KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 102 – Calculus II Final Exam (072)

Code 001

Saturday: June 7, 2008	Time: 7:30 – 10:30 AM		
Student's Name:			
ID #:	Section #:		

Important Instructions:

- 1. All types of CALCULATORS, PAGERS, OR MOBILES ARE NOT ALLOWED to be with you during the examination.
- 2. Use an HB 2 pencil.
- 3. Use a good eraser. Do not use the eraser attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that bubbles match with the number that you write.
- 6. The test Code Number is already typed and bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.
- 9. Check that the exam paper has 28 questions.

- 1. The volume of the solid generated by revolving the region enclosed by the curve $y = \sin(x^2)$ and the x-axis over the interval $[0, \sqrt{\pi}]$ about the y-axis is
 - (a) π
 - (b) 2π
 - (c) -2π
 - (d) $\frac{\pi}{2}$
 - (e) $3\sqrt{\pi}$

- 2. The volume obtained by rotating the region bounded by $y=x^4, \ y=1 \text{ about } y=1 \text{ equals}$
 - (a) $\frac{2}{9}\pi$
 - (b) $\frac{22}{45}\pi$
 - (c) $\frac{64}{45}\pi$
 - (d) $\frac{34}{45}\pi$
 - (e) $\frac{44}{45}\pi$

3. The area of the region enclosed by the graphs of $y^2 = x$ and y = x - 2 is equal to

(a)
$$\int_{-1}^{2} (2+y-y^2)dy$$

(b)
$$\int_{1}^{4} (x^2 - x + 2) dx$$

(c)
$$\int_{1}^{4} (\sqrt{x} - x + 2) dx$$

(d)
$$\int_{-1}^{2} (x^2 - x + 2) dx$$

(e)
$$\int_{1}^{4} (2+y-y^2)dy$$

4.
$$\int \frac{dx}{\sqrt{6x-x^2}} =$$

(a)
$$\sin^{-1} \frac{x-3}{3} + c$$

(b)
$$2\sqrt{6x-x^2}+c$$

(c)
$$\ln(6x - x^2) + c$$

(d)
$$\sin^{-1} \frac{3-x}{3} + c$$

(e)
$$3\sin^{-1}\frac{x-3}{3}+c$$

- 5. If f' is continous function, f(1) = 3, and $\int_0^3 x f'(1+x^2) dx = 4$, then f(10) =
 - (a) 9
 - (b) 11
 - (c) 8
 - (d) 10
 - (e) 5

- $6. \qquad \int_0^{\frac{\pi^2}{4}} \cos\sqrt{x} \ dx =$
 - (a) 0
 - (b) 2π
 - (c) $\pi 2$
 - (d) $\frac{\pi}{2} 1$
 - (e) $1 + \frac{\pi}{4}$

- 7. The graph of the function f(x) is given in the figure. Find $\int_0^7 f(x) dx$
 - (a) $5 + 4\pi$
 - (b) $5 + 2\pi$
 - (c) $6 4\pi$
 - (d) $5 4\pi$
 - (e) $5 2\pi$

- $8. \qquad \int_0^1 \frac{1}{1 + e^{-x}} \, dx =$
 - (a) ln(1+e)
 - (b) ln 2
 - (c) e
 - (d) $\ln \frac{(e+1)}{2}$
 - (e) ln 3

9.
$$\int_{4}^{8} (\sqrt{x} + \frac{1}{\sqrt{x}})^2 dx =$$

- (a) $32 + \ln 2$
- (b) $32 + \ln 4$
- (c) $38 + \ln 2$
- (d) $38 + \ln 4$
- (e) $64 + \ln 2$

10.
$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1 + (\frac{i}{n})^2} =$$

- (a) $\frac{1}{4}$
- (b) ∞
- (c) $\frac{\pi}{4}$
- (d) π
- (e) $\frac{\pi}{2}$

- 11. The area of the surface of the solid obtained by rotating the curve $y=\sqrt{1+e^x}$, $0\leq x\leq 1$ about the x-axis is equal to
 - (a) $\pi(e+1)$
 - (b) $\pi(2e+1)$
 - (c) $2\pi(e-1)$
 - (d) πe
 - (e) $\pi(e-1)$

- 12. The length of the curve $y = \ln(\cos x)$, $0 \le x \le \frac{\pi}{3}$ is
 - (a) $\ln(2 + \sqrt{3})$
 - (b) ln 3
 - (c) $\csc\left(\frac{\pi}{2}\right) \csc\left(\frac{\pi}{3}\right)$
 - (d) $\ln\left(\frac{3}{2}\right)$
 - (e) $-\frac{1}{2}$

13. The series
$$\sum_{n=2}^{\infty} \frac{1}{n - \sqrt{n}}$$

- (a) converges by integral test
- (b) converges by the test for divergence
- (c) diverges by comparison test with $\sum_{n=2}^{\infty} \frac{1}{n}$
- (d) diverges by the test for divergence
- (e) converges by ratio test

$$14. \qquad \int \frac{dx}{x^3 - x} =$$

(a)
$$\frac{1}{2} \ln |x^2 - 1| - \ln |x| + c$$

(b)
$$\frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| - \ln |x| + c$$

(c)
$$\frac{1}{2} \ln |x^2 - 1| + \ln |x| + c$$

(d)
$$\ln |x^2 - 1| + \ln |x| + c$$

(e)
$$\frac{1}{2} \ln \left| \frac{x+1}{x-1} \right| + \ln |x| + c$$

- 15. The series $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$
 - (a) is absolutely convergent
 - (b) diverges by the test for divergence
 - (c) conveges by the ratio test
 - (d) is a converent p-series
 - (e) diverges by the integral test

- 16. For the convergent alternating series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^4}$, what is the smallest number of terms needed to guarantee that S_n is within 1×10^{-8} of the actual sum S?
 - (a) 100
 - (b) 99
 - (c) 1000
 - (d) 10
 - (e) 80

- 17. The integral $\int \frac{2}{x + \sqrt[3]{x}} dx$ equals
 - (a) $\ln |x + \sqrt[3]{x}| + c$
 - (b) $\ln\left(\frac{2}{3} + x^2\right) + c$
 - (c) $\ln(2 + e^{-x}) + c$
 - (d) $2x + 3\ln(x^{2/3} + 1) + c$
 - (e) $3\ln(x^{2/3}+1)+c$

- 18. $\int_0^{\frac{\pi}{2}} \cos^2 x \sin 2x \ dx =$
 - (a) 0
 - (b) $\frac{1}{4}$
 - (c) $\frac{1}{2}$
 - (d) $\frac{3}{8}$
 - (e) -2

19.
$$\int \frac{1}{x^2(1+x^2)} \, dx =$$

(a)
$$-\frac{1}{x} - \tan^{-1} x + c$$

(b)
$$-\frac{1}{x^2} + \frac{2x}{1+x^2} + c$$

(c)
$$\ln |x| - \tan^{-1} x + c$$

(d)
$$\frac{1}{x} + \ln|1 + x^2| + c$$

(e)
$$-\frac{1}{x} - \frac{1}{(1+x^2)^2} + c$$

20. The series
$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$$

- (a) is a convergent geometric series
- (b) is a convergent p-series
- (c) converges to ln 2
- (d) is divergent
- (e) converges to 1

- 21. If $I = \int_{-1}^{1} \sin(x^2) dx$, then
 - (a) $0 \le I \le 2$
 - (b) $I = \infty$
 - (c) I = 0
 - (d) I > 2
 - (e) $I \le 0$

- $22. \qquad \int_0^\infty x e^{-x} dx =$
 - (a) $\frac{1}{e} + 1$
 - (b) ∞
 - (c) -1
 - (d) -2
 - (e) 1

- 23. Using the power series of $\ln(1-x)$, the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n3^n}$ is equal to
 - (a) ln 3
 - (b) 1
 - (c) $\ln \frac{3}{2}$
 - (d) $\ln \frac{2}{3}$
 - (e) ln 2

- 24. The sequence $\left\{ \left(1 + \frac{2}{n}\right)^n \right\}_{n=1}^{\infty}$
 - (a) converges to \sqrt{e}
 - (b) converges to e^2
 - (c) converges to e
 - (d) diverges
 - (e) converges to 2

- 25. The series $\sum_{k=0}^{\infty} \frac{(-1)^k k!}{e^k}$ is
 - (a) convergent by the root test
 - (b) convergent to e^{10}
 - (c) convergent by the ratio test
 - (d) divergent
 - (e) convergent to e^3

- 26. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^4 \sqrt{n}}$
 - (a) is absolutely convergent
 - (b) is conditionally convergent
 - (c) has the sum $s = \frac{2}{9}$
 - (d) is divergent
 - (e) is absolutely divergent

27. The first 5 terms of the Taylor series of the function $f(x) = x \ln x$ at x = 1 are

(a)
$$(x-1) + \frac{(x-1)^2}{2} - \frac{(x-1)^3}{6} + \frac{(x-1)^4}{12} - \frac{(x-1)^5}{20}$$

(b)
$$(x-1) + \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} + \frac{(x-1)^4}{12} + \frac{(x-1)^5}{20}$$

(c)
$$(x-1) + \frac{(x-1)^2}{2!} - \frac{(x-1)^3}{3!} + \frac{(x-1)^4}{4!} - \frac{(x-1)^5}{5!}$$

(d)
$$(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{6} - \frac{(x-1)^4}{12} + \frac{(x-1)^5}{20}$$

(e)
$$(x-1) + \frac{(x-1)^2}{2!} + \frac{(x-1)^3}{3!} + \frac{(x-1)^4}{4!} + \frac{(x-1)^5}{5!}$$

28. The interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^3 2^n}$

(a)
$$0 < x < 3$$

(b)
$$0 \le x < 4$$

(c)
$$0 \le x \le 4$$

(d)
$$-\infty < x < \infty$$

(e)
$$0 < x \le 4$$

Q	MM	V1	V2	V3	V4
1	a	b	b	С	е
2	a	С	е	С	a
3	a	a	a	b	d
4	a	a	d	е	b
5	a	b	b	b	b
6	a	С	d	a	b
7	a	е	d	С	е
8	a	d	b	b	a
9	a	a	d	b	е
10	a	С	е	е	С
11	a	a	е	a	b
12	a	a	е	a	С
13	a	С	е	c	a
14	a	a	е	a	С
15	a	е	d	е	a
16	a	b	a	a	С
17	a	е	е	a	е
18	a	С	b	a	b
19	a	a	е	С	d
20	a	е	е	d	a
21	a	a	С	С	С
22	a	е	b	е	d
23	a	С	С	b	d
24	a	b	е	a	a
25	a	d	d	е	е
26	a	a	a	a	С
27	a	a	b	b	b
28	a	С	е	е	е