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Abstract

In this paper, we consider the nonlinear viscoelastic equation
t
Uy — Au + / gt — 1) Au(r)dt + uslug "2 = ulu|P~2
0

with initial conditions and Dirichlet boundary conditions. For nonincreasing positive functions g and
for p > m, we prove that there are solutions with positive initial energy that blow up in finite time.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are concerned with the initial-boundary-value problem

Uy — Au+ [y g(t — 1) Au(t)dt +uglu, "2 = uu|P~2, in £2 x (0, 00),
u(x,t)=0, xedf2, t>0, (1.1)
M(.X,O)ZMO(X), u,(x,()):m(x), XEQ~
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where £2 is a bounded domain of R" (n > 1) with a smooth boundary 082, p > 2, m > 1,
and g is a positive function. In the absence of the viscoelastic term (that is, if g = 0), the
equation in (1.1) reduces to the nonlinearly damped wave equation

Uer — Au+ g™ = ulu|P2

This equation has been extensively studied by many mathematicians. It is well known
that in the further absence of the damping mechanism u; |u;, =2, the source term u|u|? 2
causes finite-time blow-up of solutions with negative initial energy (see [1,9]). In contrast,
in the absence of the source term, the damping term assures global existence for arbitrary
initial data (see [8,10]). The interaction between the damping and source terms was first
considered by Levine [11,12] for linear damping (m = 2). Levine showed that solutions
with negative initial energy blow up in finite time. Georgiev and Todorova [7] extended
Levine’s result to nonlinear damping (m > 2). In their work, the authors introduced a new
method and determined relations between m and p for which there is global existence
and other relations between m and p for which there is finite-time blow-up. Specifically,
they showed that solutions with negative energy continue to exist globally if m > p and
blow up in finite time if p > m and the initial energy is sufficiently negative. Messaoudi
[15] extended the blow-up result of [7] to solutions with only negative initial energy. For
related results, we refer the reader to Levine and Serrin [13], Levine and Ro Park [14],
Vitillaro [19], Yang [20] and Messaoudi and Said-Houari [18].

In the presence of the viscoelastic term (g # 0), Cavalcanti et al. [4] studied (1.1) for
m =2 and a localized damping mechanism a(x)u; (a(x) null on a part of the domain).
They obtained an exponential rate of decay by assuming that the kernel g is of exponential
decay. This work was later improved by Cavalcanti et al. [6] and Berrimi and Messaoudi
[2] using different methods. In related work, Cavalcanti et al. [3] studied solutions of

t
|u,|pu,t—Au—Autt—i—/g(t—r)Au(t)dr—yAu;:O, xef, t>0,
0

for p > 0 and proved a global existence result for ¥ > 0 and an exponential decay result
for y > 0. This latter result was extended by Messaoudi and Tatar [16] to a situation where
a source term is competing with the damping induced by —y Au; and the integral term.
Also, Cavalcanti et al. [5] established an existence result and a decay result for viscoelastic
problems with nonlinear boundary damping.

Concerning nonexistence, Messaoudi [17] showed that Todorova and Georgiev’s results
can be extended to (1.1) using the technique of [7] with a modification in the energy func-
tional due to the different nature of the problems.

In this article, we improve our earlier result by adopting and modifying the method of
[19]. In particular, we will show that there are solutions of (1.1) with positive initial energy
that blow up in finite time.

We first state a local existence theorem that can be established by combining arguments
of [4,7].
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Theorem 1.1. Let (ug, u;) € HO1 (£2) x L%(£2) be given. Let m > 1, p > 2 be such that
2(n —1)

max{m, p} < 2 n>=3. (1.2)
Let g be a C' function satisfying
(0.¢]
l—/g(s)ds:l>0. (1.3)
0

Then problem (1.1) has a unique local solution
ue C([O, Th); HOI(SZ)), us € C([O, Th); LZ(.Q)) N L’"(.Q x (0, Tm)), (1.4)

for some T, > 0.

Remark 1.1. Condition (1.2) is needed to establish the local existence result (see [4,7]). In
fact under this condition, the nonlinearity in the source is Lipschitz from H'!(£2) to L2(£2).
Condition (1.3) is necessary to guarantee the hyperbolicity and well-posedness of system

(1.1).

Next we state our main result. For this purpose, we assume that g satisfies, in addition
to (1.3), the inequalities

g(s) >0, g'(s) <0,

o]

fg(s)ds < (p/2) ~ 1 (1.5)
0

(p/2)—1+1/2p)

Theorem 1.2. Let m and p be such that m > 1, p > max{2, m} and (1.2) holds. Assume
further that g satisfies (1.3), (1.5). Then any solution of (1.1) with initial data satisfying
(2.7) below blows up in finite time.

2. Proof of the blow-up result

In this section we prove our main result (Theorem 1.2). For this purpose we let B be the
best constant of the Sobolev embedding [H!]<> [LP] and B, = B/ll/z. We set

o 11
a=B""2D g =(=-=)e2 2.1)
! 2
p

We also define

15 1 ' , 1 IR
E(t)=§||uzllz+§ 1—/g(S)dS IIVMI|2+E(govbt)(t)—;llullp, 2.2)
0
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where

t
<gov>(r)=fg(r—r)nv(t)—v(r)Hidf-
0

Lemma 2.1. Assume that (1.2), (1.3) and (1.5) hold. Let u be a solution of (1.1). Then
E (t)is nonincreasing, that is,

E'(1) 0. (2.3)

Proof. By multiplying Eq. (1.1) by u, and integrating over §2 we obtain
d (1 1 1
— —/|Vu|2dx + —/|u,|2dx —~ —/|u|de
dt |2 2 p
2 2 2

t
—/g(t—t)/Vu,(t).Vu(r)dxdr:—/|u,|m dx, 2.4)
0 2 Q

for any regular solution. This result remains valid for weak solutions by a simple density
argument. For the last term on the left side of (2.4) we have

t

fg(f—f)/Vut(t).Vu(r)dxdr
Q

0
t

:/g(t—t)/Vu,(t).[Vu(t)—Vu(t)]dxdt
0 2
t

+/g(t—r)/Vu,(t).Vu(t)dxdr

0
1 t d 2
Z_E/g(t—r)—t/|Vu(t)—Vu(t)| dxdt
2
/ ( f’w(z)\ dx>
2

N =

di[ (t—t)/|Vu(t)—Vu(t)|2dxdt:|
2

%di[ g(t)/|Vu(t)|2dxdr:|
2
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13
—i—%fg’(t - r)f |Vu(r) — Vu(@)|* dxdr — %g(t)/ |Vu@)|* dxde. (2.5)
0 2 2
Inserting (2.5) into (2.4), we obtain

d(1 1 1
- —/|Vu|2dx+—/|u,|2dx——/|u|pdx
dt |2 2 p

2 2 2

+ li /g(f—f)/|Vu(f)—Vu(t)|2dxdr:|
2

-0
-t

fg(r)HW(z) ||2drj|

-0

(S]]
QU
<

N =
S

t

/u,| dx + = /g’(z—r)f\W(r)—wa)}zdxdr
2 2

- Eg(z)HVu(t) | <o. (2.6)

This completes the proof. O

Lemma 2.2. Assume that (1.2), (1.3) and (1.5) hold. Let u be a solution of (1.1) with initial
data satisfying

E©)<E;,  ||Vugla>B; "7, Q2.7)
Then there exists a constant B > Bl_p /P=2) Such that
t 1/2
[(1 - f g(s)ds) IVull3 + (g0 th)] >B, Viel0.T), (2.8)
0
and
lullp, =2 B18, Vrel0,T). (2.9)

Proof. We first note that, by (2.2), we have

t

Et>11 dVZIthp
0> —fg(s) s JIvuld + 50 ViO@) i
0
t

1 1 1
> 5(1 - /g(s)ds) IVuls + 5@ 0 Vio® — - B{17ul}

0
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t

1 1
> 5(1 - /g@)ds) IVulB+ 5 (g o Va0
0
P ! p/2
Bl 2
—7[<1—/g(s)ds> ||Vu||2+(gow>(r>]
0
)4
:%;Z_B—I;P:h(;), (2.10)
p

where

t 1/2
‘= |:<1—/g(s)ds> ||W||§+(gow><r)] :
0

It is easy to verify that 4 is increasing for 0 < ¢ < «, decreasing for { > o, h({) = —o0
as £ — 400, and

1 1 _ _
ha) = <_ — _)31 2p/(p=2) _ El
2 p

where « is given in (2.1). Therefore, since E(0) < Ej, there exists 8 > « such that
h(B) = E(0). If we set ag = || Vugl|2 then, by (2.10), we have

h(ep) < E(0) = h(B).

Therefore, ag > .
To establish (2.8), we suppose by contradiction that

) 1/2
[(1 - / g(s)ds) ||VM||%+(80VM)(t0)i| < B,

0
for some #y > 0. By the continuity of
1
(1 —fg(s)ds) IVl3 + (g 0 Vi) (1),
0

we can choose fy such that

Iy 1/2
|:<1 —/g(s)ds) ||Vu||%+(goVu)(to):| > .

0
Again, the use of (2.10) leads to

) 1/2
E(to)>h<[<1 —/g(s)ds) ||Vu||§+<gow>(ro)] )>h(ﬂ)=E(0).

0
This is impossible since E(¢) < E(0), for all ¢ € [0, T'). Hence (2.8) is established.
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To prove (2.9), we exploit (2.2). We have

t
1 1
5[(1—/3’@)015) IIVMII%Jr(gOvM)(I)} <E(0)+;||M||§-
0

Consequently, we obtain

1 p 1 t 2
;Ilullp>5 1—/g(S)dS Vully 4 (g o Vu)(t) | — E(0)
0

> l/32—%:((»
-
P

> B b= Lpr, @.11)
p

The proof is complete. O
Lemma 2.3. Suppose that (1.2) holds. Then there exists a positive constant C > 1 such
that

lullS, < C(IVull3 + llully) (2.12)
foranyu € Hol(.Q) and2 <s < p.

Proof. If ||u], <1 then ||u||‘;7 < ||u||?7 < C||Vu||% by Sobolev embedding.
If flull, > 1 then ||u||§, < ||u||§. Therefore, (2.12) follows. This completes the

proof. O
We set

H(t)=E—EQ@) (2.13)
and use, throughout this paper, C to denote a generic positive constant depending on p and
[ only. As aresult of (2.2), (2.12), and (2.13), we have
Lemma 2.4. Let u be solution of (1.1). Assume that (1.2) holds. Then we have

lull}, < C(=H (1) - lull3 = (g 0 V(@) + [lullp). Vi e[0,T), (2.14)
forany2 <s < p.
Proof. Using (1.3) and (2.2), we note that

1 5 1 t 2
S0 = DIvul} < 5(1 - [ stsrds) vl
0
SEW — 3l — 50 Vo) + - el
= 2 2 p 7

1 1 1
<E —H@) — E||uf||% —5(go Vi) + ;nunz. (2.15)
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Exploiting (2.1) and (2.9), simple calculations yield

p—2
E; < ?Ilullg- (2.16)

Finally, a combination of (2.15) and (2.16) gives the desired result. O

Proof of Theorem 1.2. Using (2.2), (2.3) and (2.13), we obtain

O0<HO)<H(®)

t
1 1
<E|— E[lluzllg + (1 - /g(S)dS> IVull3 + (g o Vu)(t)} + ;llullﬁ
0
and, from (2.8), we obtain
t

1
E) - §|:||btz||% + (1 - /g(s)ds> IVull3 + (g OWM}

0

1 2 1 2
<E —=p>=——8%2<0, Vi>0. (2.17)
2 p
Hence,
1
0<HO)SH® < —|ulb, Vi=0. (2.18)
p
We define
L(t) ::Hl_g(t)+8/uutdx, (2.19)
2

for small ¢ to be chosen later and for
(p—2) (p—m) }
2p Tpm—-1DJ

O0<o < min{ (2.20)

Taking a derivative of (2.19) and using Eq. (1.1), we obtain

1 1
L'ty=(1- G)H”(t){ e 17 — E(g’ o Vu)(r) + Eg(t)IIVMII%}
t

+e/[u$— |Vu|2]dx+e/g(t—r)/W(r).W(r)dxdr
2 0 2

+8/|u|pdx —8/|u,|m_2u,udx
2 2

> —o)H @) ||ul +s/ [u,2 - |Vu|2]dx
2
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t

+e/|u|"dx—e/|u,|'"—2u,udx+e/g(z—r)||W(z)||§dz

2 2 0
t
+8[g(t—r)/Vu(t).[Vu(r)—Vu(t)]dxdt. 2.21)
0 2

Using the Schwarz inequality, (2.21) takes on the form

L0z A=) H Olluly, +e / [u7 = IVul*]dx

2
+8/|u|pdx—8/|u,|m_2u,udx
2 2
t

- S/g(t —D)|Vu@®)|,|Vu(x) = Vu@)|,dr

0
t

+8/g(t—r)||Vu(t) |5 dx. (2.22)
0

We now exploit Young’s inequality to estimate the fifth term on the right side of (2.22) and
use (2.2) to substitute for f_Q |u(x, t)|” dx. Hence, (2.22) becomes

t

L/(t)>(1—a)H”(t)||ut||$+s/u,2dx—g(1—/g(s)ds) ||Vu(r)||§

2 0
t

+ s(pH(t) + 28 0 Vi) (1) + 23 + §<1 = /g(s)ds) Hw(r>||§)
0
t

—8/|u,|m_2u;u(x,t)dx—sr(goVu)(t)— :—T/g(s)ds”Vu(t)Hi
2 0

> —0)H @) |u ™ +e<1 + g) /ufdx +epH (1)

2

1 o0
+8((§ - 1) - <§ i E)/g(SMS) |Vu@)
0

for some number t with 0 < t < p/2. Recalling (1.5), the estimate (2.23) reduces to

+ 8<£ — 7:) (goVu)(t) — 8/ )™ 2uu dx
Q

2
e (2.23)
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L't) >0 —o)H @) |u " + s<1 + g) /uf(x, 1) dx
2

—i—epH(t)—l—sal(goVu)(t)—i—sazHVu(t)”;—8/|ut|m_2u,udx, (2.24)
2

where

o
1
a1=§—1>0, a2=(§—1>—<§—1+E)/g(s)ds>0.
0

To estimate the last term of (2.24), we again use Young’s inequality
8, 671 1 1
XY<—X+—VY9 X Y,20, V6>0, —+-—=1
r q roq

with r =m and g =m/(m — 1). So we have

§m m—1

/ g "Mk < Sl 4 Lm0,
m m

2

which yields, by substitution in (2.24),

m—1

L) > [(1 —o)H (1) — es—m/“"—“] ot |12

+e<1+ g)/utz(x,t)dx—i-sal(goVu)(t)
2

Sm
+ear | Vu@) |3+ epH(t) — e |ully, V8> 0. (2.25)

Of course (2.25) remains valid even if § is time-dependant since the integral is taken over
the x variable. Therefore, taking & so that § /("= —= k H=7 (¢) for large k to be specified
later and substituting in (2.25), we arrive at

-1
L' > [(1 —0) — n sk]H”(t)Ilutllﬁ + 8<§ + 1) / u?(x, 1) dx
m
2
2
+ eai(g o Vu) (1) + eax | Vu() |,
kl—m
+ e[pH(t) — —H”(m_l)(t)||u||%i|. (2.26)
m
Exploiting (2.18) and the inequality ||u||); < Cllu||";, we obtain

-1
o(m—1) m om=h m+op(m—1)
H Ol < > Cllullp .

Hence, (2.26) yields



912 S.A. Messaoudi / J. Math. Anal. Appl. 320 (2006) 902-915

m

—1
L't > [(1 —0) - — ek]H“’ () ue Iy

+s(§ + 1)/uf(x,z)dx+sa1(gow)(t)+ea2HVu(z)H§

kl_m 1 s m=1) m+op(m—1)
+8|:pH(t)— — (;) Cllul, ™ ] 2.27

We now use (2.20) and Lemma 2.4 with s =m + op(m — 1) < p to deduce from (2.27)
that

m —

1
L'(t) > [(1 —0)— <‘3/’<]1L1_"(t)||utIIZ’1
+ 8(% + 1) /ulz(x, t)dx +eai(goVu)(t) + eas || Vu(t) H;

+e[pH@) — Cik'" ™ {—H®) — llus|13 — (g o Vi) (1) + llul|H}]
m—

1
> [(1—0)— €k]H”(t)|qullﬁ

+ear | Vu(r) U§ +e(p+ Cik" ™ H (1) — eCrk" ™ |ullb, (2.28)
where C; = (1/p)° ™~V C/m. Noting that
HW > Sl — 23 = 21Vull3 - 2 (g 0 Vi) (1)
Zpltr 2T )

and writing p = 2a3 + (p — 2a3), where a3 < min{ay, az, p/2}, the estimate (2.28) yields

m —

1
L'(1) > [(1 —0)— 8k]H_G(I)||Mt||%

—i—s(% +14Cik'™" —a3>||u,||% —|—8(a1 + Crklm —a3)(g o Vu)(t)
+e(ar — az) | Vu(t) ||§ +e(p—2a3+Cik'"™™)H()

2
+s<$ —Clkl_"’)||u||§. (2.29)

At this point, we choose k large enough so that (2.29) becomes

m—1

L'() > [(1 —0) — ek]H”(t)llutlle

+ey[H@) + llue3 + lullh + (g o Vi) ()], (2.30)

where y > 0 is the minimum of the coefficients of H (¢), ||u,||%, ||u||Z, and (g o Vu)(¥)
in (2.29). Once £ is fixed (hence y also), we pick ¢ small enough so that

(1—0)—¢ck(m—1)/m=>=0
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and

L©O)=H'"(0) + 8/uou1(x)dx - 0.
2
Therefore, (2.30) takes on the form

L'(0) = ey [H@) + lur I3 + lullp + (g 0 Vi) )], 2:31)
Consequently, we have

Lit)>L0O)>0, Vt>0.
We now estimate

/uuzdx < luli2lluellz < Cllullpllug 2,
2

which implies

1/(=e) 1/(1—0) 1/(1—0)
/uu,dx < CllullY =, 1/,

2

Again, Young’s inequality gives us

’/uu,dx
Q

for1/u+1/60 =1.Toobtain u/(1—0) =2/(1—-20) < p by (2.20), we take 0 = 2(1 — o).
Therefore, (2.32) becomes

1/(1-0)
/uu,(x,r)dx < Cllull, + 2],
2

1 —
/(= 1/ (1—0) 6/(1-0)
<C[||M||p + lluelly ] (2.32)

where s =2/(1 —20) < p. Using Lemma 2.4, we obtain

1/(1-0)
/uu,dx

<SCIH@® + lully + 3+ (o Vi)®)], ¥r>0.  (233)
2

Therefore, we have

1/(1-0)
uutdx>

1/(1-0)
/uu, dx )

2
SC[H® + llullp + w5+ (g o Vu)(®)], Vi >0. (2.34)

LY== (Hl—f’(t) +s/
2

< 21/=) (H(t) +
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Combining (2.31) and (2.34), we arrive at
L'@®)>rL9=9w), vi>o, (2.35)

where I is a positive constant depending only on €y and C. A simple integration of (2.35)
over (0, ¢) then yields

1
Lo/ (1) > . 2.36
)2 1=/ 0) = Tro/(0 — o) (2.36)
Therefore, (2.36) shows that L(¢) blows up in time
" l—0o
"< ——— 2.37)

= To[L(0)]e/0-o)"
This completes the proof. O

Remark 2.1. By following the steps of the proof of Theorem 2.5 closely, one can easily see
that the blow-up result holds even for m = 1 (damping caused only by viscosity). A small
modification is needed in the proof.

Remark 2.2. The third inequality in (1.5) shows that there is a strong relation between the
nonlinearity in the source and the damping caused by the viscosity. More precisely, the
larger p is, the closer fooo g(s)ds canbeto 1.

Remark 2.3. The estimate (2.37) shows that the larger L(0) is, the quicker the blow-up
takes place.
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