Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation

Salim A. Messaoudi
Mathematical Sciences Department, KFUPM, Dhahran 31261, Saudi Arabia
Received 17 December 2004
Available online 1 September 2005
Submitted by J. Lavery

Abstract

In this paper, we consider the nonlinear viscoelastic equation $$
u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u(\tau) d \tau+u_{t}\left|u_{t}\right|^{m-2}=u|u|^{p-2}
$$

with initial conditions and Dirichlet boundary conditions. For nonincreasing positive functions g and for $p>m$, we prove that there are solutions with positive initial energy that blow up in finite time. © 2005 Elsevier Inc. All rights reserved.

Keywords: Blow-up; Finite time; Hyperbolic; Nonlinear damping; Positive initial energy; Viscoelastic

1. Introduction

In this paper, we are concerned with the initial-boundary-value problem

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u+\int_{0}^{t} g(t-\tau) \Delta u(\tau) d \tau+u_{t}\left|u_{t}\right|^{m-2}=u|u|^{p-2}, \quad \text { in } \Omega \times(0, \infty), \tag{1.1}\\
u(x, t)=0, \quad x \in \partial \Omega, \quad t \geqslant 0, \\
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega
\end{array}\right.
$$

[^0]0022-247X/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.07.022
where Ω is a bounded domain of $\mathbb{R}^{n}(n \geqslant 1)$ with a smooth boundary $\partial \Omega, p>2, m \geqslant 1$, and g is a positive function. In the absence of the viscoelastic term (that is, if $g=0$), the equation in (1.1) reduces to the nonlinearly damped wave equation

$$
u_{t t}-\Delta u+u_{t}\left|u_{t}\right|^{m-2}=u|u|^{p-2} .
$$

This equation has been extensively studied by many mathematicians. It is well known that in the further absence of the damping mechanism $u_{t}\left|u_{t}\right|^{m-2}$, the source term $u|u|^{p-2}$ causes finite-time blow-up of solutions with negative initial energy (see [1,9]). In contrast, in the absence of the source term, the damping term assures global existence for arbitrary initial data (see $[8,10]$). The interaction between the damping and source terms was first considered by Levine [11,12] for linear damping ($m=2$). Levine showed that solutions with negative initial energy blow up in finite time. Georgiev and Todorova [7] extended Levine's result to nonlinear damping ($m>2$). In their work, the authors introduced a new method and determined relations between m and p for which there is global existence and other relations between m and p for which there is finite-time blow-up. Specifically, they showed that solutions with negative energy continue to exist globally if $m \geqslant p$ and blow up in finite time if $p>m$ and the initial energy is sufficiently negative. Messaoudi [15] extended the blow-up result of [7] to solutions with only negative initial energy. For related results, we refer the reader to Levine and Serrin [13], Levine and Ro Park [14], Vitillaro [19], Yang [20] and Messaoudi and Said-Houari [18].

In the presence of the viscoelastic term $(g \neq 0)$, Cavalcanti et al. [4] studied (1.1) for $m=2$ and a localized damping mechanism $a(x) u_{t}(a(x)$ null on a part of the domain). They obtained an exponential rate of decay by assuming that the kernel g is of exponential decay. This work was later improved by Cavalcanti et al. [6] and Berrimi and Messaoudi [2] using different methods. In related work, Cavalcanti et al. [3] studied solutions of

$$
\left|u_{t}\right|^{\rho} u_{t t}-\Delta u-\Delta u_{t t}+\int_{0}^{t} g(t-\tau) \Delta u(\tau) d \tau-\gamma \Delta u_{t}=0, \quad x \in \Omega, t>0
$$

for $\rho>0$ and proved a global existence result for $\gamma \geqslant 0$ and an exponential decay result for $\gamma>0$. This latter result was extended by Messaoudi and Tatar [16] to a situation where a source term is competing with the damping induced by $-\gamma \Delta u_{t}$ and the integral term. Also, Cavalcanti et al. [5] established an existence result and a decay result for viscoelastic problems with nonlinear boundary damping.

Concerning nonexistence, Messaoudi [17] showed that Todorova and Georgiev's results can be extended to (1.1) using the technique of [7] with a modification in the energy functional due to the different nature of the problems.

In this article, we improve our earlier result by adopting and modifying the method of [19]. In particular, we will show that there are solutions of (1.1) with positive initial energy that blow up in finite time.

We first state a local existence theorem that can be established by combining arguments of [4,7].

Theorem 1.1. Let $\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ be given. Let $m>1, p>2$ be such that

$$
\begin{equation*}
\max \{m, p\} \leqslant \frac{2(n-1)}{n-2}, \quad n \geqslant 3 . \tag{1.2}
\end{equation*}
$$

Let g be a C^{1} function satisfying

$$
\begin{equation*}
1-\int_{0}^{\infty} g(s) d s=l>0 \tag{1.3}
\end{equation*}
$$

Then problem (1.1) has a unique local solution

$$
\begin{equation*}
u \in C\left(\left[0, T_{m}\right) ; H_{0}^{1}(\Omega)\right), \quad u_{t} \in C\left(\left[0, T_{m}\right) ; L^{2}(\Omega)\right) \cap L^{m}\left(\Omega \times\left(0, T_{m}\right)\right) \tag{1.4}
\end{equation*}
$$

for some $T_{m}>0$.
Remark 1.1. Condition (1.2) is needed to establish the local existence result (see [4,7]). In fact under this condition, the nonlinearity in the source is Lipschitz from $H^{1}(\Omega)$ to $L^{2}(\Omega)$. Condition (1.3) is necessary to guarantee the hyperbolicity and well-posedness of system (1.1).

Next we state our main result. For this purpose, we assume that g satisfies, in addition to (1.3), the inequalities

$$
\begin{align*}
& g(s) \geqslant 0, \quad g^{\prime}(s) \leqslant 0 \\
& \int_{0}^{\infty} g(s) d s<\frac{(p / 2)-1}{(p / 2)-1+(1 / 2 p)} \tag{1.5}
\end{align*}
$$

Theorem 1.2. Let m and p be such that $m>1, p>\max \{2, m\}$ and (1.2) holds. Assume further that g satisfies (1.3), (1.5). Then any solution of (1.1) with initial data satisfying (2.7) below blows up in finite time.

2. Proof of the blow-up result

In this section we prove our main result (Theorem 1.2). For this purpose we let B be the best constant of the Sobolev embedding $\left[H^{1}\right] \hookrightarrow\left[L^{p}\right]$ and $B_{1}=B / l^{1 / 2}$. We set

$$
\begin{equation*}
\alpha=B_{1}^{-p /(p-2)}, \quad E_{1}=\left(\frac{1}{2}-\frac{1}{p}\right) \alpha^{2} \tag{2.1}
\end{equation*}
$$

We also define

$$
\begin{equation*}
E(t)=\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{1}{2}\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+\frac{1}{2}(g \circ \nabla u)(t)-\frac{1}{p}\|u\|_{p}^{p} \tag{2.2}
\end{equation*}
$$

where

$$
(g \circ v)(t)=\int_{0}^{t} g(t-\tau)\|v(t)-v(\tau)\|_{2}^{2} d \tau
$$

Lemma 2.1. Assume that (1.2), (1.3) and (1.5) hold. Let u be a solution of (1.1). Then $E(t)$ is nonincreasing, that is,

$$
\begin{equation*}
E^{\prime}(t) \leqslant 0 . \tag{2.3}
\end{equation*}
$$

Proof. By multiplying Eq. (1.1) by u_{t} and integrating over Ω we obtain

$$
\begin{align*}
\frac{d}{d t} & \left\{\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{2} \int_{\Omega}\left|u_{t}\right|^{2} d x-\frac{1}{p} \int_{\Omega}|u|^{p} d x\right\} \\
& -\int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u_{t}(t) \cdot \nabla u(\tau) d x d \tau=-\int_{\Omega}\left|u_{t}\right|^{m} d x \tag{2.4}
\end{align*}
$$

for any regular solution. This result remains valid for weak solutions by a simple density argument. For the last term on the left side of (2.4) we have

$$
\begin{aligned}
& \int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u_{t}(t) \cdot \nabla u(\tau) d x d \tau \\
&= \int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u_{t}(t) \cdot[\nabla u(\tau)-\nabla u(t)] d x d \tau \\
&+\int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u_{t}(t) \cdot \nabla u(t) d x d \tau \\
&=-\frac{1}{2} \int_{0}^{t} g(t-\tau) \frac{d}{d t} \int_{\Omega}|\nabla u(\tau)-\nabla u(t)|^{2} d x d \tau \\
& \quad+\int_{0}^{t} g(\tau)\left(\frac{d}{d t} \frac{1}{2} \int_{\Omega}|\nabla u(t)|^{2} d x\right) d \tau \\
&=-\frac{1}{2} \frac{d}{d t}\left[\int_{0}^{t} g(t-\tau) \int_{\Omega}|\nabla u(\tau)-\nabla u(t)|^{2} d x d \tau\right] \\
&+\frac{1}{2} \frac{d}{d t}\left[\int_{0}^{t} g(\tau) \int_{\Omega}|\nabla u(t)|^{2} d x d \tau\right]
\end{aligned}
$$

$$
\begin{equation*}
+\frac{1}{2} \int_{0}^{t} g^{\prime}(t-\tau) \int_{\Omega}|\nabla u(\tau)-\nabla u(t)|^{2} d x d \tau-\frac{1}{2} g(t) \int_{\Omega}|\nabla u(t)|^{2} d x d \tau \tag{2.5}
\end{equation*}
$$

Inserting (2.5) into (2.4), we obtain

$$
\begin{align*}
\frac{d}{d t}\{ & \left.\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{2} \int_{\Omega}\left|u_{t}\right|^{2} d x-\frac{1}{p} \int_{\Omega}|u|^{p} d x\right\} \\
& +\frac{1}{2} \frac{d}{d t}\left[\int_{0}^{t} g(t-\tau) \int_{\Omega}|\nabla u(\tau)-\nabla u(t)|^{2} d x d \tau\right] \\
& -\frac{1}{2} \frac{d}{d t}\left[\int_{0}^{t} g(\tau)\|\nabla u(t)\|^{2} d \tau\right] \\
= & -\int_{\Omega}\left|u_{t}\right|^{m} d x+\frac{1}{2} \int_{0}^{t} g^{\prime}(t-\tau) \int_{\Omega}|\nabla u(\tau)-\nabla u(t)|^{2} d x d \tau \\
& \quad-\frac{1}{2} g(t)\|\nabla u(t)\|_{2}^{2} \leqslant 0 . \tag{2.6}
\end{align*}
$$

This completes the proof.
Lemma 2.2. Assume that (1.2), (1.3) and (1.5) hold. Let u be a solution of (1.1) with initial data satisfying

$$
\begin{equation*}
E(0)<E_{1}, \quad\left\|\nabla u_{0}\right\|_{2}>B_{1}^{-p /(p-2)} \tag{2.7}
\end{equation*}
$$

Then there exists a constant $\beta>B_{1}^{-p /(p-2)}$ such that

$$
\begin{equation*}
\left[\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \circ \nabla u)(t)\right]^{1 / 2} \geqslant \beta, \quad \forall t \in[0, T), \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{p} \geqslant B_{1} \beta, \quad \forall t \in[0, T) . \tag{2.9}
\end{equation*}
$$

Proof. We first note that, by (2.2), we have

$$
\begin{aligned}
E(t) & \geqslant \frac{1}{2}\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+\frac{1}{2}(g \circ \nabla u)(t)-\frac{1}{p}\|u\|_{p}^{p} \\
& \geqslant \frac{1}{2}\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+\frac{1}{2}(g \circ \nabla u)(t)-\frac{1}{p} B_{1}^{p} l^{p}\|\nabla u\|_{2}^{p}
\end{aligned}
$$

$$
\begin{align*}
\geqslant & \frac{1}{2}\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+\frac{1}{2}(g \circ \nabla u)(t) \\
& -\frac{B_{1}^{p}}{p}\left[\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \circ \nabla u)(t)\right]^{p / 2} \\
= & \frac{1}{2} \zeta^{2}-\frac{B_{1}^{p}}{p} \zeta^{p}=h(\zeta) \tag{2.10}
\end{align*}
$$

where

$$
\zeta=\left[\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \circ \nabla u)(t)\right]^{1 / 2} .
$$

It is easy to verify that h is increasing for $0<\zeta<\alpha$, decreasing for $\zeta>\alpha, h(\zeta) \rightarrow-\infty$ as $\zeta \rightarrow+\infty$, and

$$
h(\alpha)=\left(\frac{1}{2}-\frac{1}{p}\right) B_{1}^{-2 p /(p-2)}=E_{1},
$$

where α is given in (2.1). Therefore, since $E(0)<E_{1}$, there exists $\beta>\alpha$ such that $h(\beta)=E(0)$. If we set $\alpha_{0}=\left\|\nabla u_{0}\right\|_{2}$ then, by (2.10), we have

$$
h\left(\alpha_{0}\right) \leqslant E(0)=h(\beta) .
$$

Therefore, $\alpha_{0}>\beta$.
To establish (2.8), we suppose by contradiction that

$$
\left[\left(1-\int_{0}^{t_{0}} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \circ \nabla u)\left(t_{0}\right)\right]^{1 / 2}<\beta
$$

for some $t_{0}>0$. By the continuity of

$$
\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \circ \nabla u)(t),
$$

we can choose t_{0} such that

$$
\left[\left(1-\int_{0}^{t_{0}} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \circ \nabla u)\left(t_{0}\right)\right]^{1 / 2}>\alpha
$$

Again, the use of (2.10) leads to

$$
E\left(t_{0}\right) \geqslant h\left(\left[\left(1-\int_{0}^{t_{0}} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \circ \nabla u)\left(t_{0}\right)\right]^{1 / 2}\right)>h(\beta)=E(0) .
$$

This is impossible since $E(t) \leqslant E(0)$, for all $t \in[0, T)$. Hence (2.8) is established.

To prove (2.9), we exploit (2.2). We have

$$
\frac{1}{2}\left[\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \circ \nabla u)(t)\right] \leqslant E(0)+\frac{1}{p}\|u\|_{p}^{p}
$$

Consequently, we obtain

$$
\begin{align*}
\frac{1}{p}\|u\|_{p}^{p} & \geqslant \frac{1}{2}\left[\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \circ \nabla u)(t)\right]-E(0) \\
& \geqslant \frac{1}{2} \beta^{2}-E(0) \\
& \geqslant \frac{1}{2} \beta^{2}-h(\beta)=\frac{B_{1}^{p}}{p} \beta^{p} . \tag{2.11}
\end{align*}
$$

The proof is complete.
Lemma 2.3. Suppose that (1.2) holds. Then there exists a positive constant $C>1$ such that

$$
\begin{equation*}
\|u\|_{p}^{s} \leqslant C\left(\|\nabla u\|_{2}^{2}+\|u\|_{p}^{p}\right) \tag{2.12}
\end{equation*}
$$

for any $u \in H_{0}^{1}(\Omega)$ and $2 \leqslant s \leqslant p$.
Proof. If $\|u\|_{p} \leqslant 1$ then $\|u\|_{p}^{s} \leqslant\|u\|_{p}^{2} \leqslant C\|\nabla u\|_{2}^{2}$ by Sobolev embedding.
If $\|u\|_{p}>1$ then $\|u\|_{p}^{s} \leqslant\|u\|_{p}^{p}$. Therefore, (2.12) follows. This completes the proof.

We set

$$
\begin{equation*}
H(t)=E_{1}-E(t) \tag{2.13}
\end{equation*}
$$

and use, throughout this paper, C to denote a generic positive constant depending on p and l only. As a result of (2.2), (2.12), and (2.13), we have

Lemma 2.4. Let u be solution of (1.1). Assume that (1.2) holds. Then we have

$$
\begin{equation*}
\|u\|_{p}^{s} \leqslant C\left(-H(t)-\left\|u_{t}\right\|_{2}^{2}-(g \circ \nabla u)(t)+\|u\|_{p}^{p}\right), \quad \forall t \in[0, T) \tag{2.14}
\end{equation*}
$$

for any $2 \leqslant s \leqslant p$.
Proof. Using (1.3) and (2.2), we note that

$$
\begin{align*}
\frac{1}{2}(1-l)\|\nabla u\|_{2}^{2} & \leqslant \frac{1}{2}\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2} \\
& \leqslant E(t)-\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}-\frac{1}{2}(g \circ \nabla u)(t)+\frac{1}{p}\|u\|_{p}^{p} \\
& \leqslant E_{1}-H(t)-\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}-\frac{1}{2}(g \circ \nabla u)(t)+\frac{1}{p}\|u\|_{p}^{p} \tag{2.15}
\end{align*}
$$

Exploiting (2.1) and (2.9), simple calculations yield

$$
\begin{equation*}
E_{1} \leqslant \frac{p-2}{2 p}\|u\|_{p}^{p} \tag{2.16}
\end{equation*}
$$

Finally, a combination of (2.15) and (2.16) gives the desired result.

Proof of Theorem 1.2. Using (2.2), (2.3) and (2.13), we obtain

$$
\begin{aligned}
0 & <H(0) \leqslant H(t) \\
& \leqslant E_{1}-\frac{1}{2}\left[\left\|u_{t}\right\|_{2}^{2}+\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \circ \nabla u)(t)\right]+\frac{1}{p}\|u\|_{p}^{p}
\end{aligned}
$$

and, from (2.8), we obtain

$$
\begin{align*}
E_{1} & -\frac{1}{2}\left[\left\|u_{t}\right\|_{2}^{2}+\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \circ \nabla u)(t)\right] \\
& <E_{1}-\frac{1}{2} \beta^{2}=-\frac{1}{p} \beta^{2}<0, \quad \forall t \geqslant 0 . \tag{2.17}
\end{align*}
$$

Hence,

$$
\begin{equation*}
0<H(0) \leqslant H(t) \leqslant \frac{1}{p}\|u\|_{p}^{p}, \quad \forall t \geqslant 0 . \tag{2.18}
\end{equation*}
$$

We define

$$
\begin{equation*}
L(t):=H^{1-\sigma}(t)+\varepsilon \int_{\Omega} u u_{t} d x \tag{2.19}
\end{equation*}
$$

for small ε to be chosen later and for

$$
\begin{equation*}
0<\sigma \leqslant \min \left\{\frac{(p-2)}{2 p}, \frac{(p-m)}{p(m-1)}\right\} . \tag{2.20}
\end{equation*}
$$

Taking a derivative of (2.19) and using Eq. (1.1), we obtain

$$
\begin{aligned}
L^{\prime}(t)= & (1-\sigma) H^{-\sigma}(t)\left\{\left\|u_{t}\right\|_{m}^{m}-\frac{1}{2}\left(g^{\prime} \circ \nabla u\right)(t)+\frac{1}{2} g(t)\|\nabla u\|_{2}^{2}\right\} \\
& +\varepsilon \int_{\Omega}\left[u_{t}^{2}-|\nabla u|^{2}\right] d x+\varepsilon \int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u(t) . \nabla u(\tau) d x d \tau \\
& +\varepsilon \int_{\Omega}|u|^{p} d x-\varepsilon \int_{\Omega}\left|u_{t}\right|^{m-2} u_{t} u d x \\
\geqslant & (1-\sigma) H^{-\sigma}(t)\left\|u_{t}\right\|_{m}^{m}+\varepsilon \int_{\Omega}\left[u_{t}^{2}-|\nabla u|^{2}\right] d x
\end{aligned}
$$

$$
\begin{align*}
& +\varepsilon \int_{\Omega}|u|^{p} d x-\varepsilon \int_{\Omega}\left|u_{t}\right|^{m-2} u_{t} u d x+\varepsilon \int_{0}^{t} g(t-\tau)\|\nabla u(t)\|_{2}^{2} d \tau \\
& +\varepsilon \int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u(t) \cdot[\nabla u(\tau)-\nabla u(t)] d x d \tau . \tag{2.21}
\end{align*}
$$

Using the Schwarz inequality, (2.21) takes on the form

$$
\begin{align*}
L^{\prime}(t) \geqslant & (1-\sigma) H^{-\sigma}(t)\left\|u_{t}\right\|_{m}^{m}+\varepsilon \int_{\Omega}\left[u_{t}^{2}-|\nabla u|^{2}\right] d x \\
& +\varepsilon \int_{\Omega}|u|^{p} d x-\varepsilon \int_{\Omega}\left|u_{t}\right|^{m-2} u_{t} u d x \\
& -\varepsilon \int_{0}^{t} g(t-\tau)\|\nabla u(t)\|_{2}\|\nabla u(\tau)-\nabla u(t)\|_{2} d \tau \\
& +\varepsilon \int_{0}^{t} g(t-\tau)\|\nabla u(t)\|_{2}^{2} d \tau \tag{2.22}
\end{align*}
$$

We now exploit Young's inequality to estimate the fifth term on the right side of (2.22) and use (2.2) to substitute for $\int_{\Omega}|u(x, t)|^{p} d x$. Hence, (2.22) becomes

$$
\begin{align*}
L^{\prime}(t) \geqslant & (1-\sigma) H^{-\sigma}(t)\left\|u_{t}\right\|_{m}^{m}+\varepsilon \int_{\Omega} u_{t}^{2} d x-\varepsilon\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2} \\
& +\varepsilon\left(p H(t)+\frac{p}{2}(g \circ \nabla u)(t)+\frac{p}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{p}{2}\left(1-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2}\right) \\
& -\varepsilon \int_{\Omega}\left|u_{t}\right|^{m-2} u_{t} u(x, t) d x-\varepsilon \tau(g \circ \nabla u)(t)-\frac{\varepsilon}{4 \tau} \int_{0}^{t} g(s) d s\|\nabla u(t)\|_{2}^{2} \\
\geqslant & (1-\sigma) H^{-\sigma}(t)\left\|u_{t}\right\|_{m}^{m}+\varepsilon\left(1+\frac{p}{2}\right) \int_{\Omega} u_{t}^{2} d x+\varepsilon p H(t) \\
& +\varepsilon\left(\frac{p}{2}-\tau\right)(g \circ \nabla u)(t)-\varepsilon \int_{\Omega}\left|u_{t}\right|^{m-2} u_{t} u d x \\
& +\varepsilon\left(\left(\frac{p}{2}-1\right)-\left(\frac{p}{2}-1+\frac{1}{4 \tau}\right) \int_{0}^{\infty} g(s) d s\right)\|\nabla u(t)\|_{2}^{2}, \tag{2.23}
\end{align*}
$$

for some number τ with $0<\tau<p / 2$. Recalling (1.5), the estimate (2.23) reduces to

$$
\begin{align*}
L^{\prime}(t) \geqslant & (1-\sigma) H^{-\sigma}(t)\left\|u_{t}\right\|_{m}^{m}+\varepsilon\left(1+\frac{p}{2}\right) \int_{\Omega} u_{t}^{2}(x, t) d x \\
& +\varepsilon p H(t)+\varepsilon a_{1}(g \circ \nabla u)(t)+\varepsilon a_{2}\|\nabla u(t)\|_{2}^{2}-\varepsilon \int_{\Omega}\left|u_{t}\right|^{m-2} u_{t} u d x \tag{2.24}
\end{align*}
$$

where

$$
a_{1}=\frac{p}{2}-\tau>0, \quad a_{2}=\left(\frac{p}{2}-1\right)-\left(\frac{p}{2}-1+\frac{1}{4 \tau}\right) \int_{0}^{\infty} g(s) d s>0 .
$$

To estimate the last term of (2.24), we again use Young's inequality

$$
X Y \leqslant \frac{\delta^{r}}{r} X^{r}+\frac{\delta^{-q}}{q} Y^{q}, \quad X, Y, \geqslant 0, \quad \forall \delta>0, \quad \frac{1}{r}+\frac{1}{q}=1
$$

with $r=m$ and $q=m /(m-1)$. So we have

$$
\int_{\Omega}\left|u_{t}\right|^{m-1}|u| d x \leqslant \frac{\delta^{m}}{m}\|u\|_{m}^{m}+\frac{m-1}{m} \delta^{-m /(m-1)}\left\|u_{t}\right\|_{m}^{m},
$$

which yields, by substitution in (2.24),

$$
\begin{align*}
L^{\prime}(t) \geqslant & {\left[(1-\sigma) H^{-\sigma}(t)-\frac{m-1}{m} \varepsilon \delta^{-m /(m-1)}\right]\left\|u_{t}\right\|_{m}^{m} } \\
& +\varepsilon\left(1+\frac{p}{2}\right) \int_{\Omega} u_{t}^{2}(x, t) d x+\varepsilon a_{1}(g \circ \nabla u)(t) \\
& +\varepsilon a_{2}\|\nabla u(t)\|_{2}^{2}+\varepsilon p H(t)-\varepsilon \frac{\delta^{m}}{m}\|u\|_{m}^{m}, \quad \forall \delta>0 . \tag{2.25}
\end{align*}
$$

Of course (2.25) remains valid even if δ is time-dependant since the integral is taken over the x variable. Therefore, taking δ so that $\delta^{-m /(m-1)}=k H^{-\sigma}(t)$ for large k to be specified later and substituting in (2.25), we arrive at

$$
\begin{align*}
L^{\prime}(t) \geqslant & {\left[(1-\sigma)-\frac{m-1}{m} \varepsilon k\right] H^{-\sigma}(t)\left\|u_{t}\right\|_{m}^{m}+\varepsilon\left(\frac{p}{2}+1\right) \int_{\Omega} u_{t}^{2}(x, t) d x } \\
& +\varepsilon a_{1}(g \circ \nabla u)(t)+\varepsilon a_{2}\|\nabla u(t)\|_{2}^{2} \\
& +\varepsilon\left[p H(t)-\frac{k^{1-m}}{m} H^{\sigma(m-1)}(t)\|u\|_{m}^{m}\right] . \tag{2.26}
\end{align*}
$$

Exploiting (2.18) and the inequality $\|u\|_{m}^{m} \leqslant C\|u\|_{p}^{m}$, we obtain

$$
H^{\sigma(m-1)}(t)\|u\|_{m}^{m} \leqslant\left(\frac{1}{p}\right)^{\sigma(m-1)} C\|u\|_{p}^{m+\sigma p(m-1)}
$$

Hence, (2.26) yields

$$
\begin{align*}
L^{\prime}(t) \geqslant & {\left[(1-\sigma)-\frac{m-1}{m} \varepsilon k\right] H^{-\sigma}(t)\left\|u_{t}\right\|_{m}^{m} } \\
& +\varepsilon\left(\frac{p}{2}+1\right) \int_{\Omega} u_{t}^{2}(x, t) d x+\varepsilon a_{1}(g \circ \nabla u)(t)+\varepsilon a_{2}\|\nabla u(t)\|_{2}^{2} \\
& +\varepsilon\left[p H(t)-\frac{k^{1-m}}{m}\left(\frac{1}{p}\right)^{\sigma(m-1)} C\|u\|_{p}^{m+\sigma p(m-1)}\right] \tag{2.27}
\end{align*}
$$

We now use (2.20) and Lemma 2.4 with $s=m+\sigma p(m-1) \leqslant p$ to deduce from (2.27) that

$$
\begin{align*}
L^{\prime}(t) \geqslant & {\left[(1-\sigma)-\frac{m-1}{m} \varepsilon k\right] H^{-\sigma}(t)\left\|u_{t}\right\|_{m}^{m} } \\
& +\varepsilon\left(\frac{p}{2}+1\right) \int_{\Omega} u_{t}^{2}(x, t) d x+\varepsilon a_{1}(g \circ \nabla u)(t)+\varepsilon a_{2}\|\nabla u(t)\|_{2}^{2} \\
& +\varepsilon\left[p H(t)-C_{1} k^{1-m}\left\{-H(t)-\left\|u_{t}\right\|_{2}^{2}-(g \circ \nabla u)(t)+\|u\|_{p}^{p}\right\}\right] \\
\geqslant & {\left[(1-\sigma)-\frac{m-1}{m} \varepsilon k\right] H^{-\sigma}(t)\left\|u_{t}\right\|_{m}^{m} } \\
& +\varepsilon\left(\frac{p}{2}+1+C_{1} k^{1-m}\right)\left\|u_{t}\right\|_{2}^{2}+\varepsilon\left(a_{1}+C_{1} k^{1-m}\right)(g \circ \nabla u)(t) \\
& +\varepsilon a_{2}\|\nabla u(t)\|_{2}^{2}+\varepsilon\left(p+C_{1} k^{1-m}\right) H(t)-\varepsilon C_{1} k^{1-m}\|u\|_{p}^{p} \tag{2.28}
\end{align*}
$$

where $C_{1}=(1 / p)^{\sigma(m-1)} C / m$. Noting that

$$
H(t) \geqslant \frac{1}{p}\|u\|_{p}^{p}-\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}-\frac{1}{2}\|\nabla u\|_{2}^{2}-\frac{1}{2}(g \circ \nabla u)(t)
$$

and writing $p=2 a_{3}+\left(p-2 a_{3}\right)$, where $a_{3}<\min \left\{a_{1}, a_{2}, p / 2\right\}$, the estimate (2.28) yields

$$
\begin{align*}
L^{\prime}(t) \geqslant & {\left[(1-\sigma)-\frac{m-1}{m} \varepsilon k\right] H^{-\sigma}(t)\left\|u_{t}\right\|_{m}^{m} } \\
& +\varepsilon\left(\frac{p}{2}+1+C_{1} k^{1-m}-a_{3}\right)\left\|u_{t}\right\|_{2}^{2}+\varepsilon\left(a_{1}+C_{1} k^{1-m}-a_{3}\right)(g \circ \nabla u)(t) \\
& +\varepsilon\left(a_{2}-a_{3}\right)\|\nabla u(t)\|_{2}^{2}+\varepsilon\left(p-2 a_{3}+C_{1} k^{1-m}\right) H(t) \\
& +\varepsilon\left(\frac{2 a_{3}}{p}-C_{1} k^{1-m}\right)\|u\|_{p}^{p} \tag{2.29}
\end{align*}
$$

At this point, we choose k large enough so that (2.29) becomes

$$
\begin{align*}
L^{\prime}(t) \geqslant & {\left[(1-\sigma)-\frac{m-1}{m} \varepsilon k\right] H^{-\sigma}(t)\left\|u_{t}\right\|_{m}^{m} } \\
& +\varepsilon \gamma\left[H(t)+\left\|u_{t}\right\|_{2}^{2}+\|u\|_{p}^{p}+(g \circ \nabla u)(t)\right] \tag{2.30}
\end{align*}
$$

where $\gamma>0$ is the minimum of the coefficients of $H(t),\left\|u_{t}\right\|_{2}^{2},\|u\|_{p}^{p}$, and $(g \circ \nabla u)(t)$ in (2.29). Once k is fixed (hence γ also), we pick ε small enough so that

$$
(1-\sigma)-\varepsilon k(m-1) / m \geqslant 0
$$

and

$$
L(0)=H^{1-\sigma}(0)+\varepsilon \int_{\Omega} u_{0} u_{1}(x) d x>0
$$

Therefore, (2.30) takes on the form

$$
\begin{equation*}
L^{\prime}(t) \geqslant \varepsilon \gamma\left[H(t)+\left\|u_{t}\right\|_{2}^{2}+\|u\|_{p}^{p}+(g \circ \nabla u)(t)\right] . \tag{2.31}
\end{equation*}
$$

Consequently, we have

$$
L(t) \geqslant L(0)>0, \quad \forall t \geqslant 0 .
$$

We now estimate

$$
\left|\int_{\Omega} u u_{t} d x\right| \leqslant\|u\|_{2}\left\|u_{t}\right\|_{2} \leqslant C\|u\|_{p}\left\|u_{t}\right\|_{2}
$$

which implies

$$
\left|\int_{\Omega} u u_{t} d x\right|^{1 /(1-\sigma)} \leqslant C\|u\|_{p}^{1 /(1-\sigma)}\left\|u_{t}\right\|_{2}^{1 /(1-\sigma)} .
$$

Again, Young's inequality gives us

$$
\begin{equation*}
\left|\int_{\Omega} u u_{t} d x\right|^{1 /(1-\sigma)} \leqslant C\left[\|u\|_{p}^{\mu /(1-\sigma)}+\left\|u_{t}\right\|_{2}^{\theta /(1-\sigma)}\right], \tag{2.32}
\end{equation*}
$$

for $1 / \mu+1 / \theta=1$. To obtain $\mu /(1-\sigma)=2 /(1-2 \sigma) \leqslant p$ by (2.20), we take $\theta=2(1-\sigma)$. Therefore, (2.32) becomes

$$
\left|\int_{\Omega} u u_{t}(x, t) d x\right|^{1 /(1-\sigma)} \leqslant C\left[\|u\|_{p}^{s}+\left\|u_{t}\right\|_{2}^{2}\right],
$$

where $s=2 /(1-2 \sigma) \leqslant p$. Using Lemma 2.4, we obtain

$$
\begin{equation*}
\left|\int_{\Omega} u u_{t} d x\right|^{1 /(1-\sigma)} \leqslant C\left[H(t)+\|u\|_{p}^{p}+\left\|u_{t}\right\|_{2}^{2}+(g \circ \nabla u)(t)\right], \quad \forall t \geqslant 0 . \tag{2.33}
\end{equation*}
$$

Therefore, we have

$$
\begin{align*}
L^{1 /(1-\sigma)}(t) & =\left(H^{1-\sigma}(t)+\varepsilon \int_{\Omega} u u_{t} d x\right)^{1 /(1-\sigma)} \\
& \leqslant 2^{1 /(1-\sigma)}\left(H(t)+\left|\int_{\Omega} u u_{t} d x\right|^{1 /(1-\sigma)}\right) \\
& \leqslant C\left[H(t)+\|u\|_{p}^{p}+\left\|u_{t}\right\|_{2}^{2}+(g \circ \nabla u)(t)\right], \quad \forall t \geqslant 0 . \tag{2.34}
\end{align*}
$$

Combining (2.31) and (2.34), we arrive at

$$
\begin{equation*}
L^{\prime}(t) \geqslant \Gamma L^{1 /(1-\sigma)}(t), \quad \forall t \geqslant 0 \tag{2.35}
\end{equation*}
$$

where Γ is a positive constant depending only on $\varepsilon \gamma$ and C. A simple integration of (2.35) over $(0, t)$ then yields

$$
\begin{equation*}
L^{\sigma /(1-\sigma)}(t) \geqslant \frac{1}{L^{-\sigma /(1-\sigma)}(0)-\Gamma t \sigma /(1-\sigma)} \tag{2.36}
\end{equation*}
$$

Therefore, (2.36) shows that $L(t)$ blows up in time

$$
\begin{equation*}
T^{*} \leqslant \frac{1-\sigma}{\Gamma \sigma[L(0)]^{\sigma /(1-\sigma)}} \tag{2.37}
\end{equation*}
$$

This completes the proof.
Remark 2.1. By following the steps of the proof of Theorem 2.5 closely, one can easily see that the blow-up result holds even for $m=1$ (damping caused only by viscosity). A small modification is needed in the proof.

Remark 2.2. The third inequality in (1.5) shows that there is a strong relation between the nonlinearity in the source and the damping caused by the viscosity. More precisely, the larger p is, the closer $\int_{0}^{\infty} g(s) d s$ can be to 1 .

Remark 2.3. The estimate (2.37) shows that the larger $L(0)$ is, the quicker the blow-up takes place.

Acknowledgment

The author expresses his sincere thanks to KFUPM for its support. This work has been funded by KFUPM under Project \# MS/VISCO ELASTIC/270.

References

[1] J. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolutions equations, Quart. J. Math. Oxford 28 (1977) 473-486.
[2] S. Berrimi, S.A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differential Equations 2004 (2004) 1-10.
[3] M.M. Cavalcanti, V.N. Domingos Cavalcanti, J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci. 24 (2001) 1043-1053.
[4] M.M. Cavalcanti, V.N. Domingos Cavalcanti, J.A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differential Equations 2002 (2002) 1-14.
[5] M.M. Cavalcanti, V.N. Domingos Cavalcanti, J.S. Prates Filho, J.A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Differential Integral Equations 14 (2001) 85-116.
[6] M.M. Cavalcanti, H.P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim. 42 (2003) 1310-1324.
[7] V. Georgiev, G. Todorova, Existence of solutions of the wave equation with nonlinear damping and source terms, J. Differential Equations 109 (1994) 295-308.
[8] A. Haraux, E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Ration. Mech. Anal. 150 (1988) 191-206.
[9] V.K. Kalantarov, O.A. Ladyzhenskaya, The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type, J. Soviet Math. 10 (1978) 53-70.
[10] M. Kopackova, Remarks on bounded solutions of a semilinear dissipative hyperbolic equation, Comment. Math. Univ. Carolin. 30 (1989) 713-719.
[11] H.A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $P u_{t t}=$ $A u+F(u)$, Trans. Amer. Math. Soc. 192 (1974) 1-21.
[12] H.A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal. 5 (1974) 138-146.
[13] H.A. Levine, J. Serrin, Global nonexistence theorems for quasilinear evolution equation with dissipation, Arch. Ration. Mech. Anal. 137 (1997) 341-361.
[14] H.A. Levine, S. Ro Park, Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, J. Math. Anal. Appl. 228 (1998) 181-205.
[15] S.A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachr. 231 (2001) 1-7.
[16] S.A. Messaoudi, N.-E. Tatar, Global existence and asymptotic behavior for a nonlinear viscoelastic problem, Math. Meth. Sci. Res. J. 7 (2003) 136-149.
[17] S.A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic equation, Math. Nachr. 260 (2003) 58-66.
[18] S.A. Messaoudi, B. Said-Houari, Blow up of solutions of a class of wave equations with nonlinear damping and source terms, Math. Methods Appl. Sci. 27 (2004) 1687-1696.
[19] E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal. 149 (1999) 155-182.
[20] Zhijian Yang, Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms, Math. Methods Appl. Sci. 25 (2002) 795-814.

[^0]: E-mail address: messaoud@kfupm.edu.sa.

