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Abstract—we prove a blow up result for the equation wee(z,t) = a(z)p(w,(z, t))wzz(z, t), which
can be taken as a model for a transverse motion of a string with nonconstant density. © 1999 Elsevier
Science Ltd. All rights reserved. )

Keywords—wave equation, Smooth solutions, Singularities, Nonlinear response, Global solu-
tions. i

1. INTRODUCTION

The aim of this paper is to study the existence and nonexistence of classical solutions to the
one-dimensional nonlinear equation of the form

Wa(2,1) = a(@)p(ua (z, ) na z, 1), | W

where z € I (bounded or nonbounded interval), ¢ > 0. This equation can be regarded as a model.
for a transverse motion of a nonhomogeneous vibrating string (the density is a function of z).
By assuming that .

a(z)>0, Vzel, o) >0, V{ER, (2)

equation (1) is strictly hyperbolic.

Generally, classical solutions of problems associated with (1) develop singularities in finite
time, if the elastic response function ¢ is ‘genuinely’ nonlinear. Many authors studied ‘initial’
boundary value problems associated to (1), with a(z) = 1, and proved results concerning existence
and formation of singularities, Lax (1] and MacCamy and Mizel (2] showed that classical solutions
break down in finite time even for smooth and small initial data. In his work, Lax assumed that ¢’
does not change sign, whereas MacCamy and Mizel allowed ¢’ to change sign. They also showed,
under appropriate conditions on ¥, that intervals of z can exist, in which the solution must exist
for all time ¢ even though it breaks down for values z outside these intervals,
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In the dissipative case, the situation is different. For initial data small and smooth enough, the
effect of the damping term dominates the nonlinear elastic Tesponse and global solutions can be
obtained (see [3]). However, for large initial data the nonlinearity in the elastic response takes
over and classical solutions may develop singularities infinite time. These results have been
established by several authors (see [4-6)). ‘

It is interesting to mention that nonlinear hyperbolic systems, of which equatjon (1) withe =1
Is a special case, have attracted the attention of many authors, and severa] results concerning
global existence and blow up have been established (see [6-10)).

This work will be divided into two parts. In the first part we state, without proof, a local
existence theorem. In the second part, we state and Prove our main blow up result,

2. LOCAL EXISTENCE

In this section, we state a local existence theorem. The proof is omitted. It can be easily
established by either using a classical energy argument [11], or applying the nonlinear semigroup
theory presented in [12]. We set

u(z,t) := w,(z, t), v(z,t) := we(z,t)
and substitute in (1) to get the system

u(z, t) = a(I)W(U(I: t})v:(;r, t),
vz, t) = uz(z,t), zeR, t>o. - @)

We consider (3) together with the initia) data
u(z,0) = yp(z), v(z,0) = vp(z), z €R. (4)

In order to state the local existence result, we make the following hypotheses.
(H1)
ae WIFeR), e C(R).

(H2)
a(z) > a, w(€) > a, r,§€ER, a>q.

PROPOSITION. Assume that (H1), (H2) hold and Jet Ug, vg in H*(R) be &iven. Then the initja]
value problem (3),(4) has a unigue local solutijon (u,v) on a maxima] time interval [0,7) such
that '

v v € C([0,7); HA(R)) n C! (0.7); HY(R)) . (5)

REMARK 2.1. The Sobolev embedding theorem implies that u,v are C? functions on R x [0, 7).
Hence (u,v) is a classical solution.

REMARK 2.2, If @ is a C**! function and U0, vo € H*(R), then u(,t),v(t) € HER), k>1.

REMARK 2.3. A similar result holds if ¥ were depending on both u and v.

3. FORMATION OF SINGULARITIES

In this section, we state and prove our main result. We first start with establishing uniform
Upper bounds on the solution (u,v) in terms of the initial data,
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LEMMA. Assume (H1) and (H2) hold. Then for any € > 0, there exists § > 0 such that given
any ug,vo in H(R) satisfying

@) <& fun(z)l<s  vzeR, , (6
the solution (3) obeys
u(z,t) <e, [|v(zt)<e, « VzeR, te [0,T). (7

PROOF. We define the quantities

r(z,t) = uzt) —== + A(v(z,1)),

va(z) ®
u(z, t)
1t) 1= —=== — A(v(z, 1)),
s(z,t) N (v(z,1))
and the differential operators
P 1 _{')_ _ 9
¢ p(z,t) 8t oz’
1 8 3 : (9)
o=t 0,90
p(z,t) 8t * Oz
where R
AR = [ Vo@d,  otet) = VaEROE D). (10)
Straightforward coinputations yield
- + a’
Oy r=2; s=—za(r+s). (11)
We then define the nonegative functions
R(t) := max Ir(z,t), S@):= ma.xls(z,t)[, tel0,7). (12)

These maxima are attained since r and s die at infinity; consequently for each ¢ € [0,T), there
exist Z, £ € R such that

R@E) =Ir(z,0)l,  S(t)=|s(z,¢). (13)
Also by the definitions of R and S, we have

R(t~h) > |r (& + hp(£,8),t - b)),

S(t=h)2|s(E—hp(z,6),t—h), O0<h<t (14)
We subtract (14) from (13), divide by h, and let h go to zero to arrive at
< 1a'(@)]
R(t) 4¢~—v @@t(Mm+SM) -

80 < T /N A + S0,

for almost every t € [0,T). By setting

M .= }?laéx w(€) (¢ given in the lemma)
<e
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and using (H1), (H2), and (15), we get
2 (RU) +5(t) SKMRO +S®), k>0,
for almost every t € [0, T), provided that - ' ' |
ju(z,t)| < e.
Therefore, (16) and Gronwall’s inequality yield

(R(t) + 5(t)) < (R(0) + 5(0))e*MT,

for any t € [0,T), provided that (12) holds. We then choose § > 0 small enough so that

(R(0) + S(0))ekMT <€
20 2

Thus, we conclude that if v satisfies (12), it satisfies, in fact,
€
ju(z, 1) < 5,

by (8), (10), (18), and (H2). Therefore, by continuity, (7) is established.

(16)

(17)

(18)

(19)

REMARK 3.1. We can obtain the same result if ¢(€) > a > 0 holds only on a neighborhood of

2€ro0.

THEOREM. Assume that (H1) and (H2) hold. Assume further that

a” € L*(R), ©'(0) < 0.

(20)

Then we can choose initial data ug, vo in H*(R) such that the solution (3) blows up in finite time.

PROOF. We take a t-partial derivative of (11) to get

/

- 1 2 - a’
Orre= “501/ =2 UtTe — Za(n + 8;).

By using
, 2 _
Uy = £(Tt + 8;), Yy = u
2 2./
and substituting in (21), we obtain :
172, 1/2, ¢ '
- _ 8y g a7y a
G = 4o e + iy TeSt '4‘&'(7'\‘. + 8¢).

We then set
W(z,t) := v(z,t)re(z, t), (z,t) := ela(=)/4)e(v(z.t))

and substitute in (23) to arrive at

W = _al/Z(P, 2...a._1/_2_¢’_a',w_ﬁl_ _ a'y
¢ T 4y 16 da P

To handle the last term in (25), we first note that

8§ = —al/chat'v

1)

(22)

(23)

(29)

(25)
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and thén introduce the function

v{x,t) ) ‘
f(z, )= /0 e'a(z)/4)p(€) o (€) de.

Direct calculations yield . ) .
_ay _a la=1/2y
- - 1 - v
-1 8: (a'a=22f) - = a'2q-1/2 /0 @@/ 2(¢) g (26)

Y on -2 _ 1 0 _32)
P! (a a 2a Q .

By substituting in (25), we have

1/24,
a
W=

! =~1/2
W’-:—.Axvv+zs'+a-(‘“'4 f), ) (27)

where A and B are functions depending continuously and only on a,a’,a”, and v. By setting

f,—~1/2 _,l
L] F=w-22 f . I
and substituting in (27), we get
a1/2(pl a'al’? \? ad'a-1/2
6 F =~ F .
A T ( +— f) +<F+ 1 f)+3 (28)

By applying Young's inequality to the first and the second term, we obtain

i, _ .
O F> -~ F2 + C(z,t) (29)

where C is a function depending on f, f2,‘ @, ¥, v, 6, a’, and a”. We choose § > 0 50 small

that :
—a*2¢/(v(z, t)) )
* (5 ez, 1)) 27
and »
max |C(z,1)| < C. | (30)
Therefore, (29) yields
& F>pF?-cC. (31)

By choosing initial data small in L*® norm so that (30) is satisfied with derivatives large enough,
the quadratic term in (31) blows up in finite time.

REMARK 3.2. The same result can be obtained if ¢'(0) < 0 is replaced by ¢’(0) > 0.

REMARK 3.3. The calculations show that the larger the denvatlv& are, the shorter the time of
existence of the solution is.



