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Abstract 

We define an extension of the reciprocal of the zeta function. Some properties of the 
function are discussed. We prove an alternate criteria for the proof of the Riemann 
hypothesis and the simplicity of the zeros of the zeta function.  
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1. Introduction  
Riemann proved that the zeta function (see [1, 2, 3, 6, 7]), 
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 has a meromorphic continuation to the complex plane. This satisfies the functional 
equation (see [6], p.13 (2.1.1)) 
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and has simple zeros at 2, 4, 6,...s = − − − called the trivial zeros. All the other zeros, called 

the non-trivial zeros, of the function are symmetric about the critical line 1
2

σ =   in the 

critical strip 0 1σ≤ ≤ . The multiplicity of these non-trivial zeros (in general) is not 
known. Riemann conjectured that the non-trivial zeros of the function lie on the critical 

line 1
2

σ = . This conjecture is called the Riemann hypothesis. The zeta function has the 

integral representation ([6], p.18 (2.4.1)) 
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Writing the Möbius function as ( ) ( 1)knµ = −  if the 1 2... kn p p p= is a product of k distinct 
primes and zero otherwise.  It is known that (see [3], p. 260) 
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The extension of the identity (1.4) to the region 1/ 2 1σ< <  would prove the Riemann 
hypothesis. There are several extensions of the zeta function. The zeta function belongs 
to a wider class of L-functions (see [2, 3, 6]). One of the well known extension of the zeta 
function is the Hurwitz zeta function ([6], p. 36(2.17)) 
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which has the integral representation([6], p.37(2.17.1)) 
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It follows from (1.1) and (1.5) that  
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leading to the fact that the Hurwitz zeta function generalizes the Riemann zeta function in 
the most natural way. It seems ironical that the function 1/ ( , )s xζ  does not seem to be a 
useful extension of the reciprocal 1/ ( )sζ of the zeta function. We introduced a function 
that seems to be a natural generalization of the reciprocal1/ ( )sζ . Some properties of the 
function are discussed. We exploit the asymptotic representation of our function to give 
an alternate formulation of the Riemann hypothesis and simplicity of the zeros of the zeta 
function. For the other necessary and sufficient conditions of the Riemann hypothesis we 
refer to (see [6], section 14.32). 
 

2. The Möbius inversion formula and applications to the Hurwitz 
zeta function 

 
 The Möbius inversion formula can be written in the form ([3], p.217) 

                                  
1 1

( ) ( ) ( ) ( ) ( )
n n

g x f nx f x n g nxµ
∞ ∞

= =

= ⇔ =∑ ∑        ( 0x > ),                (2.1) 

provided 
1

( )
n
f nx

∞

=
∑  and 

1
( )

n
g nx

∞

=
∑  both converge absolutely. The above formula can also 

be written in the form 

                                   
1 1

( ) ( ) ( ) ( ) ( )
n n

x xg x f f x n g
n n

µ
∞ ∞

= =

= ⇔ =∑ ∑        ( 0x > ).                 (2.2) 

Rewriting (1.5) we find that 
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which leads to a useful analytic representation ( 0x ≥ ) 
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The LHS in (2.4) is an entire function of s  for all 0x ≥ . In particular for 0x =  in (2.4) 
the classical identity (1.4) is recovered. 
Since we have  ( / 1) 1sx x + →   as x→∞ , it follows from (2.4) that 
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Similarly we have (1 ) 1sx −+ →   as 0x +→  , it follows from (2.4) that                                   
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3. The Extended reciprocal zeta function  

A close look to the Hurwitz zeta functions shows that it is basically the extension of the 
series representation (1.1) of the zeta function obtained when n  is replaced by 1n x+ + . 
We follow the same procedure in (1.4) and define the our extended reciprocal of the zeta 
function by 
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The function ( , )R s x  extends the reciprocal function 1/ ( )sζ in the most natural way as 
we have 
                                   ( ,0) 1/ ( )R s sζ=                   ( 1σ ≥ ).                                           (3.2) 
The extension of the identity (3.2) to the region 1/ 2 1σ< <  should prove the Riemann 
hypothesis (see [3], p.261). An application of the Möbius  inversion formula (2.2) in (3.1) 
leads to the relation 
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The relation (3.3) is important in the sense that it shows that 
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Theorem   The function ( , )R s x has the integral representation 
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where the function ( )tΘ  is defined by 
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Proof    Multiplying both sides in (3.7) by xte− and then taking the Mellin transform we 
find that   
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Dividing both sides in (3.8) by ( )sΓ , as the gamma function does not vanish in the 
complex plane, leads to (3.6).          
Corollary    
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Theorem   The function ( , )R s x  has the Taylor series representation at 0x =  given by 
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Proof     Replacing the exponential function in (3.5) by its series expansion leads to the 
representation 
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which is exactly (3.10). 
 
Remark    Since we have ( ) 1ζ ∞ = , the representation (3.10) may be viewed as  the 
perturbation of the geometric series 
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4. Alternate formulation of the Riemann hypothesis 

 
Taking the Mellin transform in x of both sides of (3.7) and using Ramanujan’s formula (see 
[3], p.218) we find that 
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where the line  z c=  passes through the region of analyticity of the integrand.  The poles 
z n= −  ( 0,1,2,...n = ) of the above integrand are to the LHS of the line of integration 
leading to the representation (3.11). The integrand in (4.1) has poles as well to the RHS 
of the line of integration at z s n= +  ( 0,1,2,...n = ) and that at z s ρ= −  where 'sρ  are 
the non-trivial zeros of the zeta function. Taking the sum over the residues leads to the 
asymptotic representation for large values of x  to give 
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where, we define 
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It is to be noted that if the zero ρ  of the zeta function is simple, ρℜ  does not depend on 
x and is just a function of s . Moreover, the contribution to the asymptotic due to the 
presence of several zeros of the zeta function on the line Mσ σ=  will not exceed MCxσ ε+  
( 0ε > ). However, if the zero ρ  is of multiplicity Nρ , then for each s , ρℜ  is a 
polynomial of degree 1Nρ≤ −  in log x .  The asymptotic representation (4.2) shows, 
under the assumption of the simplicity of the zeros of the zeta function, that 

                 ( , ) ( )MsR s x x xσ σ ερ
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− +−ℜ = Ο∑∼          ( x→∞ , 1σ > , 0ε∀ > ),               (4.5)                        

where : sup{Re( ) : ( ) 0}Mσ ρ ζ ρ= = .The Riemann hypothesis is true and its zeros are 
simple if 1/ 2Mσ = . Hence it follows that the Riemann hypothesis is true and its zeros 
are simple if we have in particular for 3 / 2s =  
                                  1(3 / 2, ) ( )R x O x ε− +=                 ( 0ε∀ > , x→∞ ),                       (4.6) 
                                
which provides an alternate formulation of the Riemann hypothesis and the simplicity of 
the zeros of the zeta function. We use Mathematica to plot the function in Figure I by 
taking the sum of the first ten thousand terms of the series (3.1) and find consistency with 
(4.6). However an analytic proof of (4.6) is needed to prove the Riemann hypothesis. 
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Figure I   The graph of ( , )R s x  for 1.5s =  using (3.1) for large x . 
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5. Concluding Remarks 
We have the series representation (see [4], p.357 (54.6.1)) 
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for the Hurwitz zeta function. A comparison of the representations (3.10) and (5.1) is not 
without interest. The extended reciprocal zeta function extends the reciprocal zeta 
function in the most natural way and provides an alternate criteria for the proof of the 
Riemann hypothesis and simplicity of the zeros of the zeta function. An analytic proof of 
(4.6) will resolve the classical problem of the Riemann hypothesis and the simplicity of 
the zeros of the zeta function.  Moreover, we have not been able to prove the functional 
equation for the extended reciprocal zeta function though it is expected that there should 
be a functional equation for the function similar to the one known for Hurwitz’s zeta 
function. 
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