KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS

Math 102 – Calculus II Exam I Semester 072

Test Code: 1

Tuesday, March 18, 2008	Duration 120 Minutes		
Student's Name:			
ID #:	Section #:		
T			

Important Instructions:

- 1. All types of CALCULATORS, PAGERS, OR MOBILES ARE NOT ALLOWED to be with you during the examination.
- 2. Use an HB 2 pencil.
- 3. Use a good eraser. Do not use the eraser attached to the pencil.
- 4. Write your name, ID number and Section number on the examination paper and in the upper left corner of the answer sheet.
- 5. When bubbling your ID number and Section number, be sure that bubbles match with the number that you write.
- 6. The test Code Number is already typed and bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.
- 9. Check that the exam paper has 20 questions.

- 1. The value of $\int_0^{3\pi/4} |\cos x| \ dx$ is equal to
 - (a) $\frac{1}{9}$
 - (b) 3
 - (c) $\sqrt{2}$
 - (d) $2 \frac{1}{\sqrt{2}}$
 - (e) $\frac{3}{\sqrt{2}}$

- $2. \qquad \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} \left(1 + \frac{2i}{n} \right)^{3} \right) =$
 - (a) $\frac{1}{2} \int_{1}^{3} (1+x)^{3} dx$
 - (b) $\int_{1}^{3} x^{3} dx$
 - (c) $\int_{1}^{3} (1+x)^{3} dx$
 - (d) $\frac{1}{2} \int_{1}^{3} x^{3} dx$
 - (e) $\int_0^3 x^3 dx$

- 3. The Riemann sum for $f(x) = \sin x$, $0 \le x \le \pi$, with 6 equal subintervals, taking the sample points to be left endpoints, is equal to
 - (a) $\frac{(2-\sqrt{3})\pi}{6}$
 - (b) $\frac{(2+\sqrt{3})\pi}{6}$
 - (c) $\frac{(2+\sqrt{2})\pi}{6}$
 - (d) $\frac{\pi}{6}$
 - (e) $\frac{(3+\sqrt{2})\pi}{6}$

4. If f is a continuous function such that

$$\int_{1}^{x} e^{-t} f(t) \, dt = 3 + x \sin x$$

for all x, then f(x) =

- (a) $e^x + \sin x$
- (b) $x \cos x$
- (c) $e^x(x\cos x + \sin x)$
- (d) $xe^{-x}\sin x$
- (e) $e^{-x}\cos x$

5. Using area under curves to evaluate the integral

$$\int_{-2}^{2} (|x| + \sqrt{4 - x^2}) \ dx,$$

we get

- (a) $8 + \pi$
- (b) $4 + 2\pi$
- (c) $4 + 4\pi$
- (d) $4 + \pi$
- (e) 2π

- $6. \qquad \int_0^{\pi/3} \frac{\sin x}{\cos^2 x} dx =$
 - (a) -1
 - (b) $\frac{\sqrt{3}}{2} 1$
 - (c) 2
 - (d) 1
 - (e) $\frac{2}{\sqrt{3}} 1$

- 7. If $F(x) = \int_{x^2}^{x^3} \sqrt{1+t^2} dt$, then $F'(\sqrt{2}) =$
 - (a) $18 2\sqrt{10}$
 - (b) $18 + 2\sqrt{10}$
 - (c) 18
 - (d) $12\sqrt{2} 2\sqrt{5}$
 - (e) $2\sqrt{10} 18$

- 8. The value of the integral $\int_0^1 \frac{x^3 + x^2 + x + 1}{x + 1} dx$ is equal to
 - (a) 1
 - (b) $-\frac{2}{3}$
 - (c) 2
 - (d) $\frac{4}{3}$
 - (e) $\frac{7}{3}$

- 9. If $A = \int_0^{\pi/2} \sqrt{1 + \sin x} \, dx$, then
 - (a) $\frac{\pi}{2} \le A \le \frac{\pi}{\sqrt{2}}$
 - (b) $\frac{\pi}{\sqrt{2}} \le A \le \pi$
 - $(c) \quad 1 + \frac{\pi}{2} \le A$
 - (d) $A \le 1$
 - (e) $1 \le A \le \frac{\pi}{2}$

- 10. The limit $\lim_{n\to\infty} \sum_{i=1}^{n} \left[\frac{4i}{n^2} + \frac{6}{n} \right]$ can be interpreted as
 - (a) area under the graph of y = x on [0, 2]
 - (b) area under the graph of y = x + 3 on [3, 5]
 - (c) area under the graph of y = x on [3, 5]
 - (d) area under the graph of $y = 4x^2 + 6x$ on [3, 5]
 - (e) area under the graph of y = 2x + 3 on [1, 3]

- 11. $\int (\tan x) \ln(\cos x) \ dx =$
 - (a) $-\frac{1}{2}\ln^2\cos x + C$
 - (b) $\sin x \ln \cos x + C$
 - $(c) \quad \frac{1}{2}(\ln\cos x)^2 + C$
 - (d) $\frac{1}{\cos x} \ln \cos x + C$
 - (e) $-\ln\cos x + C$

- 12. If the region enclosed by the curves y = x and $y = x^2$ is rotated about the line x = -1, then the volume of the solid obtained is equal to
 - (a) $\frac{\pi}{4}$
 - (b) $\frac{2\pi}{3}$
 - (c) $\frac{2\pi}{15}$
 - (d) $\frac{\pi}{3}$
 - (e) $\frac{\pi}{2}$

- 13. $\int_0^1 x(1-x)^{10} dx =$
 - (a) $\frac{1}{64}$
 - (b) $\frac{1}{110}$
 - (c) 1
 - (d) $\frac{1}{11}$
 - (e) $\frac{1}{132}$

14. Which one of the following statements is **FALSE**?

(a)
$$e = \lim_{x \to 0} \left(1 + \frac{1}{x} \right)^{1/x}$$

(b)
$$\ln x = \int_{1}^{x} \frac{1}{t} dt$$
 $x > 0$

(c)
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

(d) e is the number such that $\ln e = 1$

(e)
$$\int \frac{1}{x} dx = \ln|x| + C$$

- 15. The area between the curves of $y = x^2 1$ and y = x + 1 is
 - (a) 5
 - (b) 9
 - (c) $\frac{9}{4}$
 - (d) 3
 - (e) $\frac{9}{2}$

16. The volume generated by rotating the region bounded by $y = \ln x$, y = 0, and x = e about the y-axis is equal to

(a)
$$\pi \int_1^e (\ln x)^2 dx$$

(b)
$$\pi \int_0^1 (e - e^y)^2 dy$$

(c)
$$\pi \int_{1}^{e} (e - e^{y})^{2} dy$$

(d)
$$\pi \int_0^1 (e^2 - e^{2y}) dy$$

(e)
$$\pi \int_0^e (e^2 - e^{2y}) dy$$

17. Evaluate $I = \int_0^{13} \frac{dx}{\sqrt[3]{(1+2x)^2}}$

- (a) 3
- (b) 6
- (c) $\frac{3}{2}\sqrt[3]{13}$
- (d) $\frac{1}{3}$
- (e) $\frac{3}{2}$

18. Find the area of the region bounded by the graphs of the equations

$$x = 2y^2$$
 and $y^2 = \frac{x}{3} + 3$

- (a) 36
- (b) 72
- (c) $\frac{1}{2}\sqrt{6} 8 + 3\sqrt{3}$
- (d) 18
- (e) $\sqrt{6} 16 + 6\sqrt{3}$

- 19. A particle moves along a line so that its velocity is $v(t) = 3t^2 2t 8$ (measured in meters per second). Then the **displacement** of the particle during the time period $1 \le t \le 2$ is given by
 - $(a) \quad 0$
 - (b) 4
 - (c) -6
 - (d) 6
 - (e) -4

- 20. The region bounded by the graphs of the equations 2x y = -1 and $y = 5x^2 + 2$ and by the vertical lines x = 0 and x = 1 is revolved about the x-axis. Find the volume of the resulting solid
 - (a) $\frac{34\pi}{3}$
 - (b) $\frac{34\pi}{6}$
 - (c) $\frac{10\pi}{3}$
 - (d) $\frac{5\pi}{3}$
 - (e) $\frac{5\pi}{6}$

Q	MM	V1	V2	V3	V4
1	a	d	b	a	b
2	a	d	d	a	a
3	a	b	d	a	d
4	a	С	d	е	С
5	a	b	b	a	С
6	a	d	С	b	a
7	a	a	e	a	d
8	a	d	d	d	С
9	a	a	b	е	e
10	a	c	d	е	e
11	a	a	е	d	d
12	a	е	d	d	d
13	a	е	a	С	a
14	a	a	С	b	e
15	a	e	c	b	d
16	a	d	a	d	a
17	a	a	b	С	е
18	a	a	d	С	b
19	a	е	b	d	С
20	a	a	е	С	b