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Abstract

The nonlinear stability of steady weakly dispersive hydraulic solutions of the forced
Korteweg de-Vries equation is investigated here. For numerical convenience the so-
lutions are considered as periodic pairs consisting of an upward and downward
jump. Two types of instability are found to occur. For largely symmetric problems,
a solitary wave type instability dominates which features subexponential growth
prior to saturation. For asymmetric solutions, the downward jump is destabilized
by a hydraulic instability in which superexponential growth occurs prior to satura-
tion. A qualitative description of both instability processes is presented using wave
kinematics.
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1 Introduction

In this paper, we consider the resonant flow of a stratified fluid through a
contraction, assuming that the oncoming fluid velocity and width of the con-
traction are dependent on height. The governing equation for the amplitude,
B(x, τ), of the internal wave generated is the forced Korteweg-de Vries (fKdV)
equation [1]:

Bτ + ∆Bx + 6BBx + Bxxx = −γfx, (1)

where x, τ are the along–channel spatial and time coordinates respectively, ∆
is a de-tuning parameter quantifying the difference between the flow velocity
and the long wave speed and γ is the coefficient of the forcing term f(x−xp),
where f(0) = 1 is the peak of the forcing. Then the upstream region is given
by x > xp and the downstream region given by x < xp. The fKdV equation
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Fig. 1. Numerical solution of (1) for f = sech2x with ∆ = 0, and, top panel: γ = 1,
bottom panel: γ = −1.

also arises in the context of water waves in a channel [2–5], interfacial waves
in a shallow fluid [6] and inertial waves in a tube [7] among others.

Of interest here are weakly dispersive hydraulic solutions of the fKdV equa-
tion, as previously considered in Grimshaw & Smyth [9] and Ee & Clarke
[8]. Weakly dispersive hydraulic solutions consist of hydraulic transitions or
jumps which smoothly match an asymptotically flat upstream subcritical state
with a similar downstream supercritical state. In Grimshaw & Smyth [9], the
solutions of the fKdV equation for a bell-shaped forcing and trivial initial
condition were considered. For γ > 0, it was shown that near-resonant asymp-
totic solutions consisted of hydraulic transitions connecting upstream solitary
wave-trains and a downstream plateau or steady downstream lee waves with an
upstream plateau. On the other hand for γ < 0, unsteady hydraulic transitions
were observed. For γ of either sign, asymmetric supercritical and subcritical
solutions were obtained outside of the near-resonant regimes. Steady and un-
steady hydraulic transitions are illustrated in Figure 1, whereas the (∆, γ)
combinations which describe the various flow regimes are given in Figure 2 for
a typical bell-shaped forcing.

In Ee & Clarke [8], a family of weakly dispersive steady hydraulic periodic
solutions and their corresponding linear stability were considered. Let the
upstream and downstream height of a weakly dispersive hydraulic solution be
respectively A+ and A−. Then for A+ > A−, the transition is defined as an
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Fig. 2. The parameter space for solutions of (1) for f = sech2x. The dashed lines
and text denote denote asymptotic regimes for the solutions of (1) for the trivial
initial condition. The solid lines and shading depict allowable boundaries for the
dispersive hydraulic solutions considered here.

upward jump and for A+ < A− as a downward jump. Due to the symmetry
of the fKdV equation, periodic hydraulic solutions over an interval [0, xu] can
be constructed with an upward jump centered at xp = 3xu/4 and its reflected
downward jump centered at xp = xu/4. The periodicity of these solutions over
large domains allows Fourier methods for be used to investigate the linear and
nonlinear stability. A continuous spectrum of these steady hydraulic solutions
were obtained for which the parameter space is shown in Figure 2. The dashed
lines in this figure were obtained from numerical experimentation and the
asymptotic behaviour of Grimshaw & Smyth [9] that regime boundaries must

behave as ∆ = O(|γ|
1

2 ) for |γ| ≫ 1. The solid boundaries are obtained by
using the numerically obtained parametric relationship of Ee & Clarke [8],
subject to the restriction that the downstream amplitude must be negative
and the upstream amplitude must be positive.

For γ > 0, these upward jump solutions extend the limits used by Grimshaw &
Smyth [9] to construct asymptotic solutions to the trivial initial value problem
for the fKdV equation. It was shown that the upward jump solutions, being
monotonic, were linearly and nonlinearly stable whereas the downward jump
solutions were linearly unstable. On the other hand for γ < 0, the jump
solutions are non-monotonic and both the upward and downward jumps are
generally linearly unstable. These include solitary wave (symmetric) solutions
at γ = −8 and γ ≈ −24.5. No other supercritical or subcritical symmetric
solutions were obtained on the branch of solutions documented in Ee & Clarke
[8].

The focus of Ee & Clarke [8] was linear stability; here we are interested in the
nonlinear stability of the family of solutions obtained in that paper. Previous
studies of the nonlinear stability of solutions of (1) have focused on forced
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solitary wave solutions. In particular, Camassa and Wu [10] classified the
evolution and asymptotic behaviour of the solitary wave solutions to (1) in
terms of the eigenvalue spectrum and the size of the de-tuning parameter which
were derived from their linear stability analysis. Three regimes are described
in that paper, of interest to us is the regime associated with the solitary wave
solution with ∆ = 0. This regime, their periodic bifurcating regime, matches
our definition of the solitary wave solution for γ = -8.

The goal of this paper is to investigate the nonlinear stability of the disper-
sive hydraulic solutions in Ee & Clarke [8]. In doing so, we aim to present a
qualitative explanation of the physics of this instability. This seeks to explain
not only the isolated and symmetric periodic solutions described earlier but
also the instability of periodic solutions generated by pairs of topographic per-
turbations with differing amplitudes. Such solutions have been considered by
Dias and Vanden-Broeck [12] and were discussed in Ee & Clarke [8]. In Sec.
2 we characterize the nonlinear stabilities of the solitary wave and dispersive
hydraulic solutions. In Sec. 3 we attempt to explain the nonlinear stability for
both these types of instability using conservation principles and wave kine-
matics.

2 Nonlinear stability characterization

We introduce a perturbation variable C(x, τ) such that B(x, τ) = Bs(x) +
C(x, τ) satisfies the original evolution equation (1) and Bs is a periodic steady
solution as discussed in Ee & Clarke [8]. Hence:

Cτ + ((∆ + 6Bs)C)x + 6CCx + Cxxx = 0, (2)

where
∆c = ∆ + 6Bs,

is referred to as the velocity perturbation.

When considering linear stability, we neglect the nonlinear term 6CCx in (2)
and transform the resulting equation into a matrix equation whose solution
can be constructed in terms of eigenvalues and eigenfunctions. The instability
of a particular solution is characterized by the magnitude of the eigenvalue
with the largest real part. We denote this as the leading eigenvalue and the
corresponding real part, σr. In terms of σr, it was shown that all the periodic
dispersive hydraulic solutions were weakly linearly unstable. The growth rate,
σr, is a function not only of γ but also of domain size. For sufficiently large
domains, as the domain length is increased the dominant effect on the insta-
bility spectrum is to cause a periodic variation in the growth rate at fixed
γ. In Figure 3 this variation in σr is shown as ∆x (grid size) is varied for a
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Fig. 3. Plots of the growth rate σr for periodic dispersive hydraulic solutions of (1),
as a function of γ. The envelopes are formed by solving the matrix stability equation
given in Ee & Clarke [8] using nu = 1024, xu = 256, 204.8, 170.6. The dashed bold
line denotes the approximate upper limit of the eigenvalue envelope.

spectral calculation. What is of interest in this figure is the upper limit of
the eigenvalue envelope, as this provides for a given value of γ, the maximum
asymptotic growth rate of an instability in the vicinity of a particular do-
main size. As will be seen, this is particularly important when we consider the
nonlinear instability of a particular solution.

For a periodic domain, or when C = Cx = 0 at the boundaries, the momentum
conservation principle for (2) is obtained by multiplying by C and integrating
over the domain, whereupon

∂

∂τ

∫ xu

0

C2

2
dx +

∫ xu

0

∆cx
C2

2
dx = 0, (3)

or
∂I1

∂τ
+ I2 = 0.

The integral I2 is a particularly useful quantity as it allows growth of insta-
bilities to be isolated to within the vicinity of variations in the velocity per-
turbation. In particular for a periodic dispersive hydraulic solution consisting
of an upward and downward pair of jumps, we can write

I2 =
∫ xu/2

0

∆cx
C2

2
dx +

∫ xu

xu/2

∆cx
C2

2
dx = Id

2 + Iu
2 .

Each separate term then quantifies the growth of instabilities associated with
either the downward or upward jump. As will become apparent, this is useful
in the characterization of instabilities and allows us to use a sufficiently large
domain as a proxy for an infinite domain.

Let
min

x
∆cx = −∆∗

cx,

then
dI1

dτ
≤ ∆∗

cxI1,
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Fig. 4. Nonlinear evolution of a solitary wave type instability for (2). Top panel:
Semilog plot of perturbation momentum vs time. Middle panel: a plot of I2 vs τ .
Bottom panel: a contour plot of the numerical solution of (2). All three plots were
obtained for the region [xu/2, xu] using ∆ = 0, γ = −8, xu = 256, nu = 1024.
Initial condition was a random field bounded between [−0.01, 0.01]. Dotted line in
top panel refers to the growth associated with σr = 0.13275.

from (3). This leads us to determine an upper bound for I1:

I1(τ) ≤ I1(0)e∆∗

cx
τ .

Hence as shown in Ee & Clarke [8], the upward jump solutions for γ > 0 are
linearly and nonlinearly stable.

2.1 Solitary wave instability

As in Ee & Clarke [8], the initial condition used in the numerical simulations
is a random field and the simulations are performed using a pseudospectral
approach for calculation of spatial derivatives and fourth-order Runge-Kutta
time-stepping.

In considering the instability of the solitary wave solution for γ = −8, since
the solution is symmetric, we need only consider half of the domain given by
[xu/2, xu]. Figure 4 shows the evolution of I1 and I2 in the top and middle
panels, together with a contour plot of the perturbation variable, C, in the
bottom panel.

The initial growth regime for the instability is that of linear growth where
I1 ∼ e2σrt and in this case, σr = 0.13275. This value of σr corresponds to the
growth rate of the linear perturbation momentum for the given γ, nu and ∆x.
This regime lasts until the first local minima in I2, just prior to the point A
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shown in the figure. Immediately following this regime, I1 continues to grow,
albeit at a slower rate than the linear growth rate until the first local maxima
in I1 is encountered at point A. Thus the first effect of nonlinearity in this
case is to cause sub-exponential growth up to the first saturation point at
A. From (3), it is clear that the growth of instabilities require I2 < 0. Thus
instabilities must be generated in this process along the upstream flank on the
forced solitary wave, i.e. x ∈ [3xu/4, xu].

In the regime marked by AB, a decrease in I1 to a local minima at B is
observed. Thus I2 > 0 for this period which could be due to two possible
scenarios. Either there is preferential growth of instabilities on the downstream
flank of the topography or the instabilities which previously formed on the
upstream side form a coherent structure which then self-advects upstream.
From the lower panel of Figure 4, it appears that it is the latter scenario
which occurs although the structure is not observable far upstream.

Then in the region BC the process observed to A is largely repeated. Again,
I2 in this region is negative definite, indicating preferential growth of the
instability on the upstream flank of the topographic perturbation. However,
this does not preclude growth on the downstream sides. Instead, the contour
plot suggests the growth of long waves on the downstream side and shorter
waves on the upstream side. At the saturation point C for I1, it appears that
the downstream long waves propagate upstream and eventually away from the
topography. The energy conservation principle for (2):

d

dτ

∫ xu

0

Cdx = 0,

requires the downstream propagation of energy which appears to occur here
in the form of a nonlinear wave group. This propagation of a small amplitude
solitary wave upstream and a nonlinear wave group downstream occurs in the
region CD. Note the amplitude of these upstream propagating solitary waves
is significantly smaller than that of the original forced solitary wave. From D,
this process is repeated leading to the formation and upstream propagation
of a second solitary wave at G and subsequently, a third one at I. Asymptoti-
cally, the wrap-around propagation of instabilities leads to a sea of turbulence
throughout the domain where the input of momentum at the topographic
perturbation is balanced due to numerical dissipation.

Qualitatively, the features described here are in agreement with that of Ca-
massa and Wu [10]. Rather than the random field used here, the instability
described in Camassa and Wu [10] was initialized using a coherent structure
localized to the region of the forced solitary wave.
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Fig. 5. Nonlinear evolution of a hydraulic type instability for (2). Top panel:
Semilog plot of perturbation momentum vs time where dominant eigenvalue is
Re(σmax(γ)) = 0.02661 (dashed line). Middle panel: Plots of I2 vs τ over the
original (translated down) and reflected (translated up) regions. Bottom panel: a
contour plot of the numerical solution of (2). All three plots were obtained using
γ = −2.55, xu = 256, nu = 1024. Initial condition was a random field bounded
between [−0.01, 0.01].

2.2 Hydraulic instability

For γ sufficiently larger than −8 the nature of the instability of the steady
forced asymmetric solutions of Figure 2 is qualitatively different from the
solitary wave instability described in the last section. We will refer to this type
of instability as hydraulic instability. For one, the periodic solution involves
an upstream jump in [xu/2, xu] and a downstream jump in [0, xu/2] which
each have different instability characteristics. To characterize the instability
associated with each of these regions, we can consider the contributions to I2

from the upstream and downstream regions, denoted as Iu
2 and Id

2 respectively.

A representative example of hydraulic instability is shown in Figure 5. Turning
to the top panel of this figure, it is again useful to divide the evolution into
regions based on the behaviour of I1. The first of these is from τ = 0 to τ = 96
(given by point A), where I1 experiences linear exponential growth in accor-
dance with the growth rate obtained from the upper limit of the eigenvalue
envelope for γ = −2.55.
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Subsequently in region AB, we have super-exponential growth which features a
nonlinear growth that exceeds the linear exponential growth rate. This region
occurs for τ ∈ [96, 122]. The super-exponential growth regime ends at B which
corresponds to an inflection point for I1 and a local minima for I2. At this
point, saturation of nonlinear effects occurs. As is clear from Id

2 , this nonlinear
saturation is purely due to growth at the downstream jump. As a result, a
solitary wave and associated nonlinear wave group are observed to propagate
away from the downward jump at B. From this inflection point B, the super-
exponential growth rate starts to decrease until we encounter a local maxima,
or saturation point, at τ ≈ 124.

In Figure 5, Iu
2 and Id

2 are shown for this case. Again, instabilities must form
on the upstream flank of the topography; however in this case, it is appar-
ent that it is the long wave instability which forms on the upstream flank and
develops into an upstream propagating solitary wave. Consequently, the insta-
bility process is much simpler than the see-saw process on the upstream and
downstream flanks which occurs for the solitary wave instability. Here, non-
linear and linear growth are coherent leading to a super-exponential growth
regime prior to saturation.

At the point C, we encounter a local maxima in I2, albeit a small one, giv-
ing another inflection point in I1. This occurs only in Iu

2 and is a result of
the initial downstream dispersive waves from the reflected topography being
wrapped around to the original region and then propagating towards the orig-
inal topography. Such signals we refer to here as secondary instabilities. An
example of this due to a forward propagating solitary wave generated from the
downstream jump occurs at E. Subsequent local minima in I2, given by points
D and F, correspond to primary instabilities generated from the reflected to-
pography. The process which occurs appears to be a repeat of the generation
of a solitary wave which occurs at B.

2.2.1 Effects of domain variation and initial condition

In Figure 6, we first focus on the effect of variation of the domain size on the
evolution of the hydraulic instability. This is achieved by varying either ∆x or
nu.

We first consider the effect of keeping ∆x fixed, in this case to a value of 1/4
and varying nu from 512 to 1024. For the smaller domain, the most obvious
difference is that a significantly larger time is required before the asymptotic
linear growth regime occurs. However once this occurs, the linear growth rate
is approximately equal to that for the larger domain. Similarly, the magnitude
of I1 at saturation is 7.6 (nu = 512) and 7.9 (nu = 1024).

If nu is fixed to 1024 and ∆x is varied from 0.25 to 0.2, then the evolution
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Fig. 6. Nonlinear evolution of a hydraulic type instability for (2). Semilog plots
of perturbation momentum vs time for solutions of (2) over combined region
using γ = −2.55 and random field initial condition. The various lines show
∆x = 1/5, nu = 1024 (bold line), ∆x = 1/4, nu = 1024 (dashed line),
∆x = 1/4, nu = 512 (dash-dot line) and linear exponential growth using
Re(σmax(γ)) = 0.02661 for ∆x = 0.24 (dotted lines).

of I1 is almost identical except that super-exponential growth commences at
slightly earlier time and smaller value of I1. Both have a dominant growth
rate of σr = 0.026 although the linear stability gives σr ≈ 0.015 (∆x = 0.25)
and σr ≈ 0.024 (∆x = 0.2).

This phenomena of growth at the dominant rate in the vicinity of a particular
domain size only occurs with the random initial condition. If we initialize a
simulation with the dominant eigenfunction from the linear stability analysis,
the nonlinear simulations demonstrate that the linear growth rate prior to sat-
uration is the theoretical growth rate rather the upper limit of the eigenvalue
envelope of Figure 3(b). It would appear resonance between the dominant
mode and subdominant modes allows linear growth at the upper limit of the
eigenvalue envelope. At saturation and afterwards, similar behaviour occurs
with initialization using the dominant eigenfunction as for a random initial
condition. Thus for large domains the nonlinear growth is largely independent
of domain size, as the growth is localized to the vicinity of the topographic
perturbation.

2.2.2 Effect of similar ∆

In Figures 7 and 8, the effect of γ on the nonlinear stability of dispersive hy-
draulic solutions is investigated. The two steady solutions use almost identical
values of ∆ but values of γ of opposite sign. Hence for γ > 0, the jumps are
monotonic while for γ < 0, they are non-monotonic. Furthermore, the value of
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Fig. 7. Evolution of perturbation momentum for hydraulic type instabilities of
(2) vs time over combined region with γ = −1.35,∆ = 2.3362 (bold) and
γ = 0.55,∆ = 2.34 (dashed).
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Fig. 8. Evolution of I2 vs τ for hydraulic type instabilities of (2) over the
original (translated down) and reflected (translated up) region. Top panel:
γ = −1.35,∆ = 2.3362 and bottom panel: γ = 0.55,∆ = 2.34. Both employ
xu = 256 and nu = 1024.

σr, i.e. the linear growth rate, is larger for negative γ solution. Consequently
in Figure 7, we observe that the main difference between the two solutions is
that the time at which nonlinear saturation occurs is less for γ < 0 than for
γ > 0.

However the super-exponential growth phase is almost identical for both so-
lutions. In particular the magnitude of I1 at saturation is 6.62 for both. Thus,
we can conclude that it is the value of ∆, which governs the height upstream
and downstream of the jumps, that controls the magnitude of the upstream
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Fig. 9. Evolution of I2 vs τ for solitary wave type instabilities of (2) over the original
(translated down) and reflected (translated up) regions for top panel: γ = −8.23
where there is a symmetric contribution towards the overall instability and bottom
panel: γ = −7.992 with first peak indicating the initial onset of instability due to
forcing in reflected region.

propagating solitary waves generated by the hydraulic instability process.

For γ > 0 since the jumps are monotonic then we must have Id
2 < 0 and Iu

2 > 0.
Thus any decrease in I1 is due to the damping of instabilities propagating
through the upstream jump. Figure 8 demonstrates that for γ < 0, the same
behaviour is observed for τ ≤ 200. Thus the downstream jump acts as a source
of instabilities and the upstream jump acts as an effective sink of instabilities.
At later times, this no longer holds. The cause of this would appear to be a
slow growth of a solitary wave type instability at the upstream jump.

2.2.3 Instability bands

The simulations with similar ∆ demonstrate that for γ > 0 only hydraulic
instability occurs, while for γ < 0 a mixture of hydraulic and solitary wave
instability occur. The rate of each of these two types of instabilities is then
dependent on the particular solution, and ultimately γ. For example at γ = −8
and approximately −24.5, the solutions are symmetric and only solitary wave
instability can occur. The form of the instability near γ = −8 is shown in
Figure 9.

In the upper panel, it is apparent that the behaviour upstream and down-
stream is similar, being characteristic of the solitary wave instability. The
downstream instability precedes the upstream instability slightly. In the lower
panel, the asymmetry between the two regions is now much more apparent
but both the upstream and downstream regions still, at least initially, display
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shown at the top of the figure. Note that for γ positive ∆min
c = 0 and the other two

curves coincide.

the characteristic solitary wave type instability. The most significant difference
between the two solutions is the value of ∆, which in this case primarily deter-
mines the magnitude of the trough and plateau that occurs between the two
solitary wave perturbations. Thus we can conclude that an upstream plateau
and downstream trough decreases the rate of solitary wave instability, while an
upstream trough and downstream plateau increases the rate of the instability.

The solutions being considered here can be characterized in terms of the veloc-
ity perturbation ∆c = ∆+6Bs and can be qualitatively described as consisting
of a jump from ∆ to −∆ and for γ < 0, a localized positive perturbation. For
a particular γ, the two main parameters which characterize the solution are
therefore ∆max

c and −∆min
c , each of which can be related to the two types of

instability.

Firstly, the rate at which the hydraulic instability occurs would be expected to
be dependent on −∆min

c , whereas the rate at which the solitary wave instability
occurs would be expected to be dependent on ∆max

c +∆min
c . These two param-

eters are plotted in Figure 10 as a function of γ. For γ > 0, ∆max
c + ∆min

c = 0
and no solitary wave instability occurs. For γ ≈ −8 and −∆min

c ≈ 0, solitary
wave instability dominates.

Hence, we could expect that hydraulic instability dominates when −∆min
c ≫

∆max
c + ∆min

c and solitary wave instability dominates when −∆min
c ≪ ∆max

c +
∆min

c . Naturally, we would expect that a transition between the two types of
instability occurs in the region −8 < γ < 0, ∆max

c ≈ −2∆min
c . For γ < −8,

∆max
c ≫ −2∆min

c and so we would expect the solitary wave instability to
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dominate.

3 Nonlinear stability analysis

In this section we develop using the theory of wave kinematics a qualitative
description of the instability processes numerically documented in the previous
section. In particular, this aims to address four points.

(1) Why the rate of instability is greater for non-monotonic jumps than for
monotonic jumps with the same values of ∆.

(2) That for large domains, the rate of instability is independent of domain
size.

(3) Why the initial nonlinear growth phase for hydraulic instability is super-
exponential.

(4) Why an upstream trough and downstream plateau decrease the rate of
solitary wave instability and increases the rate when the upstream and
downstream conditions are reversed.

To understand the nature of the instability process, we use the averaged vari-
ational or wave kinematics approach of Whitham [13]. For a slowly varying
wavetrain with amplitude a and wavenumber, k, then in the linear limit the
wavenumber is advected along rays such that

dk

dτ
= −Wx on

dx

dτ
= V

where

W = ∆ck − k3 (4)

is the local dispersion relationship and

V = W ′(k) = ∆c − 3k2 (5)

is the local group velocity. The subscript x denotes here explicit differentiation
with respect to x. Since the system is time invariant, the energy density is
defined to be

E =
Wa2

k

and advected along rays according to

dE

dτ
= −VxE on

dx

dτ
= V.
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Along a ray the above equations imply that a wave group conserves its fre-
quency, (4), and the energy density flux

V E =
(∆c − 3k2)Wa2

k

which determines the wavenumber, k = k(τ, x0) and amplitude a = a(τ, x0),
where x0 is the initial position of the ray. Alternatively as the ray is defined
as x(τ), k = k(x, x0) and a = a(x, x0). Asymptotically the behaviour will be
independent of the initial position of the ray, in which case k = k(x) and
a = a(x). This asymptotic behaviour is also referred to as steady propagation
of the wave group.

Furthermore, Whitham [13] showed that for the KdV equation, the weakly
nonlinear group velocities bifurcate and the amplitude propagates along

Va = V +
3a

k
(6)

while the wavenumber propagates along

Vk = V −
3a

k
. (7)

Note that this differs from the corresponding expressions in Whitham[13], as
there the amplitude of

∫

C dx is used.

In the limit of steady propagation of the wave group, conservation of frequency
results in the following relationship between velocity and wave number:

∆c =
W + k3

k
. (8)

Assuming that k > 0 without loss of generality, the curves that result are
shown in Figure 11. The behaviour that results then depends on which branch
the solution lies upon. For a fixed ∆c > 0, the three branches correspond
to long waves (Branch I, k ≤ (∆c/3)1/2), intermediate waves (Branch II,
(∆c/3)1/2 ≤ k ≤ ∆c

1/2) and short waves (Branch III, k ≥ ∆1/2
c ).

Since frequency is constant, conservation of energy density requires V a2/k is
constant, or

d

dx
(ln a2) = −

1

V

dV

dx
+

1

k

dk

dx
. (9)

Given W is constant , then

1

k

dk

dx
= −

∆cx

V
, (10)
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Fig. 11. Plots of (8) for W = 2 (Branch I - V > 0, Branch II - V < 0), V = 0
(dashed) and W = −2 (Branch III).

and consequently
d

dx
(ln a2) = −

1

V

(

dV

dx
+ ∆cx

)

. (11)

Differentiation of (5) gives dV/dx = ∆cx − 6k × dk/dx, or using (10)

dV

dx
= ∆cx +

6k2∆cx

V
.

Hence the numerator in (11) can be written as

dV

dx
+ ∆cx =

2∆cx

V
(V + 3k2) =

2∆cx

V
∆c.

This will finally give

d

dx
(ln a2) = −

2∆cx

V 2
∆c = −

(∆2
c)x

V 2
. (12)

Compare (12) with the global conservation law which states that the growth
of instabilities can only occur if ∆cx < 0. Here the growth of instabilities is
dependent on the change of |∆c|. Hence for amplification of a wavegroup in
the direction of propagation, |∆| must be decreasing.

3.1 Hydraulic Instability

Consider first wavegroups on Branch III. In this case, V < 0 and hence energy
propagates downstream throughout the domain. If we commence on a trough
of a solution at the minimum of ∆c, then as the wave group propagates down-
stream, its wavenumber increases until it reaches a maximum on the plateau
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of the domain. The wavenumber then decreases until the minimum of ∆c is
again reached. The amplitude throughout the domain is given by (13)

a2 =
ka2

0V0

k0V
, (13)

where k is the wavenumber, V is the local group velocity defined in (5) and
k0, V0 denote an initial wavenumber and local group velocity. Since V < 0,
the amplitude a remains bounded. Hence wavegroups of Branch III can be
assumed to be stable.

Consider now waves on Branches I and II and let the minimum of ∆c at the
intersection of the two branches be ∆∗. For a wavegroup on Branch II, V < 0
and hence the wave must propagate downstream towards ∆∗. In the process,
its wavenumber must decrease and amplitude must increase since V → 0 as
∆ → ∆∗. At ∆∗ where V = 0, the amplitude obtained from wave kinematics
becomes singular, which from linear theory would indicate the presence of
a caustic. That is the wavegroup passes through ∆∗ onto Branch I, where
V > 0, and then propagates upstream where its wavenumber and amplitude
now both decrease until the minimum in ∆c is reached. After this point, the
progress is down Branch I where the wavenumber and amplitude increase until
∆∗ is reached, indicating the presence of an upstream caustic. What the linear
simulations in Ee & Clarke [8] demonstrate is that this upstream caustic is
unstable whereas the downstream caustic is stable.

Within a caustic the slowly varying and linear assumptions of wave kinematics
eventually break down. To determine the effect of the former, consider the rate
at which the amplitude increases from (12), in particular

V
d

dx
(ln a2) = −

(

dV

dx
+ ∆cx

)

. (14)

On Branch I as ∆∗ is approached, both terms of the RHS of (14) are positive
while on Branch II, −dV/dx < 0 but −∆cx > 0. Thus cancellation of these
two terms occurs on Branch II and reinforcement occurs on Branch I. Conse-
quently, the rate of increase would be expected to be faster on Branch I than
on Branch II. Hence, the neglected linear terms must balance the amplitude
growth on Branch II resulting in stability at the caustic on the upward jump
while this is not able to occur at the downward jump resulting in instability
at this point. This buildup of energy is radiated away from the caustic on rays
which propagate downstream, resulting in an exponentially growing mode.

The above argument has been formulated in terms of an arbitrary upstream
wavenumber; however, there would be expected to be a mode for which max-
imum growth occurs on Branch I as ∆∗ is approached. Qualitative arguments
would suggest that this is the pair for which the long wave between jumps
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has k ≈ 0 and the shorter wave has k ≈ ∆1/2
c . For this pair ∆∗ ≈ 0 and the

extent of the two branches is largest. Hence, the dominant mode would have
frequency W ≈ 0.

For a periodic domain, only discrete wavenumbers are possible. Therefore
in general, it would be expected that the growth rate is slightly less than
described above as the dominant growth mode has a short wave component
for which k < ∆1/2. Thus we obtain the eigenvalue envelope in Figure 3.

Consider now the effect of nonlinearity, using that the energy density propa-
gates along the ray Va, (6). At the upward jump, the incoming ray has V < 0.
Consequently, the effect of nonlinearity is to increase Va and the wavegroup
undergoes a turning point more rapidly. At the downward jump, the opposite
applies in that the incoming ray has V > 0 and so the effect of nonlinearity is
to delay the onset of the turning point. Thus nonlinearity enhances the stabil-
ity at the upward jump and the instability at the downward jump. This has
two consequences on instability. Firstly, it would appear to cause enhanced
decay of the instability away from the topographic perturbation. Thus for a
sufficiently large domain, the instability, even for very small amplitudes, grows
at the optimal rate. Secondly, for sufficiently large amplitudes wave groups will
have zero velocity at ∆∗ and resonance occurs resulting in nonlinear growth
occurring at a faster rate than the theoretical linear growth. The result of this
is the super-exponential growth observed prior to saturation in the numerical
simulations.

3.2 Solitary Wave Instability

For a qualitative description of the solitary wave instability process, the dis-
cussion of wave modification on Branches I and II is still relevant except that
the change in ∆c occurs over a localized region and in this case ∆c ≥ 0. Conse-
quently a trapped mode forms over the topographic perturbation with a source
of instabilities for short waves on the upstream flank. Since exponential decay
is not relevant for a localized mode, we therefore have a corresponding source
of instabilities for long waves on the downstream flank. Hence, upstream of the
topographic maximum we would expect to observe short waves propagating
downstream. On the other hand downstream of the topographic maximum,
we would expect to observe long waves propagating upstream. Indeed, this is
confirmed by Figure 4 which again suggests that the most unstable mode has
W ≈ 0.

Again to assess the effect of saturation, we can consider the propagation of
energy. In this case, the upstream and downstream modifications to Va due to
near linear correction would be expected to cancel each other and so the region
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the trapped wave occupies does not change significantly. Consequently, super-
exponential growth to saturation would not be expected. Indeed the numerical
simulations demonstrate that sub-exponential growth occurs prior to satura-
tion. Thus the initial effect of nonlinearity is to dampen the linear growth
as opposed to the hydraulic instability where nonlinearity first enhances the
linear growth.

3.3 Mixed Instability

The qualitative description in the previous subsections have concentrated on
pure forms of the solutions, i.e. jumps which are monotonic and localized
structures which have ∆c = 0 both upstream and downstream. However this
only addresses the region γ > 0 and the discrete points of γ = −8 and approx-
imately −24.5 in Figure 2. In general for γ < 0, the steady jumps are of mixed
type. Two limits of these solutions can be considered. For −5 < γ < 0, the
jump structure dominates while for γ < −7, the localized structure dominates
compared to the magnitude of the jumps. The instability of these two limits
are discussed in detail below.

When the instability is dominated by a hydraulic instability, at both the up-
ward and downward jumps there now exists the possibility of trapped modes
for waves with frequency such that ∆∗ = ∆. Let ∆m be the maximum of ∆c

over the domain. Hence the rate of growth would be expected to be dependent
on |∆m − ∆|. Two consequences result. Firstly, an upward jump would now
be expected to be unstable, where the instability is a solitary wave instability,
except that the dominant wavenumber has wavelength k ≈ (∆/3)1/2 rather
than k ≈ 0. Secondly, as has been seen previously, the interactions of unsta-
ble modes appear to lead to faster growth at earlier stages even for relatively
small amplitudes. This would explain the observations that for two numerical
simulations having the same value of ∆, that for which γ < 0 has a faster rate
of instability than the solution with γ > 0.

If |∆m| ≫ |∆|, then the solution will be dominated by a solitary wave instabil-
ity where the trapped mode has k ≈ (∆/3)1/2 either upstream or downstream.
We refer to Figure 12. In the case of a plateau upstream and a trough down-
stream, the downstream caustic for the most unstable mode is now at finite
distance downstream from the topographic maximum; however, the upstream
caustic remains far upstream. As evidence suggests this is the dominant caus-
tic, the instability remains the same for the case of a localized solution though
the rate of growth of this instability is slower. For a plateau downstream and
trough upstream, the upstream caustic is now a finite distance from the to-
pographic maximum and consequently the growth mode of the instability is
enhanced.
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Fig. 12. A sketch of the scaled velocity perturbation for a periodic dispersive hy-
draulic solution of (1) using γ = −3.85, ∆ = 2.604. Caustic locations and directions
of short (SW) and long (LW) wave propagation for the slowly varying theory are
shown. ∆m is the maximum of ∆c over the domain.

4 Conclusion

The goal of this paper has been to characterize the nonlinear stability of steady
weakly dispersive hydraulic solutions of the fKdV equation. This has been
investigated using direct observations of integral properties of the instabilities.
The latter has proved to be particularly useful, in that it allows the source of
instability to be isolated to the upward and downward jumps which comprise
the periodic solutions.

The hydraulic solutions can be characterized in terms of the normalized forc-
ing parameter γ. In terms of this parameter value, the nonlinear stability can
be divided into two main categories as shown in Figure 10. Solitary wave insta-
bility occurs when the upward and downward solutions are largely symmetric.
Consequently the form of the instability at the upstream and downstream so-
lutions is primarily identical. This instability is characterized by the periodic
generation of upstream propagating solitary waves and downstream propagat-
ing dispersive waves. In both the original and reflected regions, sub-exponential
nonlinear growth in the momentum of the perturbation variable occurs prior
to saturation.

For solitary type instability problems the source of instabilities is on the down-
stream flank of the topographic perturbations. In contrast for hydraulic in-
stability, the primary instability only occurs at the downward jump and is
characterized by the source of instabilities being on the upstream flank of
the topographic perturbation. Prior to saturation, the nonlinear effects serve
to accelerate the growth of the perturbation momentum, resulting in super-
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exponential growth prior to saturation. Like solitary wave instability, the result
is the upstream propagation of solitary waves and the downstream propagation
of nonlinear wave groups. However in this case, the amplitude is significantly
larger. At the upward jump, primary instabilities can occur for non-monotonic
jumps in the form of a slower solitary wave type instability.

Thus stable weakly dispersive hydraulic solutions can only occur for γ > 0 and
only for upward jumps. Our numerical simulations indicate that for γ > 0, the
corresponding downward jump experiences a hydraulic type instability. While
for γ < 0, both the upward and downward jumps are nonlinearly unstable. For
|γ| ≫ 1, this is a solitary wave instability, while for |γ| ∼ 1 a mixed instability
occurs where the downward jump is destabilized by hydraulic instability and
the upward jump by solitary wave instability.

The general results detailed here have also been confirmed by separating the
upstream and downstream regions using viscous sponge layers. In this cir-
cumstance secondary instabilities cannot form due to solitary waves and wave
packets generated in one region being able to propagate into the other region.
However, other problems such as upstream influence are introduced when the
waves reach the sponge layers.

Finally, the employment of wave kinematics was found to be useful in three
ways: explaining the source of instabilities, the sub-exponential and super-
exponential growth rates and extensions from a finite domain to an infinite
domain. The latter is helpful in extending the study to single hydraulic transi-
tions rather than the periodic solutions considered here. It is anticipated that
the former two will allow the results obtained here to be extended to general-
izations of the fKdV equation, for example the addition of cubic nonlinearity.

Here we have only considered asymmetric solutions where the downward jump
is a reflection of the upward jump. However as noted in Ee & Clarke [8], pe-
riodic dispersive hydraulic solutions can be formed with non-matching pairs
of topographic perturbations. For a particular value of ∆ up to six possible
values of the forcing parameter γ can be utilized to form such a solution. If
these topographic perturbations are sufficiently far apart, since a periodic so-
lution must consist of at least one downward jump, we can conclude that such
solutions are nonlinearly unstable. However, as the topographic perturbations
move closer together, our numerical simulations demonstrate that the onset
of instability takes significantly longer. Thus there is the possibility that for
small, but finite, separation between the two topographic perturbations that
due to the interactions the combined solutions may be stable. The presence
of standing waves on the trough connecting the two jumps, as considered by
Dias and Vanden Broeck [12], may also lead to stabilization of the solutions.

We can now return to the trivial initial condition for bell-shaped topography
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for the fKdV equation as considered by Grimshaw & Smyth [9] and for which
the characteristic solutions are shown in Figure 1. For positive γ, our conclu-
sion is that the steady transition which forms in the vicinity of the topographic
perturbation is nonlinearly stable and is accurately described by the weakly
dispersive hydraulic solutions discussed here and in Ee & Clarke [8]. The soli-
tary waves which form on the upstream flank of the topography and which are
described using various modulation theories by Smyth[14] must simply be a
result of the incomplete transition from the trivial initial condition. If ∆ < 0
the waves are able to completely detach from the upstream flank, however
then a wavetrain is attached to the downstream flank. For negative γ, it can
be seen that the solution shown in the lower panel of Figure 1 is typical of a
solitary wave instability rather than a hydraulic type instability even though
|γ| is relatively small. Again, the reason for this would seem to be the tran-
sition from the trivial initial condition. In this case, the downward jump is
the only solution compatible with the small-time solution for the trivial initial
condition. However prior to this being able to form, a solitary wave instability
develops and subsequently dominates the asymptotic behaviour.
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