Section 6.2 - Volumes

The basic definition of a volume = cross-sectional area × height. In integral terms, this translates to \(V = \int A(x) \, dx \) or \(V = \int A(y) \, dy \), where \(A \) is the cross-sectional area function expressed in either \(x \) or \(y \) depending on orientation.

Example: Find the volume of a frustum of a pyramid with a square base of side \(b \), square top of side \(a \) and height \(h \).

Solution:
First, we need to determine the cross-sectional area function. Note that the approach will be similar to that of example 8 (textbook page 451).

The slope of the side is \(\frac{a-b}{2h} \). So at a particular value of \(y \), the length of the square will
be $2 \times \left[\frac{a-b}{2h} y + \frac{b}{2} \right] = \frac{y(a-b)}{h} + b$. Check: at $y = 0$, the length of square is b and at $y = h$, the length of the square is a. CORRECT!!!
go through the disc method and the washer method. Next week, we will go through the shell method.

Disc method:

\[V = \int_a^b \pi (f(x))^2 \, dx \text{ or } V = \int_c^d \pi (g(y))^2 \, dy \]
depending on whether the axis of rotation is the y-axis for the latter and the x-axis for the former. Note that the functions \(f(x) \) and \(g(y) \) are rotated about the x-axis and y-axis respectively.

Example: Find the volume of a cap of a sphere with radius \(r \) and height \(h \).

Solution:
Let us consider at the cross-sectional area. The sphere is essentially a rotation of the semi-circle \(x^2 + y^2 = r^2 \), about the y-axis.
Since the cap is oriented vertically, we express this as a function of \(y \) and hence rotate the curve about the \(y \)-axis. So, \(g(y) = \sqrt{r^2 - y^2} \) and the ranges of integration are from \(y = r - h \) to \(y = r \). Note that \(r \) is fixed since we are dealin with a sphere after all.

\[
V = \pi \int_{r-h}^{r} (r^2 - y^2) \, dy = \pi (rh^2 - \frac{h^3}{3}).
\]

Washer method:

\[
V = \int_{a}^{b} \pi [(f(x))^2 - (h(x))^2] \, dx \quad \text{or} \quad V = \int_{c}^{d} \pi [(p(y))^2 - (q(y))^2] \, dy
\]

depending on whether the axis of rotation is the \(y \)-axis for the latter and the \(x \)-axis for the former.

Example: Find the volume generated by revolving the area cut off from the parabola \(y = 4x - x^2 \) by the \(x \)-axis about the line \(y = 6 \).

Solution:
Sketch the line and the parabola. Identify the region first. It is the region between the parabola and the x-axis. What is making it complicated however is the fact that the axis of rotation is not the x-axis but $y = 6$. The parabola cuts the x-axis when $y = 4x - x^2 = 0$. Hence, $x = 0, 4$

So the volume of interest is generated by taking the cylinder (x-axis rotated about $y = 6$) and subtracting the volume generated by the region between parabola and $y = 6$. So, the first volume $V_1 = \int_0^4 \pi (6)^2 dx$ and the second volume is $V_2 = \int_0^4 \pi [6 - (4x - x^2)]^2 dx$.

So, the volume of interest, $V = V_1 - V_2$. You may continue the computation. You should get $\frac{1408\pi}{15}$ cubic units.