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Abstract. In this paper we consider a quasilinear parabolic system of the form

A(t) |ut|m−2 ut − ∆u = u |u|p−2 ,

m ≥ 2, p > 2, in a bounded domain associated with initial and Dirichlet
boundary conditions.We show that, for suitable initial datum, the energy of
the solution decays “ in time” exponentially if m = 2 whereas the decay is of
a polynomial order if m > 2.
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1. Introduction

Research of global existence and finite time blow-up of solutions for the initial
boundary value problem

ut − div(|∇u|α−2∇u) + f(u) = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0

u(x, 0) = u0(x), x ∈ Ω,

(1)

where α ≥ 2 and Ω is a bounded domain of R
n (n ≥ 1), with a smooth boundary

∂Ω, has attracted a great deal of people. The obtained results show that global
existence and nonexistence depend roughly on α, the degree of nonlinearity in f ,
the dimension n, and the size of the initial datum. In the early 70’s, Levine [8]
introduced the concavity method and showed that solutions with negative energy
blow-up in finite time. Later, this method had been improved by Kalantarov and
Ladyzhenskaya [7] to accommodate more situations. Ball [2] also studied (1) with
f depending on u as well as on ∇u and established a nonglobal existence result in



44 S. Berrimi and S.A. Messaoudi

bounded domains. This result was generalized to unbounded domains by Alfonsi
and Weissler [1].

For the case α > 2, Junning [6] studied (1) with f depending also on u and
∇u. He proved a nonglobal existence result under the condition

1
m

∫
Ω

|∇u0(x)|m dx −
∫

Ω

F (u0(x))dx

≤ − 4(m − 1)
mT (m− 2)2

∫
Ω

u2
0(x)dx, (2)

where F (u) =
∫ u

0
f(s)ds. This type of results have been extensively generalized

and improved by Levine, Park, and Serrin in a paper [9], where the authors proved
some global, as well as nonglobal, existence theorems. Their result, when applied
to problem (1), requires that

1
m

∫
Ω

|∇u0(x)|mdx −
∫

Ω

F (u0(x))dx < 0. (3)

We note that the inequality (3) implies (2). In 1999, Erdem [4] discussed the initial
Dirichlet-type boundary problem for

ut −
n∑

i=1

∂

∂xi
((d + |∇u|m−2)

∂u

∂xi
) + g(u,∇u) = f(u), x ∈ Ω, t > 0

and established a blow-up result. Messaoudi [10] showed that the blow-up result
can also be obtained for solutions satisfying

1
m

∫
Ω

|∇u0(x)|mdx −
∫

Ω

F (u0(x))dx ≤ 0.

On the other hand if f has at most a linear growth then we can find global solutions
(see [5]).

Concerning the asymptotic behavior, Engler, Kawohl, and Luckhaus [3] con-
sidered problem (1) with α = 2 and showed that for, f(0) = 0, f ′(u) ≥ a > 0, and
sufficiently small initial datum u0, the solution satisfies a gradient estimate of the
type

||∇u||p ≤ Ce−δt||∇u0||p.
For initial boundary problems to the quasilinear equation

ut − div(σ(|∇u|2)∇u) + f(u,∇u) = 0,

results concerning global existence and gradient estimates have been established,
under certain geometric conditions on ∂Ω, by Nakao and Ohara [12], [13] and
Nakao and Chen [14].

Pucci and Serrin [15] discussed the following quasilinear parabolic system

A(t)|ut|m−2ut = ∆u − f(x, u),

for m > 1 and f satisfying (f(x, u), u) ≥ 0. They established a global result of
solutions and showed that these solutions tend to the rest state as t → ∞, however
no rate of decay has been given.
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In this work we consider a similar problem of the form

A(t) |ut|m−2
ut − ∆u = |u|p−2

u, x ∈ ∂Ω, t ∈ J

u(x, t) = 0, x ∈ ∂Ω, t ∈ J

u(x, 0) = u0, x ∈ Ω,

(4)

where J = [0,∞) and Ω is a bounded open subset of Rn. The values of u are taken
in RN , N ≥ 1 and A ∈ C(J ; RN×N ). We assume that A is bounded and satisfies
the condition

(A(t)v, v) ≥ c0 |v|2 , ∀t ∈ J, v ∈ RN ,

where (., .) is the inner product in RN and c0 > 0. We will show that, for small
initial energy, the solution of (4) decays exponentially if m = 2 whereas the decay
is of a polynomial order if m > 2. Our method of proof relies on the use of a lemma
by Nakao [11].

2. Preliminaries

In order to state and prove our result, we introduce the following notation:

I(u(t)) = I(t) = ‖∇u(t)‖2
2 − ‖u(t)‖p

p

E(u(t)) = E(t) = 1
2 ‖∇u(t)‖2

2 − 1
p ‖u(t)‖p

p

H =
{
v ∈ (

H1
0

)N : I(v) > 0
}
∪ {0}.

(5)

By multiplying the equation in (4) by ut and integrating over Ω, using the bound-
ary conditions, we get

d

dt
E(t) = −

∫
Ω

A(t) |ut|m−2
ut.utdx ≤ 0, (6)

for regular solutions. The same result is obtained for weak solutions by a simple
density argument.

Next,we prove the invariance of the set H . For this aim we note that, by the
embedding H1

0 ↪→ Lq, we have

‖u‖q ≤ C ‖∇u‖2 , (7)

for 2≤q≤ 2n
n−2 if n≥3, q>2 if n=1,2 where C =C(n,q,Ω) is the best constant.

Lemma 2.1. (Nakao[11]) Let ϕ(t) be a nonincreasing and nonnegative function
defined on [0, T ], T > 1, satisfying

ϕ1+r(t) ≤ k0(ϕ(t) − ϕ(t + 1)), t ∈ [0, T ] ,

for k0 > 1 and r ≥ 0. Then we have , for each t ∈ [0, T ],

ϕ(t) ≤ ϕ(0)e−k[t−1]+ , r = 0

ϕ(t) ≤
{
ϕ(0)−r + k0r [t − 1]+

}−1
r

r > 0

where [t − 1]+ = max {t − 1, 0} and k = ln( k0
k0−1 ).
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Lemma 2.2. Suppose that

2 < p ≤ 2n
n−2 , n ≥ 3

p > 2, n = 1, 2.
(8)

If u0 ∈ H , and satisfying

Cp

(
2p

p − 2
E(0)

) p−2
2

< 1 (9)

then the solution u(t) ∈ H for each t ∈ [0, T ).

Proof. Since I(u0) > 0, then there exists (by continuity) Tm < T such that

I(u(t)) ≥ 0, ∀t ∈ [0, Tm] ;

this gives

E(t) =
(

p − 2
2p

)
‖∇u(t)‖2

2 +
1
p
I(t) ≥

(
p − 2
2p

)
‖∇u(t)‖2

2 . (10)

So,

‖∇u(t)‖2
2 ≤

(
2p

p − 2

)
E(t) ≤

(
2p

p − 2

)
E(0), ∀t ∈ [0, Tm] . (11)

We then use (7)–(9) and (11) to obtain, for each t ∈ [0, Tm],

‖u(t)‖p
p ≤ Cp ‖∇u(t)‖p

2 = Cp ‖∇u(t)‖p−2
2 ‖∇u(t)‖2

2

≤ Cp
(

2p
p−2E(0)

) p−2
2 ‖∇u(t)‖2

2 < ‖∇u(t)‖2
2.

(12)

Therefore, by virtue of (5) and (12), we obtain

I(t) = ‖∇u(t)‖2
2 − ‖u(t)‖p

p > 0. (13)

This shows that u(t) ∈ H , for all t ∈ [0, Tm]. By repeating this procedure, and
using the fact that

lim
t→Tm

Cp

(
2p

p − 2
E(t)

) p−2
2

≤ β < 1,

Tm is extended to T .

Lemma 2.3. Suppose that (8) and (9) hold, then

η ‖∇u(t)‖2
2 ≤ I(t). (14)

Proof. It suffices to rewrite (12) as:

‖u(t)‖p
p ≤ Cp

(
2p

p − 2
E(0)

) p−2
2

‖∇u(t)‖2
2 = (1 − η) ‖∇u(t)‖2

2

≤ ‖∇u(t)‖2
2 − η ‖∇u(t)‖2

2 . (15)
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Thus (14) follows for

η = 1 − Cp

(
2p

p − 2
E(0)

) p−2
2

> 0. (16)

Theorem. Suppose that (8) holds. Assume further that u0 ∈ H and satisfies (9),
then the solution satisfies the following decay estimations:

E(t) ≤ E(0)e−[t−1]+ , m = 2 (17)

E(t) ≤
{

(E(0))−( m−2
2 ) +

C5

c0

m − 2
2

[t − 1]+
}−( 2

m−2 )
, m > 2. (18)

Proof. We integrate (6) over [t, t + 1] to obtain

E(t) − E(t + 1) =
∫ t+1

t

∫
Ω

|ut(s)|m−2 A(s)ut.utdxds

≥ c0

∫ t+1

t

∫
Ω

|ut(s)|m dxds = c0(F (t))m, (19)

where

(F (t))m =
∫ t+1

t

‖ut(s)‖m
m ds. (20)

Now we multiply the equation in (4) by u and integrate over Ω× [t, t + 1] to arrive
at ∫ t+1

t

I(s)ds ≤
∫ t+1

t

‖A(s)‖
∫

Ω

|ut(s)|m−1 |u(s)| dxds.

By the Cauchy-Schwarz inequality, we have the following∫ t+1

t

I(s)ds ≤
∫ t+1

t

‖A(s)‖ ‖ut(s)‖m−1
m ‖u(s)‖m ds

≤ A

∫ t+1

t

‖ut(s)‖m−1
m ‖u(s)‖m ds, (21)

where
A = sup

J
‖A(s)‖ < ∞.

Exploiting (7) and (10), we obtain
∫ t+1

t

I(s)ds ≤ CA

(
2p

p − 2

) 1
2

(
sup

t≤s≤t+1
E

1
2 (s)

) (∫ t+1

t

‖ut(s)‖m−1
m ds

)
. (22)

Now we use the fact that
∫ t+1

t

(∫
Ω

|ut(s)|m dx

)m−1
m

ds ≤
(∫ t+1

t

∫
Ω

|ut(s)|m dxds

) m−1
m

= (F (t))m−1

(23)
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to get ∫ t+1

t

I(s)ds ≤ CA

(
2p

p − 2

) 1
2 (

E
1
2 (t)

)
(F (t))m−1. (24)

From (5) we have

E(t) =
(

p − 2
2p

)
‖∇u(t)‖2

2 +
1
p
I(t). (25)

Integrating both sides of (25) over [t, t + 1] and using (14), one can write∫ t+1

t

E(s)ds ≤
(

1
p

+
p − 2
2pη

) ∫ t+1

t

I(s)ds. (26)

A combination of (24) and (26) leads to
∫ t+1

t

E(s)ds ≤ CA

(
2p

p − 2

) 1
2

(
1
p

+
p − 2
2pη

) (
E

1
2 (t)

)
(F (t))m−1. (27)

By using (6) again, we have

E(s) ≥ E(t + 1), ∀s ≤ t + 1;

hence ∫ t+1

t

E(s)ds ≥ E(t + 1). (28)

Inserting (28) in (19) and using (27), we easily have

E(t) ≤
∫ t+1

t

E(s)ds +
∫ t+1

t

∫
Ω

A(s) |ut(s)|m−2
ut(s).ut(s)dxds

≤ CA

(
2p

p − 2

) 1
2

(
1
p

+
p − 2
2pη

)
E

1
2 (t)(F (t))m−1 (29)

+
∫ t+1

t

∫
Ω

A(s) |ut(s)|m dxds

≤ C1

[
E

1
2 (t)(F (t))m−1 + (F (t))m

]
,

for C1 a constant depending on A, C, p and η only. We then use Young’s inequality
to get, from (29),

E(t) ≤ C2

(
(F (t))2(m−1) + (F (t))m

)
. (30)

At this end, we distinguish two cases:

1) m = 2. In this case, we have from (30)

E(t) ≤ 2C2F
2(t) ≤ C3F

2(t) ≤ C3

c0
(E(t) − E(t + 1)) . (31)

Lemma 2.1 then yields

E(t) ≤ E(0)e−k[t−1]+ , k = ln
(

C3

C3 − c0

)
. (32)
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2) m > 2. In this case, we note that, by (19), we have

Fm(t) ≤ E(t)
c0

≤ E(0)
c0

.

Therefore (30) gives

E(t) ≤ C2

(
(F (t))2(m−2) + (F (t))m−2

)
F 2(t)

≤ C3

(
(
E(0)
c0

)
2(m−2)

m + (
E(0)
c0

)
m−2

m

)
F 2(t) (33)

≤ C4F
2(t);

hence
E

m
2 (t) ≤ C5F

m(t) ≤ C5

c0
(E(t) − E(t + 1)) . (34)

Again Lemma 2.1 for

r =
m − 2

2
> 0, (35)

gives

E(t) ≤
{

E(0)−(m−2
2 ) +

C5

c0

m − 2
2

[t − 1]+
}− 2

m−2

This completes the proof.
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Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 69 (1977), 77–102.



50 S. Berrimi and S.A. Messaoudi

[8] Levine H., Some nonexistence and instability theorems for solutions of formally par-
abolic equations of the form Put = −Au+F (u), Archive Rat. Mech. Anal. 51 (1973),
371–386.

[9] Levine H., Park S., and Serrin J., Global existence and nonexistence theorems for
quasilinear evolution equations of formally parabolic typ e. J. Diff. Eqns. 142 (1998),
212–229.

[10] Messaoudi S.A., A note on blow-up of solutions of a quasilinear heat equation with
vanishing initial energy, J. Math. Anal. Appl. 273 (2002), 243–247.

[11] Nakao M., Asymptotic stability of the bounded or almost periodic solutions of
the wave equations with nonlinear damping terms, J. Math. Anal. Applications 58
(1977), 336–343.

[12] Nakao M. and Ohara Y., Gradient estimates of periodic solutions for quasilinear
parabolic equations, J. Math. Anal. Appl. 204 (1996), 868–883.

[13] Nakao M. and Ohara Y., Gradient estimates for a quasilinear parabolic equation of
the mean curvature type, J. Math. Soc. Japan 48 # 3 (1996), 455–466.

[14] Nakao M. and Chen C., Global existence and gradient estimates for the quasilinear
parabolic equations of m-Laplacian type with a nonlinear convection term, J. Diff.
Eqns. 162 (2000), 224–250.

[15] Pucci P. and Serrin J., Asymptotic stability for nonlinear parabolic systems, En-
ergy methods in continuum mechanics, (Oviedo, 1994), 66–74, Kluwer Acad. Publ.,
Dordrecht, 1996.

Said Berrimi
Math. Department
University of Setif
Setif, Algeria
e-mail: berrimi@yahoo.fr

Salim A. Messaoudi
Mathematical Sciences Department
KFUPM, Dhahran 31261
Saudi Arabia
e-mail: messaoud@kfupm.edu.sa


