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Abstract

In this paper, we consider the nonlinear viscoelastic equation

utt − Δu +
t∫

0

g(t − τ )Δu(τ) dτ + ut |ut |m−2 = u|u|p−2

with initial conditions and Dirichlet boundary conditions. For nonincreasing positive functions g and
for p > m, we prove that there are solutions with positive initial energy that blow up in finite time.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are concerned with the initial-boundary-value problem⎧⎨
⎩

utt − Δu + ∫ t

0 g(t − τ)Δu(τ) dτ + ut |ut |m−2 = u|u|p−2, in Ω × (0,∞),

u(x, t) = 0, x ∈ ∂Ω, t � 0,

u(x,0) = u0(x), ut (x,0) = u1(x), x ∈ Ω.

(1.1)
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where Ω is a bounded domain of R
n (n � 1) with a smooth boundary ∂Ω , p > 2, m � 1,

and g is a positive function. In the absence of the viscoelastic term (that is, if g = 0), the
equation in (1.1) reduces to the nonlinearly damped wave equation

utt − Δu + ut |ut |m−2 = u|u|p−2.

This equation has been extensively studied by many mathematicians. It is well known
that in the further absence of the damping mechanism ut |ut |m−2, the source term u|u|p−2

causes finite-time blow-up of solutions with negative initial energy (see [1,9]). In contrast,
in the absence of the source term, the damping term assures global existence for arbitrary
initial data (see [8,10]). The interaction between the damping and source terms was first
considered by Levine [11,12] for linear damping (m = 2). Levine showed that solutions
with negative initial energy blow up in finite time. Georgiev and Todorova [7] extended
Levine’s result to nonlinear damping (m > 2). In their work, the authors introduced a new
method and determined relations between m and p for which there is global existence
and other relations between m and p for which there is finite-time blow-up. Specifically,
they showed that solutions with negative energy continue to exist globally if m � p and
blow up in finite time if p > m and the initial energy is sufficiently negative. Messaoudi
[15] extended the blow-up result of [7] to solutions with only negative initial energy. For
related results, we refer the reader to Levine and Serrin [13], Levine and Ro Park [14],
Vitillaro [19], Yang [20] and Messaoudi and Said-Houari [18].

In the presence of the viscoelastic term (g �= 0), Cavalcanti et al. [4] studied (1.1) for
m = 2 and a localized damping mechanism a(x)ut (a(x) null on a part of the domain).
They obtained an exponential rate of decay by assuming that the kernel g is of exponential
decay. This work was later improved by Cavalcanti et al. [6] and Berrimi and Messaoudi
[2] using different methods. In related work, Cavalcanti et al. [3] studied solutions of

|ut |ρutt − Δu − Δutt +
t∫

0

g(t − τ)Δu(τ) dτ − γΔut = 0, x ∈ Ω, t > 0,

for ρ > 0 and proved a global existence result for γ � 0 and an exponential decay result
for γ > 0. This latter result was extended by Messaoudi and Tatar [16] to a situation where
a source term is competing with the damping induced by −γΔut and the integral term.
Also, Cavalcanti et al. [5] established an existence result and a decay result for viscoelastic
problems with nonlinear boundary damping.

Concerning nonexistence, Messaoudi [17] showed that Todorova and Georgiev’s results
can be extended to (1.1) using the technique of [7] with a modification in the energy func-
tional due to the different nature of the problems.

In this article, we improve our earlier result by adopting and modifying the method of
[19]. In particular, we will show that there are solutions of (1.1) with positive initial energy
that blow up in finite time.

We first state a local existence theorem that can be established by combining arguments
of [4,7].



904 S.A. Messaoudi / J. Math. Anal. Appl. 320 (2006) 902–915
Theorem 1.1. Let (u0, u1) ∈ H 1
0 (Ω) × L2(Ω) be given. Let m > 1, p > 2 be such that

max{m,p} � 2(n − 1)

n − 2
, n � 3. (1.2)

Let g be a C1 function satisfying

1 −
∞∫

0

g(s) ds = l > 0. (1.3)

Then problem (1.1) has a unique local solution

u ∈ C
([0, Tm);H 1

0 (Ω)
)
, ut ∈ C

([0, Tm);L2(Ω)
) ∩ Lm

(
Ω × (0, Tm)

)
, (1.4)

for some Tm > 0.

Remark 1.1. Condition (1.2) is needed to establish the local existence result (see [4,7]). In
fact under this condition, the nonlinearity in the source is Lipschitz from H 1(Ω) to L2(Ω).
Condition (1.3) is necessary to guarantee the hyperbolicity and well-posedness of system
(1.1).

Next we state our main result. For this purpose, we assume that g satisfies, in addition
to (1.3), the inequalities

g(s) � 0, g′(s) � 0,

∞∫
0

g(s) ds <
(p/2) − 1

(p/2) − 1 + (1/2p)
. (1.5)

Theorem 1.2. Let m and p be such that m > 1, p > max{2,m} and (1.2) holds. Assume
further that g satisfies (1.3), (1.5). Then any solution of (1.1) with initial data satisfying
(2.7) below blows up in finite time.

2. Proof of the blow-up result

In this section we prove our main result (Theorem 1.2). For this purpose we let B be the
best constant of the Sobolev embedding [H 1] ↪→ [Lp] and B1 = B/l1/2. We set

α = B
−p/(p−2)

1 , E1 =
(

1

2
− 1

p

)
α2. (2.1)

We also define

E(t) = 1

2
‖ut‖2

2 + 1

2

(
1 −

t∫
g(s) ds

)
‖∇u‖2

2 + 1

2
(g ◦ ∇u)(t) − 1

p
‖u‖p

p, (2.2)
0
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where

(g ◦ v)(t) =
t∫

0

g(t − τ)
∥∥v(t) − v(τ)

∥∥2
2 dτ.

Lemma 2.1. Assume that (1.2), (1.3) and (1.5) hold. Let u be a solution of (1.1). Then
E(t)is nonincreasing, that is,

E′(t) � 0. (2.3)

Proof. By multiplying Eq. (1.1) by ut and integrating over Ω we obtain

d

dt

{
1

2

∫
Ω

|∇u|2 dx + 1

2

∫
Ω

|ut |2 dx − 1

p

∫
Ω

|u|p dx

}

−
t∫

0

g(t − τ)

∫
Ω

∇ut (t).∇u(τ) dx dτ = −
∫
Ω

|ut |m dx, (2.4)

for any regular solution. This result remains valid for weak solutions by a simple density
argument. For the last term on the left side of (2.4) we have

t∫
0

g(t − τ)

∫
Ω

∇ut (t).∇u(τ) dx dτ

=
t∫

0

g(t − τ)

∫
Ω

∇ut (t).
[∇u(τ) − ∇u(t)

]
dx dτ

+
t∫

0

g(t − τ)

∫
Ω

∇ut (t).∇u(t) dx dτ

= −1

2

t∫
0

g(t − τ)
d

dt

∫
Ω

∣∣∇u(τ) − ∇u(t)
∣∣2

dx dτ

+
t∫

0

g(τ)

(
d

dt

1

2

∫
Ω

∣∣∇u(t)
∣∣2

dx

)
dτ

= −1

2

d

dt

[ t∫
0

g(t − τ)

∫
Ω

∣∣∇u(τ) − ∇u(t)
∣∣2

dx dτ

]

+ 1

2

d

dt

[ t∫
g(τ)

∫ ∣∣∇u(t)
∣∣2

dx dτ

]

0 Ω
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+ 1

2

t∫
0

g′(t − τ)

∫
Ω

∣∣∇u(τ) − ∇u(t)
∣∣2

dx dτ − 1

2
g(t)

∫
Ω

∣∣∇u(t)
∣∣2

dx dτ. (2.5)

Inserting (2.5) into (2.4), we obtain

d

dt

{
1

2

∫
Ω

|∇u|2 dx + 1

2

∫
Ω

|ut |2 dx − 1

p

∫
Ω

|u|p dx

}

+ 1

2

d

dt

[ t∫
0

g(t − τ)

∫
Ω

∣∣∇u(τ) − ∇u(t)
∣∣2

dx dτ

]

− 1

2

d

dt

[ t∫
0

g(τ)
∥∥∇u(t)

∥∥2
dτ

]

= −
∫
Ω

|ut |m dx + 1

2

t∫
0

g′(t − τ)

∫
Ω

∣∣∇u(τ) − ∇u(t)
∣∣2

dx dτ

− 1

2
g(t)

∥∥∇u(t)
∥∥2

2 � 0. (2.6)

This completes the proof. �
Lemma 2.2. Assume that (1.2), (1.3) and (1.5) hold. Let u be a solution of (1.1) with initial
data satisfying

E(0) < E1, ‖∇u0‖2 > B
−p/(p−2)

1 . (2.7)

Then there exists a constant β > B
−p/(p−2)

1 such that

[(
1 −

t∫
0

g(s) ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t)

]1/2

� β, ∀t ∈ [0, T ), (2.8)

and

‖u‖p � B1β, ∀t ∈ [0, T ). (2.9)

Proof. We first note that, by (2.2), we have

E(t) � 1

2

(
1 −

t∫
0

g(s) ds

)
‖∇u‖2

2 + 1

2
(g ◦ ∇u)(t) − 1

p
‖u‖p

p

� 1

2

(
1 −

t∫
g(s) ds

)
‖∇u‖2

2 + 1

2
(g ◦ ∇u)(t) − 1

p
B

p

1 lp‖∇u‖p

2

0
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� 1

2

(
1 −

t∫
0

g(s) ds

)
‖∇u‖2

2 + 1

2
(g ◦ ∇u)(t)

− B
p

1

p

[(
1 −

t∫
0

g(s) ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t)

]p/2

= 1

2
ζ 2 − B

p

1

p
ζp = h(ζ ), (2.10)

where

ζ =
[(

1 −
t∫

0

g(s) ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t)

]1/2

.

It is easy to verify that h is increasing for 0 < ζ < α, decreasing for ζ > α, h(ζ ) → −∞
as ζ → +∞, and

h(α) =
(

1

2
− 1

p

)
B

−2p/(p−2)

1 = E1,

where α is given in (2.1). Therefore, since E(0) < E1, there exists β > α such that
h(β) = E(0). If we set α0 = ‖∇u0‖2 then, by (2.10), we have

h(α0) � E(0) = h(β).

Therefore, α0 > β .
To establish (2.8), we suppose by contradiction that[(

1 −
t0∫

0

g(s) ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t0)

]1/2

< β,

for some t0 > 0. By the continuity of(
1 −

t∫
0

g(s) ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t),

we can choose t0 such that[(
1 −

t0∫
0

g(s) ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t0)

]1/2

> α.

Again, the use of (2.10) leads to

E(t0) � h

([(
1 −

t0∫
0

g(s) ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t0)

]1/2)
> h(β) = E(0).

This is impossible since E(t) � E(0), for all t ∈ [0, T ). Hence (2.8) is established.
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To prove (2.9), we exploit (2.2). We have

1

2

[(
1 −

t∫
0

g(s) ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t)

]
� E(0) + 1

p
‖u‖p

p.

Consequently, we obtain

1

p
‖u‖p

p � 1

2

[(
1 −

t∫
0

g(s) ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t)

]
− E(0)

� 1

2
β2 − E(0)

� 1

2
β2 − h(β) = B

p

1

p
βp. (2.11)

The proof is complete. �
Lemma 2.3. Suppose that (1.2) holds. Then there exists a positive constant C > 1 such
that

‖u‖s
p � C

(‖∇u‖2
2 + ‖u‖p

p

)
(2.12)

for any u ∈ H 1
0 (Ω) and 2 � s � p.

Proof. If ‖u‖p � 1 then ‖u‖s
p � ‖u‖2

p � C‖∇u‖2
2 by Sobolev embedding.

If ‖u‖p > 1 then ‖u‖s
p � ‖u‖p

p . Therefore, (2.12) follows. This completes the
proof. �

We set

H(t) = E1 − E(t) (2.13)

and use, throughout this paper, C to denote a generic positive constant depending on p and
l only. As a result of (2.2), (2.12), and (2.13), we have

Lemma 2.4. Let u be solution of (1.1). Assume that (1.2) holds. Then we have

‖u‖s
p � C

(−H(t) − ‖ut‖2
2 − (g ◦ ∇u)(t) + ‖u‖p

p

)
, ∀t ∈ [0, T ), (2.14)

for any 2 � s � p.

Proof. Using (1.3) and (2.2), we note that

1

2
(1 − l)‖∇u‖2

2 � 1

2

(
1 −

t∫
0

g(s) ds
)
‖∇u‖2

2

� E(t) − 1

2
‖ut‖2

2 − 1

2
(g ◦ ∇u)(t) + 1

p
‖u‖p

p

� E1 − H(t) − 1‖ut‖2
2 − 1

(g ◦ ∇u)(t) + 1 ‖u‖p
p . (2.15)
2 2 p
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Exploiting (2.1) and (2.9), simple calculations yield

E1 � p − 2

2p
‖u‖p

p. (2.16)

Finally, a combination of (2.15) and (2.16) gives the desired result. �
Proof of Theorem 1.2. Using (2.2), (2.3) and (2.13), we obtain

0 < H(0) � H(t)

� E1 − 1

2

[
‖ut‖2

2 +
(

1 −
t∫

0

g(s) ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t)

]
+ 1

p
‖u‖p

p

and, from (2.8), we obtain

E1 − 1

2

[
‖ut‖2

2 +
(

1 −
t∫

0

g(s) ds

)
‖∇u‖2

2 + (g ◦ ∇u)(t)

]

< E1 − 1

2
β2 = − 1

p
β2 < 0, ∀t � 0. (2.17)

Hence,

0 < H(0) � H(t) � 1

p
‖u‖p

p, ∀t � 0. (2.18)

We define

L(t) := H 1−σ (t) + ε

∫
Ω

uut dx, (2.19)

for small ε to be chosen later and for

0 < σ � min

{
(p − 2)

2p
,

(p − m)

p(m − 1)

}
. (2.20)

Taking a derivative of (2.19) and using Eq. (1.1), we obtain

L′(t) = (1 − σ)H−σ (t)

{
‖ut‖m

m − 1

2
(g′ ◦ ∇u)(t) + 1

2
g(t)‖∇u‖2

2

}

+ ε

∫
Ω

[
u2

t − |∇u|2]dx + ε

t∫
0

g(t − τ)

∫
Ω

∇u(t).∇u(τ) dx dτ

+ ε

∫
Ω

|u|p dx − ε

∫
Ω

|ut |m−2utudx

� (1 − σ)H−σ (t)‖ut‖m
m + ε

∫ [
u2

t − |∇u|2]dx
Ω
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+ ε

∫
Ω

|u|p dx − ε

∫
Ω

|ut |m−2utudx + ε

t∫
0

g(t − τ)‖∇u(t)‖2
2 dτ

+ ε

t∫
0

g(t − τ)

∫
Ω

∇u(t).
[∇u(τ) − ∇u(t)

]
dx dτ. (2.21)

Using the Schwarz inequality, (2.21) takes on the form

L′(t) � (1 − σ)H−σ (t)‖ut‖m
m + ε

∫
Ω

[
u2

t − |∇u|2]dx

+ ε

∫
Ω

|u|p dx − ε

∫
Ω

|ut |m−2utudx

− ε

t∫
0

g(t − τ)
∥∥∇u(t)

∥∥
2

∥∥∇u(τ) − ∇u(t)
∥∥

2 dτ

+ ε

t∫
0

g(t − τ)
∥∥∇u(t)

∥∥2
2 dτ. (2.22)

We now exploit Young’s inequality to estimate the fifth term on the right side of (2.22) and
use (2.2) to substitute for

∫
Ω

|u(x, t)|p dx. Hence, (2.22) becomes

L′(t) � (1 − σ)H−σ (t)‖ut‖m
m + ε

∫
Ω

u2
t dx − ε

(
1 −

t∫
0

g(s) ds

)∥∥∇u(t)
∥∥2

2

+ ε

(
pH(t) + p

2
(g ◦ ∇u)(t) + p

2
‖ut‖2

2 + p

2

(
1 −

t∫
0

g(s) ds

)∥∥∇u(t)
∥∥2

2

)

− ε

∫
Ω

|ut |m−2utu(x, t) dx − ετ(g ◦ ∇u)(t) − ε

4τ

t∫
0

g(s) ds
∥∥∇u(t)

∥∥2
2

� (1 − σ)H−σ (t)‖ut‖m
m + ε

(
1 + p

2

)∫
Ω

u2
t dx + εpH(t)

+ ε

(
p

2
− τ

)
(g ◦ ∇u)(t) − ε

∫
Ω

|ut |m−2utudx

+ ε

((
p

2
− 1

)
−

(
p

2
− 1 + 1

4τ

) ∞∫
0

g(s) ds

)∥∥∇u(t)
∥∥2

2, (2.23)

for some number τ with 0 < τ < p/2. Recalling (1.5), the estimate (2.23) reduces to



S.A. Messaoudi / J. Math. Anal. Appl. 320 (2006) 902–915 911
L′(t) � (1 − σ)H−σ (t)‖ut‖m
m + ε

(
1 + p

2

)∫
Ω

u2
t (x, t) dx

+ εpH(t) + εa1(g ◦ ∇u)(t) + εa2
∥∥∇u(t)

∥∥2
2 − ε

∫
Ω

|ut |m−2utudx, (2.24)

where

a1 = p

2
− τ > 0, a2 =

(
p

2
− 1

)
−

(
p

2
− 1 + 1

4τ

) ∞∫
0

g(s) ds > 0.

To estimate the last term of (2.24), we again use Young’s inequality

XY � δr

r
Xr + δ−q

q
Y q, X,Y,� 0, ∀δ > 0,

1

r
+ 1

q
= 1

with r = m and q = m/(m − 1). So we have∫
Ω

|ut |m−1|u|dx � δm

m
‖u‖m

m + m − 1

m
δ−m/(m−1)‖ut‖m

m,

which yields, by substitution in (2.24),

L′(t) �
[
(1 − σ)H−σ (t) − m − 1

m
εδ−m/(m−1)

]
‖ut‖m

m

+ ε

(
1 + p

2

)∫
Ω

u2
t (x, t) dx + εa1(g ◦ ∇u)(t)

+ εa2
∥∥∇u(t)

∥∥2
2 + εpH(t) − ε

δm

m
‖u‖m

m, ∀δ > 0. (2.25)

Of course (2.25) remains valid even if δ is time-dependant since the integral is taken over
the x variable. Therefore, taking δ so that δ−m/(m−1) = kH−σ (t) for large k to be specified
later and substituting in (2.25), we arrive at

L′(t) �
[
(1 − σ) − m − 1

m
εk

]
H−σ (t)‖ut‖m

m + ε

(
p

2
+ 1

)∫
Ω

u2
t (x, t) dx

+ εa1(g ◦ ∇u)(t) + εa2
∥∥∇u(t)

∥∥2
2

+ ε

[
pH(t) − k1−m

m
Hσ(m−1)(t)‖u‖m

m

]
. (2.26)

Exploiting (2.18) and the inequality ‖u‖m
m � C‖u‖m

p , we obtain

Hσ(m−1)(t)‖u‖m
m �

(
1

p

)σ(m−1)

C‖u‖m+σp(m−1)
p .

Hence, (2.26) yields
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L′(t) �
[
(1 − σ) − m − 1

m
εk

]
H−σ (t)‖ut‖m

m

+ ε

(
p

2
+ 1

)∫
Ω

u2
t (x, t) dx + εa1(g ◦ ∇u)(t) + εa2

∥∥∇u(t)
∥∥2

2

+ ε

[
pH(t) − k1−m

m

(
1

p

)σ(m−1)

C‖u‖m+σp(m−1)
p

]
. (2.27)

We now use (2.20) and Lemma 2.4 with s = m + σp(m − 1) � p to deduce from (2.27)
that

L′(t) �
[
(1 − σ) − m − 1

m
εk

]
H−σ (t)‖ut‖m

m

+ ε

(
p

2
+ 1

)∫
Ω

u2
t (x, t) dx + εa1(g ◦ ∇u)(t) + εa2

∥∥∇u(t)
∥∥2

2

+ ε
[
pH(t) − C1k

1−m
{−H(t) − ‖ut‖2

2 − (g ◦ ∇u)(t) + ‖u‖p
p

}]
�

[
(1 − σ) − m − 1

m
εk

]
H−σ (t)‖ut‖m

m

+ ε

(
p

2
+ 1 + C1k

1−m

)
‖ut‖2

2 + ε
(
a1 + C1k

1−m
)
(g ◦ ∇u)(t)

+ εa2
∥∥∇u(t)

∥∥2
2 + ε

(
p + C1k

1−m
)
H(t) − εC1k

1−m‖u‖p
p, (2.28)

where C1 = (1/p)σ(m−1)C/m. Noting that

H(t) � 1

p
‖u‖p

p − 1

2
‖ut‖2

2 − 1

2
‖∇u‖2

2 − 1

2
(g ◦ ∇u)(t)

and writing p = 2a3 + (p − 2a3), where a3 < min{a1, a2,p/2}, the estimate (2.28) yields

L′(t) �
[
(1 − σ) − m − 1

m
εk

]
H−σ (t)‖ut‖m

m

+ ε

(
p

2
+ 1 + C1k

1−m − a3

)
‖ut‖2

2 + ε
(
a1 + C1k

1−m − a3
)
(g ◦ ∇u)(t)

+ ε(a2 − a3)
∥∥∇u(t)

∥∥2
2 + ε

(
p − 2a3 + C1k

1−m
)
H(t)

+ ε

(
2a3

p
− C1k

1−m

)
‖u‖p

p. (2.29)

At this point, we choose k large enough so that (2.29) becomes

L′(t) �
[
(1 − σ) − m − 1

m
εk

]
H−σ (t)‖ut‖m

m

+ εγ
[
H(t) + ‖ut‖2

2 + ‖u‖p
p + (g ◦ ∇u)(t)

]
, (2.30)

where γ > 0 is the minimum of the coefficients of H(t), ‖ut‖2
2, ‖u‖p

p , and (g ◦ ∇u)(t)

in (2.29). Once k is fixed (hence γ also), we pick ε small enough so that

(1 − σ) − εk(m − 1)/m � 0
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and

L(0) = H 1−σ (0) + ε

∫
Ω

u0u1(x) dx > 0.

Therefore, (2.30) takes on the form

L′(t) � εγ
[
H(t) + ‖ut‖2

2 + ‖u‖p
p + (g ◦ ∇u)(t)

]
. (2.31)

Consequently, we have

L(t) � L(0) > 0, ∀t � 0.

We now estimate∣∣∣∣
∫
Ω

uut dx

∣∣∣∣ � ‖u‖2‖ut‖2 � C‖u‖p‖ut‖2,

which implies∣∣∣∣
∫
Ω

uut dx

∣∣∣∣
1/(1−σ)

� C‖u‖1/(1−σ)
p ‖ut‖1/(1−σ)

2 .

Again, Young’s inequality gives us∣∣∣∣
∫
Ω

uut dx

∣∣∣∣
1/(1−σ)

� C
[‖u‖μ/(1−σ)

p + ‖ut‖θ/(1−σ)

2

]
, (2.32)

for 1/μ+1/θ = 1. To obtain μ/(1−σ) = 2/(1−2σ) � p by (2.20), we take θ = 2(1−σ).
Therefore, (2.32) becomes∣∣∣∣

∫
Ω

uut (x, t) dx

∣∣∣∣
1/(1−σ)

� C
[‖u‖s

p + ‖ut‖2
2

]
,

where s = 2/(1 − 2σ) � p. Using Lemma 2.4, we obtain∣∣∣∣
∫
Ω

uut dx

∣∣∣∣
1/(1−σ)

� C
[
H(t) + ‖u‖p

p + ‖ut‖2
2 + (g ◦ ∇u)(t)

]
, ∀t � 0. (2.33)

Therefore, we have

L1/(1−σ)(t) =
(

H 1−σ (t) + ε

∫
Ω

uut dx

)1/(1−σ)

� 21/(1−σ)

(
H(t) +

∣∣∣∣∣
∫
Ω

uut dx

∣∣∣∣∣
1/(1−σ))

� C
[
H(t) + ‖u‖p

p + ‖ut‖2 + (g ◦ ∇u)(t)
]
, ∀t � 0. (2.34)
2
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Combining (2.31) and (2.34), we arrive at

L′(t) � Γ L1/(1−σ)(t), ∀t � 0, (2.35)

where Γ is a positive constant depending only on εγ and C. A simple integration of (2.35)
over (0, t) then yields

Lσ/(1−σ)(t) � 1

L−σ/(1−σ)(0) − Γ tσ/(1 − σ)
. (2.36)

Therefore, (2.36) shows that L(t) blows up in time

T ∗ � 1 − σ

Γ σ [L(0)]σ/(1−σ)
. (2.37)

This completes the proof. �
Remark 2.1. By following the steps of the proof of Theorem 2.5 closely, one can easily see
that the blow-up result holds even for m = 1 (damping caused only by viscosity). A small
modification is needed in the proof.

Remark 2.2. The third inequality in (1.5) shows that there is a strong relation between the
nonlinearity in the source and the damping caused by the viscosity. More precisely, the
larger p is, the closer

∫ ∞
0 g(s) ds can be to 1.

Remark 2.3. The estimate (2.37) shows that the larger L(0) is, the quicker the blow-up
takes place.
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