Section 11.2 - Series

An infinite series is said to be convergent if
it all adds up to a particular number. Other-
wise, it is divergent.

A common type of infinite series is a geo-

oo
metric series which has the form Y~ ar" 1 =
n=1

%. If |[r| < 1, then the geometric series is

convergent. If |r| > 1, then the geometric
series is divergent.
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Theorem: If the infinite series Z an IS con-
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vergent, then nILmOO an = 0.
Note that Iim a, = O does not necessarily
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imply that ) ap is convergent!!!
n=1



Theorem: If nh_)moo an does not exist or I|m an 7

0, then the series Z an is divergent.
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geometric series is convergent and its sum is
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