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ABSTRACT

In this paper we consider a multi-dimensional nonlinear initial-boundary value problem 
related to the Boussinesq equation and prove a global nonexistence result. This work 
improves an earlier one by Gmira and Guedda [1].
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الخلاصــة

سوف نناقش في هذا البحث مسألة ابتدائية حدية غير خطية  متعددة الأبعاد  تـتعلق بمعادلة بوسيناسك ، 
ونثبت  نتيجة  حدوث شذوذ في الحلول الضعيفة. وسوف نطور في هذا البحث أعمالاً سابقة تـتعلق بهذ4 

المعادلة سواء في البعد الواحد أو الأبعاد المتعددة.
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A GLOBAL NONEXISTENCE RESULT FOR THE NONLINEARLY DAMPED
MULTI-DIMENSIONAL BOUSSINESQ EQUATION

1. INTRODUCTION

The Boussinesq equation

utt + αuxxxx − uxx = β
(
u2

)
xx

, x ∈ R, t > 0 (1.1)

where α, β > 0, was first derived by Boussinesq [2] in 1872 and since then very many mathematicians have
studied it and used it to model real world problems such as the propagation of long waves on shallow water and
oscillations of nonlinear elastic beams. Varlamov [3] considered the damped equation of the form

utt − 2butxx + αuxxxx − uxx = β
(
u2

)
xx

, x ∈ (0, π), t > 0, (1.2)

for small initial data and constructed, for the case α > b2, the solution in the form of a Fourier series. He
also showed that, on [0, T ), T < ∞, the solution of (1.1) is obtained by letting b go to zero. In 2001, Varlamov
[4] improved his earlier result by considering the three-dimensional version of (1.2) in the unit ball and used
the eigenfunctions of the Laplace operator to construct solutions. He examined the problem, for homogeneous
boundary conditions and small initial data, and obtained global mild solutions in appropriate Sobolev spaces. He
also addressed the issue of the uniqueness and the long-time behavior of the solution. Lai and Wu [5] considered
the following more generalized equation

utt − auttxx − 2butxx + cuxxxx − uxx = −p2u + β
(
u2

)
xx

, x ∈ R, t > 0, (1.3)

where a, b, c > 0, p �= 0, and β is a real number. They used the Fourier transform and the perturbation theory
to establish the well-posedness of global solutions to small initial data for the Cauchy problem. The same
techniques have been applied by Lai et al. [6] to establish a global existence and an exponential decay results
for an initial-boundary value problem related to (1.3).

For the nonexistence, we mention the result of Levine and Sleeman [7], in which the authors considered an
initial boundary value problem related to the eqaution

utt = 3uxxxx + uxx − 12
(
u2

)
xx

(1.4)

and showed that, under appropriate conditions for the initial data, no positive weak or classical solution can
exist for all time. Recently Bayrack and Can [8] studied the behavior of a one-dimensional riser vibrating due
to effects of waves and current involving linear dissipation. Precisely, they looked into the following problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt + αut + 2βuxxxx − 2 [(ax + b) ux]x + β
3

(
u3

x

)
xxx

− [
(ax + b) u3

x

]
x
− β

(
u2

xxux

)
x

= f (u) , (x, t) ∈ (0, 1) × (0, T )

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ (0, 1)

u (0, t) = u (1, t) = 0, uxx (0, t) = uxx (1, t) = 0, t ∈ (0, T ) .

(1.5)
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and proved that, under suitable conditions on f and the initial data, all solutions of (1.5) blow up in finite time
in the L2 space. To establish their result, the authors used the standard concavity method due to [9]. Gmira and
Guedda [1] extended the result of [8] to the multi-dimensional version of the problem (1.5). So, they considered

⎧⎪⎪⎨
⎪⎪⎩

utt + ρ (x)ut + β�2u − div (g (x)∇u) + Γ�
(
|∇u|2 �u

)
−div

(
h (x) |∇u|p−2 ∇u

)
− Γdiv

(
(�u)2 ∇u

)
= f (u)

(1.6)

and established a nonexistence result, under suitable conditions on u0, u1, f, by using the “modified” concavity
method introduced in [10]. The use of the latter method by Gmira and Guedda allowed them to remove the
condition of cooperative initial data

(∫
Ω

u0u1dx > 0
)

imposed by Bayrack and Can [8]. However, some conditions
can be further weakened.

In this paper we are concerned with the following nonlinearly damped problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt + ρ (x) |ut|m−2
ut + β�2u − div (g (x)∇u) + Γ�

(
|∇u|2 �u

)

−div
(
h (x) |∇u|p−2 ∇u

)
− Γdiv

(
(�u)2 ∇u

)
= |u|l−2

u, x ∈ Ω, t > 0

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

u (x, t) = ∂u
∂η (x, t) = 0, x ∈ ∂Ω, t > 0,

(1.7)

where Ω ⊂ R
n, n ≥ 1, is a bounded domain with sufficiently smooth boundary, η is the unit outer normal

on ∂Ω, ρ ≥ 0, is a smooth bounded function given on Ω, g, h ∈ C1
(
Ω, R+

)
, p, l, m ≥ 1, and β and Γ are

nonnegative constants. In addition to allowing the damping to be nonlinear, we establish a blow up result under
weaker conditions, than those required in [1], on the initial data as well as the constants p, l, and m. To achieve
our goal we exploit the method of Georgiev and Todorova [11] (see also [12]) . This work is divided into three
sections. In Section two we state and demonstrate our main result. In Section three, the linear damping (m = 2)
case is treated.

2. MAIN RESULT

In order to state and prove our result, we introduce the energy functional

E (t) =
1
2

∫
Ω

u2
t dx +

β

2

∫
Ω

(�u)2 dx +
1
2

∫
Ω

g |∇u|2 dx (2.1)

+
Γ
2

∫
Ω

(�u)2 |∇u|2 dx +
1
p

∫
Ω

h |∇u|p − 1
l

∫
Ω

|u|l dx.

Theorem 1. Assume that m, p ≥ 1, and l > max {4,m, p}. Assume further that

E (0) < 0. (2.2)

Then any classical solution of (1.7) blows up in finite time.
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Remark 2.1. In [1], the authors require that l > 2(4 + γ) > p, γ > 0, which is obviously stronger than our
requirements on both l and p. (See (2.4) of [1]). Moreover in [1], l may depend on ||ρ||∞ since γ does (See (2.6)
of [1] again).

Remark 2.2. The result can be established for weak solution by means of density.

Proof. A multiplication of Equation (1.7) by ut and integration over Ω yields

E
′
(t) = −

∫
Ω

ρ(x) |ut|m dx ≤ 0. (2.3)

By setting H (t) = −E (t), we get from (2.1) and (2.2),

0 < H (0) ≤ H (t) ≤ 1
l

∫
Ω

|u|l dx, ∀ t ≥ 0. (2.4)

We then define

L (t) = H1−σ (t) + ε

∫
Ω

uutdx (2.5)

for ε small to be chosen later and

0 < σ ≤ min
(

l − m

l(m − 1)
,

l − 2
2l

)
. (2.6)

By taking a derivative of (2.5) we obtain

L
′
(t) = (1 − σ) H−σ (t)H

′
(t) + ε

∫
Ω

u2
t dx + ε

∫
Ω

uuttdx. (2.7)

By using (1.7), Equation (2.7) becomes

L
′
(t) = (1 − σ)H−σ (t)H

′
(t) + ε

∫
Ω

u2
t dx (2.8)

− βε

∫
Ω

(�u)2 dx − ε

∫
Ω

ρ |ut|m−2
utudx

− ε

∫
Ω

g |∇u|2 dx − 2Γε

∫
Ω

|∇u|2 (�u)2 dx

− ε

∫
Ω

h |∇u|p dx + ε

∫
Ω

|u|l dx.

We then exploit Young’s inequality to get
∫

Ω

ρ |ut|m−1
udx ≤ λm

m

∫
Ω

|u|m dx +
m − 1

m
λ−m/(m−1)

∫
Ω

∣∣∣ρ1/(m−1)ut

∣∣∣m dx

≤ λm

m

∫
Ω

|u|m dx + b
m − 1

m
λ−m/(m−1)

∫
Ω

ρ |ut|m dx.

where b = ‖ρ‖1/(m−1)
∞ . This yields, by substitution in (2.8),
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L
′
(t) ≥ (1 − σ)H−σ (t)H

′
(t) + ε

∫
Ω

u2
t dx

− βε

∫
Ω

(�u)2 dx − ε
λm

m

∫
Ω

|u|m dx

− εb
m − 1

m
λ−m/(m−1)

∫
Ω

ρ |ut|m dx (2.9)

− ε

∫
Ω

g |∇u|2 dx − 2Γε

∫
Ω

|∇u|2 (�u)2 dx

− ε

∫
Ω

h |∇u|p dx + ε

∫
Ω

|u|l dx.

Therefore, choosing λ so that

λ−m/(m−1) = MH−σ (t) ,

for large M to be specified later, and substituting in (2.9), we arrive at

L
′
(t) ≥ (1 − σ)H−σ (t)H

′
(t) + ε

∫
Ω

u2
t dx

− βε

∫
Ω

(�u)2 dx − ε
M−(m−1)

m
Hσ(m−1) (t)

∫
Ω

|u|m dx

− εb
m − 1

m
MH−σ (t)H

′
(t) − ε

∫
Ω

g |∇u|2 dx

− 2Γε

∫
Ω

|∇u|2 (�u)2 dx − ε

∫
Ω

h |∇u|p dx + ε

∫
Ω

|u|l dx.

That is

L
′
(t) ≥

[
(1 − σ) − εb

m − 1
m

M

]
H−σ (t) H

′
(t) + ε

∫
Ω

u2
t dx

− βε

∫
Ω

(�u)2 dx − ε
M−(m−1)

m
Hσ(m−1) (t)

∫
Ω

|u|m dx

− ε

∫
Ω

g |∇u|2 dx − 2Γε

∫
Ω

|∇u|2 (�u)2 dx (2.10)

− ε

∫
Ω

h |∇u|p dx + ε

∫
Ω

|u|l dx.
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We then use the embedding Ll (Ω) ↪→ Lm (Ω) to get

∫
Ω

|u|m dx ≤ C

(∫
Ω

|u|l dx

)m/l

,

where C is a positive constant depending on Ω only. So we have, from (2.4) ,

Hσ(m−1) (t)
∫

Ω

|u|m dx ≤ C

l

(∫
Ω

|u|l dx

)σ(m−1)+(m/l)

.

By using (2.6) and the inequality

zν ≤ z + 1 ≤
(

1 +
1
a

)
(z + a) , ∀z > 0, 0 < ν ≤ 1, a ≥ 0, (2.11)

we have the following

(∫
Ω

|u|l dx

)σ(m−1)+(m/l)

≤ d

(∫
Ω

|u|l dx + H (0)
)

(2.12)

≤ d

(∫
Ω

|u|l dx + H (t)
)

, ∀ t ≥ 0,

where d = 1 + 1/H (0) . Inserting the estimate (2.12) into (2.10) we get

L
′
(t) ≥

[
(1 − σ) − εb

m − 1
m

M

]
H−σ (t) H

′
(t) + ε

∫
Ω

u2
t dx

− βε

∫
Ω

(�u)2 dx − εCd
M−(m−1)

lm

(∫
Ω

|u|l dx + H (t)
)

− ε

∫
Ω

g |∇u|2 dx − 2Γε

∫
Ω

|∇u|2 (�u)2 dx

− ε

∫
Ω

h |∇u|p dx + ε

∫
Ω

|u|l dx.

By using (2.1) and H (t) = −E (t), we can write, for some positive constant K,

L
′
(t) ≥

[
(1 − σ) − εb

m − 1
m

M

]
H−σ (t) H

′
(t) +

(
K

2
+ ε

) ∫
Ω

u2
t dx (2.13)

+ β

(
K

2
− ε

) ∫
Ω

(�u)2 dx +
(

K − εCd
M−(m−1)

lm

)
H (t)

+
(

ε − K

l
− εCd

M−(m−1)

lm

) ∫
Ω

|u|l dx +
(

K

2
− ε

) ∫
Ω

g |∇u|2 dx

+ Γ
(

K

2
− 2ε

) ∫
Ω

|∇u|2 (�u)2 dx +
(

K

p
− ε

) ∫
Ω

h |∇u|p dx.
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At this point we choose K = rε, for r = max{p, 4}; hence (2.13) becomes

L
′
(t) ≥

[
(1 − σ) − εb

m − 1
m

M

]
H−σ (t) H

′
(t) + ε

(r

2
+ 1

)∫
Ω

u2
t dx

+ βε
(r

2
− 1

) ∫
Ω

(�u)2 dx + ε

(
r − Cd

M−(m−1)

lm

)
H (t) (2.14)

+ ε

(
1 − r

l
− Cd

M−(m−1)

lm

) ∫
Ω

|u|l dx + ε
(r

2
− 1

) ∫
Ω

g |∇u|2 dx

+ Γε
(r

2
− 2

) ∫
Ω

|∇u|2 (�u)2 dx + ε

(
r

p
− 1

) ∫
Ω

h |∇u|p dx

≥
[
(1 − σ) − εb

m − 1
m

M

]
H−σ (t) H

′
(t) + ε

(r

2
+ 1

)∫
Ω

u2
t dx

+ ε

(
r − Cd

M−(m−1)

lm

)
H (t) + ε

(
1 − r

l
− Cd

M−(m−1)

lm

) ∫
Ω

|u|l dx.

We then choose M large enough so that

a1 = r − Cd
M−(m−1)

lm
> 0, a2 = 1 − r

l
− Cd

M−(m−1)

lm
> 0.

Therefore (2.14) yields

L
′
(t) ≥

(
(1 − σ) − εb

m − 1
m

M

)
H−σ (t) H

′
(t) (2.15)

+ γε

[
H (t) +

∫
Ω

u2
t dx +

∫
Ω

|u|l dx

]
,

where

γ = max{a1, a2,
r

2
+ 1}.

Once M is fixed (hence γ), we choose ε sufficiently small that

(1 − σ) − εb
m − 1

m
M ≥ 0

and

L (0) = H1−σ (0) + ε

∫
Ω

u0u1dx > 0.
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Therefore we have, from (2.15),

L
′
(t) ≥ γε

[
H (t) +

∫
Ω

u2
t dx +

∫
Ω

|u|l dx

]
, (2.16)

and

L (t) ≥ L (0) > 0, ∀ t ≥ 0.

Next, it is clear that

L
1

1−σ (t) ≤ 2
1

1−σ

{
H (t) + ε

1
1−σ

(∫
Ω

utudx

) 1
1−σ

}
.

By the Cauchy–Schwarz inequality and the embedding of the Lp (Ω) spaces we have

∣∣∣∣
∫

Ω

utudx

∣∣∣∣ ≤
(∫

Ω

u2dx

)1/2 (∫
Ω

u2
t dx

)1/2

≤ C

(∫
Ω

|u|l dx

)1/l (∫
Ω

u2
t dx

)1/2

,

which implies

∣∣∣∣
∫

Ω

utudx

∣∣∣∣
1

1−σ

≤ C

(∫
Ω

|u|l dx

) 1
(1−σ)l

(∫
Ω

u2
t dx

) 1
2(1−σ)

.

Also Young’s inequality gives

∣∣∣∣
∫

Ω

utudx

∣∣∣∣
1

1−σ

≤ C

[(∫
Ω

|u|l dx

) µ
(1−σ)l

+
(∫

Ω

u2
t dx

) θ
2(1−σ)

]

for 1/µ + 1/θ = 1. We take θ = 2 (1 − σ) , (hence µ = 2(1−σ)
(1−2σ) ) to get

∣∣∣∣
∫

Ω

utudx

∣∣∣∣
1

1−σ

≤ C

[(∫
Ω

|u|l dx

) 2
(1−2σ)l

+
∫

Ω

u2
t dx

]
.

Again by using (2.6) and (2.11) we deduce, as in (2.12),

(∫
Ω

|u|l dx

) 2
(1−2σ)l

≤ d

(∫
Ω

|u|l dx + H (t)
)

.

Therefore,

∣∣∣∣
∫

Ω

utudx

∣∣∣∣
1

1−σ

≤ C

[
H (t) +

∫
Ω

|u|l dx +
∫

Ω

u2
t dx

]
, ∀t ≥ 0;
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consequently

L
1

1−σ (t) ≤ C1

[
H (t) +

∫
Ω

|u|l dx +
∫

Ω

u2
t dx

]
(2.17)

where C1 is positive constant. A combination of (2.16) and (2.17) , thus, yields

L
′
(t) ≥ ξL

1
1−σ (t) , ∀t ≥ 0, (2.18)

where ξ = γε/C1. Integration of (2.18) over (0, t) gives

L
σ

1−σ (t) ≥ 1

L
−σ
1−σ (0) − ξσ

(1−σ) t
;

hence L (t) blow up in a time

T ∗ ≤ 1 − σ

ξσL
σ

1−σ (0)
. (2.19)

This completes the proof. �

3. THE LINEAR DAMPING CASE

The next result improves the one given in Remark 3.3 of [1]. In fact we will show that the blow up for solutions
of (1.7), when the damping is linear (m = 2), takes places if

∫
Ω

u0u1dx > − 1
2

∫
Ω

ρu2
0dx instead of

∫
Ω

u0u1dx > 0.

Theorem 2. Assume that p ≥ 1 and l > max {4, p}. Assume further that

E (0) ≤ 0,

∫
Ω

u0u1dx > −1
2

∫
Ω

ρu2
0dx. (3.1)

Then the solution of (1.7), for m = 2, blows up in finite time.

Proof. Let

L (t) =
∫

Ω

utudx +
1
2

∫
Ω

ρ (x)u2dx. (3.2)

By taking a derivative of (3.2) and using (1.7) we obtain

L
′
(t) =

∫
Ω

u2
t dx − β

∫
Ω

(�u)2 dx

−
∫

Ω

g |∇u|2 dx − 2Γ
∫

Ω

|∇u|2 (�u)2 dx

−
∫

Ω

h |∇u|p dx +
∫

Ω

|u|l dx. (3.3)
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For some positive constant K, (3.3) takes the form

L
′
(t) =

(
K

2
+ 1

) ∫
Ω

u2
t dx + β

(
K

2
− 1

) ∫
Ω

(�u)2 dx + KH (t)

+
(

K

2
− 1

) ∫
Ω

g |∇u|2 dx + Γ
(

K

2
− 2

) ∫
Ω

|∇u|2 (�u)2 dx

+
(

K

p
− 1

) ∫
Ω

h |∇u|p dx +
(

1 − K

l

) ∫
Ω

|u|l dx. (3.4)

We choose K so that l > K > max {4, p}, then we have from (3.4),

L
′
(t) ≥

(
1 − K

l

)[∫
Ω

(�u)2 dx +
∫

Ω

u2
t dx +

∫
Ω

|u|l dx + H (t)
]

. (3.5)

Therefore

L (t) ≥ L (0) =
∫

Ω

u0u1dx +
1
2

∫
Ω

ρu2
0dx > 0, ∀ t ≥ 0.

Next, it is clear that

L
2l

l+2 (t) ≤ C

{(∫
Ω

utudx

) 2l
l+2

+
(∫

Ω

ρu2dx

) 2l
l+2

}
. (3.6)

By the Cauchy–Schwarz inequality we have

∣∣∣∣
∫

Ω

utudx

∣∣∣∣ ≤
(∫

Ω

u2dx

)1/2 (∫
Ω

u2
t dx

)1/2

≤ C

(∫
Ω

|u|l dx

)1/l (∫
Ω

u2
t dx

)1/2

,

which implies

∣∣∣∣
∫

Ω

utudx

∣∣∣∣
2l

l+2

≤ C

(∫
Ω

|u|l dx

) 2
l+2

(∫
Ω

u2
t dx

) l
l+2

.

With the help of Young’s inequality, we get

∣∣∣∣
∫

Ω

utudx

∣∣∣∣
2l

l+2

≤ C

[(∫
Ω

|u|l dx

) 2µ
l+2

+
(∫

Ω

u2
t dx

) θl
l+2

]
,

for 1/µ + 1/θ = 1. Choosing θ = l+2
l , (hence µ = l+2

2 ), we obtain

∣∣∣∣
∫

Ω

utudx

∣∣∣∣
2l

l+2

≤ C

[∫
Ω

|u|l dx +
∫

Ω

u2
t dx

]
. (3.7)
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Similarly we also have

∫
Ω

ρu2dx ≤
(∫

Ω

(ρu)2 dx

)1/2 (∫
Ω

u2dx

)1/2

,

which gives

(∫
Ω

ρu2dx

) 2l
l+2

≤ C

(∫
Ω

(ρu)l
dx

) 2
l+2

(∫
Ω

u2dx

) l
l+2

≤ C

[(∫
Ω

|ρu|l dx

) 2µ
l+2

+
(∫

Ω

u2dx

) θl
l+2

]
.

With the same choice of θ and µ as in above and the use of the boundary conditions, we easily deduce

(∫
Ω

ρu2dx

) 2l
l+2

≤ C

[∫
Ω

|ρu|l dx +
∫

Ω

u2dx

]

≤ C

[
‖ρ‖l

∞

∫
Ω

|u|l dx +
∫

Ω

u2dx

]

≤ C1

[∫
Ω

|u|l dx +
∫

Ω

u2dx

]

≤ C2

[∫
Ω

|u|l dx +
∫

Ω

(�u)2 dx

]
. (3.8)

Combining (3.7) and (3.8) , we have

L
2l

l+2 (t) ≤ C

[∫
Ω

(�u)2 dx +
∫

Ω

u2
t dx +

∫
Ω

|u|l dx

]
(3.9)

≤ C

[∫
Ω

(�u)2 dx +
∫

Ω

u2
t dx +

∫
Ω

|u|l dx + H (t)
]

.

A combination of (3.5) and (3.9) leads to

L
′
(t) ≥ 1

C

(
1 − K

l

)
L

2l
l+2 (t) . (3.10)

A simple integration of (3.10) yields

L(l+2)/(l−2)(t) ≥ 1
L−(l+2)/(l−2)(0) − at

, (3.11)

where a = (1/C)[2l/(l − 2)][1 − (K/l)]. Therefore (3.11) shows that L blows up in finite time. �
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Remark 3.1. The above result remains valid if |u|l−2u if replaced by f(u) provided that

uf(u) − KF (u) ≥ δ|u|l, δ > 0 F (u) =
∫ u

0

f(s)ds.

Again this is a weaker requirement than (2.4) of [1].

Remark 3.2. We do not require that u1 �= 0 as in Theorem 2.1 of [1].
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