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Abstract

In this paper we consider the Cauchy problem for the nonlinearly damped
wave equation with nonlinear source

utt −∆u + aut|ut|m−2 = bu|u|p−2,
p > m. We prove that given any time T > 0, there exist always initial data
with sufficiently negative initial energy, for which the solution blows up in time
≤ T. This result improves an earlier one by Todorova [11].
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1 Introduction

In this paper we are concerned with the following initial value problem

utt −∆u + aut|ut|m−2 = bu|u|p−2, x ∈ IRn, t > 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ IRn,

(1.1)

where a, b > 0, and p, m > 2. For the initial boundary value problem, it is well known
that if b = 0 then the damping term aut|ut|m−2 assures global existence for arbitrary
initial data ( see [4], [6] ). If a = 0 then the source term bu|u|p−2 causes finite time
blow up of solutions with negative initial energy (see [1], [5], [7], [8] ).

The interaction between the damping and the source terms, for the IBVP, was
first considered by Levine [7], [8] in the linear damping case (m = 2). He showed
that solutions with negative initial energy cannot be global in time. Georgiev and
Todorova [3] extended Levine’s result to the nonlinear damping case (m > 2). In their
work, the authors introduced a different method and determined suitable relations
between m and p, for which there is global existence or alternatively finite time
blow up. Precisely they showed that solutions with negative energy continue to exist
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globally ’in time’ if m ≥ p and blow up in finite time if p > m and the initial
energy is sufficiently negative. This result was improved by Levine and Serrin [9] and
Messaoudi [10]. In their work, Levine and Serrin [9] treated an abstract problem,
showed that no solution with negative energy can be extended on [0, ∞) if p > m,
and proved several noncontinuation theorems. This generalization allowed them to
apply their results to quasilinear situations, of which problem (1.1) is a particular
case.

For solutions with positive initial energy, we mention the blow up results of Todor-
ova [12] and Vitillaro [13]. In his paper, Vitillaro also studied an abstract problem
and established many existence and nonexistence results to the semilinear, as well as
quasilinear, cases.

In all above results, the boundedness of the domain played an essential role be-
cause of the usage of the injection of the Lp spaces. In a recent work, Todorova [11]
treated the Cauchy problem (1.1) for compactly supported initial data. She showed
that the weak solution of (1.1) exists globally ’ in time ’ if m ≥ p and it blows up
in finite time for any initial data with negative energy if p > m > np/(n + p + 1) .
When m < np/(n + p + 1) the solution blows up if the initial energy is sufficiently
negative and

∫
u0u1 ≥ 0. She also established a similar result for (1.1) with a source

of the form bu|u|p−2 − q2(x)u under a suitable condition on q(x).
In this work, we show that the condition

∫
u0u1 ≥ 0 is unnecessary and the result

can be proved without it. We do not consider the same functional as in [11] and show
that given any time T > 0, there exist initial data, with sufficiently negative energy,
for wich the solution blows up in a time t∗ ≤ T . We first state a local result (See [3]
and [11] ).
Theorem 1. Suppose that m > 2, p > 2, and

p ≤ 2 (n− 1)

n− 2
, n ≥ 3. (1.2)

Then for any initial data

(u0, u1) ∈ H1
0 (IRn) x L2(IRn) (1.3)

with suppu (u0) ∪ supp (u1) ⊂ BR(0), then there exists Tm > 0 such that problem
(1.1) has a unique local solution

u ∈ C
(
[0, Tm); H1

0 (IRn)
)
, ut ∈ C

(
[0, Tm); L2(IRn)

)
∩Lm (IRn x (0, Tm)) . (1.4)

Remark 1.1 The exponent (1.2) is the cut for p needed to establish the local exis-
tence. See relation (2.6) in [3].

2 Main Result.

In this section we show that the solution (1.4) blows up in finite time if
p > m and the initial energy

E0 :=
1

2

∫
[u2

1 + |∇u0|2](x)dx− b

p

∫
|u0(x)|pdx (2.5)
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is negative enough.
Lemma 2.1. Suppose that (1.2) holds and p > 1. Then there exists a positive
constant C depending on n and p only such that

||u||p ≤ C (L)1/p−1/p∗ ||∇u||2, p∗ = 2n/(n− 2), (2.6)

for any u ∈ H1(IRn), with supp (u) ⊂ BL(0).
Proof. If u ∈ H1(IRn) then u ∈ Lp∗(IRn), and ||u||p∗ ≤ C1||∇u||2, , where C1 is
a constant depending on n ( See theorem IX.9 of [2] ). But ||u||p ≤ C2(L)1/p−1/p∗

||u||p∗ , for any p ≤ p∗, where C2 is a constant depending on n, p, and p∗. Therefore
(2.2) follows.
Remark 2.2. For the case n < 3, we have

||u||p ≤ C (L)1/p+1/2 ||∇u||2, n = 1 (2.7)

by theorem IX.12 of [2] and

||u||p ≤ C||∇u||2, n = 2 (2.8)

by corollary IX.11 of [2], C is a constant depending on n and p only.
Remark 2.3. Without loss of generality, L and R (below) are taken larger than or
equal to one.
Lemma 2.4. Suppose that 2 ≤ s ≤ p and (1.2) holds if n ≥ 3. Then there exists a
positive constant C depending on n and p only such that

||u||sp ≤ C (L)1/p+1/2
(
||∇u||22 + ||u||pp

)
(2.9)

for any u ∈ H1(IRn), with supp (u) ⊂ BL(0).
Proof. If ||u||p ≤ 1 then ||u||sp ≤ ||u||2p. From (2.2), it follows that ||u||sp ≤
C (L)1/p+1/2 ||∇u||22 . If ||u||p > 1 then ||u||sp ≤ ||u||pp. Therefore (2.5) follows.

We set

H(t) := −1

2

∫
[u2

t + |∇u|2](x, t)dx +
b

p

∫
|u(x, t)|pdx. (2.10)

As a consequence of (2.5), (2.6), of fact that supp (u0) ∪ supp (u1) ⊂ BR(0), and of
finite speed propagation, we have
Corollary 2.5. Let the assumptions of theorem 1 hold. Then the solution defined by
(1.4) satisfies

||u||sp ≤ C (R + t)1/p+1/2
(
|H(t)|+ ||ut||22 + ||u||pp

)
. (2.11)

Theorem 2. Suppose that p > m > 2 and (1.2) holds if n ≥ 3. Then for any R ≥ 1
and T > 0 there exists M > 0 such that for initial data (u0, u1) satisfying (1.3), with
supp (u0) ∪ supp (u1) ⊂ BR(0), and

E0 < −M, (2.12)

the solution (1.4) blows up in a time t∗ ≤ T.
Remark 2.5. Note that we do not require

∫
u0u1 ≥ 0 .
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Proof.
We multiply equation (1.1) by −ut and integrate over IRn to get

H ′(t) = a
∫
|ut(x, t)|mdx,

for almost every t in [0, T ) since H(t) is absolutely continuous ( see [2] ). So we have

0 < −E0 = H(0) ≤ H(t) ≤ b

p
||u||pp, (2.13)

for every t in [0, T ), by virtue of (2.6). We then define

J(t) := H1−α(t) + ε
∫

uut(x, t)dx (2.14)

for ε small to be chosen later and

0 < α ≤ min

{
(p− 2)

2p
,

(p−m)

p(m− 1)

}
. (2.15)

By taking the derivative of (2.10) and using equation (1.1) we obtain

J ′(t) := (1− α)H−α(t)H ′(t) + ε
∫

[u2
t − |∇u|2](x, t)dx (2.16)

+εb
∫
|u(x, t)|pdx− aε

∫
|ut|m−2utu(x, t)dx.

We then exploit Young’s inequality

XY ≤ δr

r
Xr +

δ−q

q
Y q, X, Y ≥ 0, δ > 0,

1

r
+

1

q
= 1

for r = m and q = m/(m− 1) to estimate the last term in (2.12) as follows

∫
|ut|m−1|u|dx ≤ δm

m
||u||mm +

m− 1

m
δ−m/(m−1)||ut||mm.

A substitution in (2.12) yields

J ′(t) ≥
[
(1− α)H−α(t)− m− 1

m
εδ−m/(m−1)

]
H ′(t) + ε

∫
[u2

t − |∇u|2](x, t)dx

+ε
[
pH(t) +

p

2

∫

Ω
[u2

t + |∇u|2](x, t)dx
]
− εa

δm

m
||u||mm, ∀δ > 0. (2.17)

Of course (2.13) remains valid even if δ is time dependent since the integral is taken
over the x variable. Therefore by taking δ so that δ−m/(m−1) = kH−α(t), for large k
to be specified later, and substituting in (2.13) we arrive at

J ′(t) ≥
[
(1− α)− m− 1

m
εk

]
H−α(t)H ′(t) + ε(

p

2
+ 1)

∫
u2

t (x, t)dx (2.18)
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+ε(
p

2
− 1)

∫
|∇u|2(x, t)dx + ε

[
pH(t)− k1−m

m
aHα(m−1)(t)||u||mm

]
.

By exploiting (2.9) and the inequality

||u||mm ≤ C||u||mp (R + t)n(p−m)/p,

we obtain

Hα(m−1)(t)||u||mm ≤ C

(
b

p

)α(m−1)

(R + t)n(p−m)/p||u||m+αp(m−1)
p ;

hence (2.14) yields

J ′(t) ≥
[
(1− α)− m− 1

m
εk

]
H−α(t)H ′(t) + ε(

p

2
+ 1)

∫
u2

t (x, t)dx (2.19)

+ε(
p

2
− 1)

∫
|∇u|2(x, t)dx

+ε


pH(t)− C

k1−m

m
a

(
b

p

)α(m−1)

(R + t)n(p−m)/p||u||m+αp(m−1)
p


 .

We then use corollary 2.5, for s = m + αp(m− 1) ≤ p, to deduce from (2.15)

J ′(t) ≥
[
(1− α)− m− 1

m
εk

]
H−α(t)H ′(t) + ε(

p

2
+ 1)

∫
u2

t (x, t)dx (2.20)

+ε(
p

2
− 1)

∫
|∇u|2(x, t)dx

+ε
[
pH(t)− C1k

1−m(R + T )β
{
H(t) + ||ut||22 + ||u||pp

}]
,∀t ≤ T,

where C1 = Ca
(

b
p

)α(m−1)
/m. and β = n(p − m)/p + 1/p + 1/2. At this point, we

choose k large enough so that (2.16) takes the forrm

J ′(t) ≥
[
(1− α)− m− 1

m
εk

]
H−α(t)H ′(t) + εγ

[
H(t) + ||ut||22 + ||u||pp

]
, (2.21)

where γ > 0 is a constant depending on C1, k, and (R + T )β. Once k is fixed (hence
γ), we pick ε small enough so that (1− α)− εk(m− 1)/m ≥ 0 and

J(0) = H1−α(0) + ε
∫

u0u1(x)dx > 0.

Therefore (2.17) becomes

J ′(t) ≥ γε
[
H(t) + ||ut||22 + ||u||pp

]
. (2.22)

Consequently we have
J(t) ≥ J(0) > 0, ∀t ≤ T.
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Next we estime

|
∫

uut(x, t)dx| ≤ ||u||2||ut||2 ≤ C(R + T )n(p−2)/2p||u||p||ut||2

which implies

|
∫

uut(x, t)dx|1/(1−α) ≤ C(R + T )ν ||u||1/(1−α)
p ||ut||1/(1−α)

2 ,

where ν = n(p− 2)/2p(1− α). Again Young’s inequality gives us

|
∫

uut(x, t)dx|1/(1−α) ≤ C(R + T )ν
[
||u||µ/(1−α)

p + ||ut||θ/(1−α)
2

]
, (2.23)

for 1/µ + 1/θ = 1. We take θ = 2(1−α), to get µ/(1−α) = 2/(1− 2α) ≤ p by (2.9).
Therefore (2.19) becomes

|
∫

uut(x, t)dx|1/(1−α) ≤ C(R + T )ν
[
||u||sp + ||ut||22

]
,

where s = 2/(1− 2α) ≤ p. By using corollary 2.5 we obtain

|
∫

uut(x, t)dx|1/(1−α) ≤ C(R + T )ν+1/p+1/2
[
H(t) + ||u||pp + ||ut||22

]
, ∀t ≤ T.

(2.24)
Finally note that

J1/(1−α)(t) =
(
H1−α(t) + ε

∫
uut(x, t)dx

)1/(1−α)

≤ 21/(1−α)
(
H(t) + |

∫
uut(x, t)dx|1/(1−α)

)

≤ C(R + T )ν+1/p+1/2
[
H(t) + ||u||pp + ||ut||22

]
, ∀t ≤ T. (2.25)

A combination of (2.18) and (2.21) then yields

J ′(t) ≥ ΓJ1/(1−α)(t), ∀t ≤ T, (2.26)

where Γ = εγ/C(R + T )ν+1/p+1/2. A direct integration over (0, t) gives

Jα/(1−α)(t) ≥ 1

J−α/(1−α)(0)− αΓt/(1− α)
, ∀t ≤ T. (2.27)

Therefore (2.23) shows that for M, introduced in (2.8), large enough J blows up in a
time t∗ ≤ T.
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