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Decay of Solutions of a Nonlinear
Hyperbolic System Describing Heat
Propagation by Second Sound
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In this work we establish a decay result for the solutions of a nonlinear hyperbolic
system describing heat propagation, where the heat flux is given by Cattaneo’s law.
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1 INTRODUCTION

In the absence of deformation and external sources, the evolution of

the heat flux and the absolute temperature is given by the system

qþ �ð�Þ�x ¼ 0

qx þ cð�Þ�t ¼ 0,
ð1:1Þ

where � and c are strictly positive functions characterizing the material

in consideration. In the case where c and � are independent of �, we get
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the familiar linear heat equation

�t ¼ k�xx, k ¼
�

c
:

This equation provides a useful description of heat conduction under a

large range of conditions and predicts an infinite speed of propagation;

that is, any thermal disturbance at one point has an instantaneous

effect elsewhere in the body. This is not always the case. In fact, experi-

ments showed that heat conduction in some dielectric crystals at low

temperatures is free of this paradox (infinite speed propagation) and

disturbances which are almost entirely thermal may propagate in a

finite speed. This phenomenon in dielectric crystals is called second

sound.

These observations go back to 1948, when Cattaneo [1] proposed,

instead of Fourier’s law, a new constitutive relation

�ð�Þqt þ q ¼ ��ð�Þ �x, ð1:2Þ

where � and � are strictly positive functions depending on the absolute

temperature. Coleman et al. [2] showed in 1982 that, if (1.2) is adopted

then compatibility with thermodynamics requires that the internal

energy be given by

e ¼ ~eeð�, qÞ ¼ að�Þ þ bð�Þ q2, ð1:3Þ

where b is a function determined by � and �. In particular bð�Þ > 0.

In this case the system governing the evolution of � and q takes the

form

qx þ ða0ð�Þ þ b0ð�Þq2Þ�t þ 2bð�Þ qqt ¼ 0

�ð�Þqt þ qþ �ð�Þ �x ¼ 0: ð1:4Þ

Global existence and decay of classical solutions to the Cauchy prob-

lem, as well as to some initial boundary value problems, have been

established by Coleman et al. [3]. They also showed that ð�, qÞ tends

to the equilibrium state, however, no rate of decay has been discussed.
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Concerning the formation of singularities, Messaoudi [4] studied the

following system

�ð�Þqt þ qþ �ð�Þ �x ¼ 0

cð�Þ�t þ qx ¼ 0

and showed, under the same restrictions on �, c and �, that classical

solutions to the Cauchy problem break down in finite time if the initial

data are chosen small in the L1 norm with large enough derivatives.

This result has been improved later and established by the author [5]

for an equivalent system of the form

�ðe, qÞqt þ �ðe, qÞq ¼ �ex þ �ðe, qÞ qqx

et ¼ �qx, ð1:5Þ

where �,� satisfy

�ð	, 
Þ � � > 0, �ð	, 
Þ � � > 0, 8ð	, 
Þ 2 R
2: ð1:6Þ

For the derivation of (1.5) from (1.4) and the proof of the global exist-

ence, we refer the reader to [5,6].

In this work we consider (1.5) together with the initial and boundary

conditions

eðx, 0Þ ¼ e0ðxÞ, qðx, 0Þ ¼ q0ðxÞ, x 2 I ¼ ð0, 1Þ

qð0, tÞ ¼ qð1, tÞ ¼ 0, t � 0

and show that global classical solutions decay exponentially if the

initial data are sufficiently small.

2 EXPONENTIAL DECAY

In this section, we state and prove our main result. For this purpose

we set

êe ¼ e� e1, e1 ¼

Z 1

0

e0ðxÞ dx:
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It is clear that ðêe, qÞ satisfies the following problem

�̂�ðêe, qÞqt þ �̂�ðêe, qÞq ¼ �êex þ �̂�ðêe, qÞ qqx ð2:1Þ

êet ¼ �qx, ð2:2Þ

êeðx, 0Þ ¼ êe0ðxÞ, qðx, 0Þ ¼ q0ðxÞ, x 2 I ð2:3Þ

qð0, tÞ ¼ qð1, tÞ ¼ 0, t � 0, ð2:4Þ

where

�̂�ðêe, qÞ ¼ �ðêeþ e1, qÞ, �̂�ðêe, qÞ ¼ �ðêeþ e1, qÞ, �̂�ðêe, qÞ ¼ �ðêeþ e1, qÞ:

Remark 2.1 In the sequel we go back to the notation e instead of êe.

Remark 2.2 By using (2.2), we easily see that êe satisfies Poincare’s

inequality.

THEOREM Assume that �,�, � are C2 functions satisfying (1.6). Then

there exists a small positive constant � such that for any e0 in H2ðIÞ

and q0 in H2ðIÞ \ H1
0 ðIÞ satisfying

ke0k
2
2 þ kq0k

2
2 < �2, ð2:5Þ

the solution of (2.1)–(2.4) decays exponentially as t ! þ1.

In order to carry out the proof, we consider another problem which

agrees with (3.1)–(3.4) when ðe, qÞ are close enough to the equilibrium

state ð0, 0Þ. For this purpose, we introduce the functions A,B,C satis-

fying the following hypotheses

(h1) A,B,C 2 C 2
bðR

2
Þ

(h2) Að	, 
Þ ¼ �̂�ð	, 
Þ, Bð	, 
Þ ¼ �̂�ð	, 
Þ, Cð	, 
Þ ¼ �̂�ð	, 
Þ, 8ð	, 
Þ 2 V

a neighborhood of ð0, 0Þ

(h3) Að	, 
Þ � A > 0, Bð	, 
Þ � B > 0.

Here C 2
b denotes the space of continuous and bounded functions, as

well as, their first and second order derivatives. We note that functions

with these properties can be constructed by virtue of (1.6). Therefore,

instead of (3.1)–(3.4) we consider the following problem

Aðe, qÞqt þ Bðe, qÞq ¼ �ex þ qCðe, qÞ qx ð2:6Þ
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et ¼ �qx x 2 I , t � 0 ð2:7Þ

eðx, 0Þ ¼ e0ðxÞ, qðx, 0Þ ¼ q0ðxÞ, x 2 I : ð2:8Þ

qð0, tÞ ¼ qð1, tÞ ¼ 0, t � 0, ð2:9Þ

Remark 2.3 Any solution ðe, qÞ to (2.6)–(2.9) satisfying ðe, qÞ 2 V is

also a solution to (2.1)–(2.4) by virtue of (h2).

We also set

EðtÞ :¼

Z 1

0

ðe 2 þ e 2
t þ e 2

x þ e 2
xt þ e 2

xx þ e 2
tt þ q 2 þ q 2

t

þ q 2
x þ q 2

xt þ q 2
xx þ q 2

tt �ðx, tÞ dx ð2:10Þ

�ðtÞ :¼

Z 1

0

½e 2 þ e 2
t þ e 2

x þ e 2
xt þ e 2

tt �ðx, tÞ dx

þ

Z 1

0

Aðe, qÞ½q 2 þ q 2
t þ q 2

x þ q 2
xt þ q 2

ttÞðx, tÞ dx ð2:11Þ


ðtÞ :¼ sup
0� x� 1

½ðjej þ jexj þ jetj þ jqj þ jqtj þ jqxjÞðx, tÞ� ð2:12Þ

Proof We multiply (2.6) by q and (2.7) by e, integrate over I, use inte-

gration by parts, and add equalities, to obtain

1

2

d

dt

Z 1

0

½Aq2 þ e 2�ðx, tÞdx � �

Z 1

0

Bq2ðx, tÞdxþ �
ðtÞ EðtÞ, ð2:13Þ

where � denotes a positive (possibly large) generic constant indepen-

dent of e, q, t.

To get the next estimates, we differentiate (2.6), (2.7) with respect to

Aqtt þ Atqt þ Bqt þ Btq ¼ �ext þ Ctqqx þ Cqqxt þ Cqtqx ð2:14Þ

ett ¼ �qxt ð2:15Þ
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and multiply (2.14) by qt and (2.15) by et. Similar computations as

above then yield

1

2

d

dt

Z 1

0

Aq2t þ e2t
� �

ðx, tÞ dx � �

Z 1

0

Bq2t ðx, tÞ dxþ �ð
ðtÞ þ 
2ðtÞÞEðtÞ:

ð2:16Þ

To establish bounds on terms involving ett and qtt, we introduce the

difference operator as follows: for h > 0, we set

�hWðx, tÞ ¼ Wðx, tþ hÞ �Wðx, tÞ, x 2 R, t � 0 ð2:17Þ

We apply the above operator to Eqs. (2.14), (2.15), multiply the result-

ing equalities by �hqt and �het respectively, integrate over I, and add

the inequalities. After a number of integrations, using integration by

parts, we divide by h2 and let h go to zero. Thus we get

1

2

d

dt

Z 1

0

½Aq2tt þ e2tt�ðx, tÞ dx � �

Z 1

0

Bq2ttðx, tÞ dx

þ �ð
ðtÞ þ 
2ðtÞ þ 
3ðtÞÞEðtÞ: ð2:18Þ

For additional estimates, we differentiate (2.6), (2.7) with respect to x

to get

Aqxt þ Axqt þ Bqx þ Bxq ¼ �exx þ Cxqqx þ Cqqxx þ Cq2x ð2:19Þ

ext ¼ �qxx: ð2:20Þ

We then multiply (2.19) by qx and (2.20) by ex to obtain, by similar

calculations,

1

2

d

dt

Z 1

0

Aq 2
x þ e 2

x

� �
ðx, tÞ dx � �

Z 1

0

Bq 2
x ðx, tÞdxþ �ð
ðtÞ þ 
2ðtÞÞEðtÞ:

ð2:21Þ

Again we apply the operator (2.17) to Eqs. (2.19), (2.20), multiply the

resulting equalities by �hqx and �hex respectively, integrate over I,
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and add the inequalities. After a number of integrations, using integra-

tion by parts, we divide by h2 and let h go to zero to arrive at

1

2

d

dt

Z 1

0

Aq2xt þ e2xt
� �

ðx, tÞ dx � �

Z 1

0

Bq2xtðx, tÞ dx

þ �ð
ðtÞ þ 
2ðtÞ þ 
3ðtÞÞEðtÞ: ð2:22Þ

By combining (2.13), (2.16), (2.18), (2.21) and (2.22), we get

�0ðtÞ � �

Z 1

0

B q2 þ q2t þ q2x þ q2tt þ q2xt
� �

ðx, tÞ dx

þ �ð
ðtÞ þ 
2ðtÞ þ 
3ðtÞÞEðtÞ: ð2:23Þ

Next we show that, for ðe, qÞ, � is equivalent to E. For this purpose we

use Eqs. (2.6), (2.7), (2.14), (2.15), (2.19), (2.20) and the hypotheses

(h1)–(h3). Thus, we obtain

c1ð1þ 
2ðtÞ þ 
4ðtÞÞEðtÞ � �ðtÞ � c2EðtÞ ð2:24Þ

where c1, c2 are constants. A combination of (2.23) and (2.24) then

yields

�0ðtÞ � �

Z 1

0

B q 2 þ q 2
t þ q 2

x þ q 2
tt þ q 2

xt

� �
ðx, tÞ dxþ �
ðtÞ�ðtÞ: ð2:25Þ

Next we exploit (2.6), (2.7), (2.14), (2.15), (2.19), (2.20) for further esti-

mates

Z 1

0

e2t þ e2tt
� �

ðx, tÞ dx ¼

Z 1

0

q2x þ q2xt
� �

ðx, tÞ dx ð2:26Þ

and

Z 1

0

e 2x þ e 2xt
� �

ðx, tÞ dx � c

Z 1

0

q 2 þ q 2
t þ q 2

tt

� �
ðx, tÞ dxþ �
ðtÞ�ðtÞ:

ð2:27Þ
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We then use Poincare’s inequality and (2.6) to obtain

Z 1

0

e 2ðx, tÞ dx � c

Z 1

0

q2 þ q2t
� �

ðx, tÞ dxþ �
ðtÞ�ðtÞ: ð2:28Þ

By combining (2.25)–(2.28) and using (h3) we conclude

�0ðtÞ � �a�ðtÞ þ �
ðtÞ�ðtÞ: ð2:29Þ

where a is a constant depending only on the upper and lower

bounds of A,B,C. We also note that, by the standard Sobolev

embedding inequalities we have 
ðtÞ �
ffiffiffiffiffiffiffiffiffiffi
2EðtÞ

p
. So by choosing �

in (2.5) so small that �
ð0Þ < a=2 and ðe, qÞ 2 V, the relation (2.29)

yields

�0ðtÞ < �
a

2
�ðtÞ, 8t 2 ½0, "Þ ð2:30Þ

Direct integration then leads to

�ðtÞ � �ð0Þe�at=2, 8t 2 ½0, "Þ: ð2:31Þ

Since �ðtÞ � �ð0Þ we extend (2.31) beyond ". By repeating the same

procedure and using the continuity of �, (2.31) is established for all

t � 0. This completes the proof. J

Acknowledgment

The author would like to thank KFUPM for its sincere support.

References

[1] C. Cattaneo (1948). Sulla conduzione del calore. Atti Sem. Math. Fis Univ. Modena,
3, 83–101.

[2] B.D. Coleman, M. Fabrizio and D.R. Owen (1982). On the thermodynamics of
second sound in dielectric crystals. Arch. Rational Mech. Analysis, 80, 135–158.

[3] B.D. Coleman, W.J. Hrusa and D.R. Owen (1986). Stability of equilibrium for a non-
linear hyperbolic system describing heat propagation by second sound in solids. Arch.
Rational Mech. Anal., 94, 267–289.

208 S.A. MESSAOUDI



[4] S.A. Messaoudi (1996). Formation of singularities in heat propagation guided by
second sound. J. Diff. Eqns., 130, 92–99.

[5] S.A. Messaoudi (1999). On the existence and nonexistence of solutions of a nonlinear
hyperbolic system describing heat propagation by second sound. Applicable Analysis,
73, 485–496.

[6] Messaoudi Salim (2001). On the solution of a hyperbolic heat system. Proceedings of
the First Saudi Science Conference, Vol. 3, 547–556.

HEAT PROPAGATION BY SECOND SOUND 209


