T \tag{2.27}
\end{equation*}
$$

Therefore (2.23) shows that for M, introduced in (2.8), large enough J blows up in a time $t^{*} \leq T$.

References

1. Ball J., Remarks on blow up and nonexistence theorems for nonlinear evolutions equations, Quart. J. Math. Oxford (2) 28 (1977), 473-486.
2. Brezis H., Analyse fonctionnelle Theorie et Application, Masson Paris New york 1983.
3. Georgiev, V. and G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms, J. Diff. Eqns. 109 / 2 (1994), 295-308.
4. Haraux, A. and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Rational Mech. Anal. 150 (1988), 191-206.
5. Kalantarov V. K. and O. A. Ladyzhenskaya, the occurence of collapse for quasilinear equations of parabolic and hyperbolic type, J. Soviet Math. 10 (1978), 53-70.
6. Kopackova M., Remarks on bounded solutions of a semilinear dissipative hyperbolic equation, Comment. Math. Univ. Carolin. 30 No 4 (1989), 713 719.
7. Levine, H. A., Instability and nonexistene of global solutions of nonlinear wave equation of the form $P u_{t t}=A u+F(u)$, Trans. Amer. Math. Soc. 192 (1974), 1-21.
8. Levine H. A , Some additional remarks on the nonexistence of global solutions to nonlinear wave equation, SIAM J. Math. Anal. 5 (1974), 138-146.
9. Levine H. A and J. Serrin, A global nonexistence theorem for quasilinear evolution equation with dissipation, Arch. Rational Mech. Anal. 137 (1997), 341 - 361.
10. Messaoudi S. A., Blow up in a nonlinearly damped wave equation (to appear)
11. Todorova G., Cauchy problem for a nonlinear wave with nonlinear damping and source terms, C. R. Acad Sci. Paris Ser. I 326 (1998), 191-196.
12. Todorova G., Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms, J. Math. Anal. Appl. 239 (1999), 213-226.
13. Vittilaro E, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal. 149 (1999), 155-182.
