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Abstract

We consider the propagation of stratified fluid through a contraction near resonance, for which

the governing asymptotic equation is the forced KdV equation. Steady solutions of this equation

are sought which have constant, but differing amplitudes upstream and downstream of the contrac-

tion, and for which leading order dispersive effects are retained. A numerical algorithm is outlined

to obtain such solutions, yielding a parametric relationship between the normalized velocity per-

turbation and the normalized width perturbation. Matrix methods are then used to investigate

the linear stability of these solutions.
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I. INTRODUCTION

The study of stratified fluid flows through a contraction is of significance in both oceano-

graphic and engineering contexts, such as the study of deep overflows in the ocean, flows in

estuaries and flow within and between reservoirs to name a few. Baines1 details the general

theory of stratified flow over topography as well as applications and the interested reader is

urged to consult that monograph. The physical context of this paper is to consider the prop-

agation of stratified fluid through a contraction at a speed near a long wave speed, i.e. flow

is near resonance. What typically results is a transition of flow characteristics within the

contraction yielding hydraulic flows, characterised by different upstream and downstream

mean levels. However in reality, dispersive waves will occur resulting in standing waves being

superimposed on these solutions due to the finite length of the contraction.

As considered here, a hydraulic solution is generally one where the fluid response is a

function of some perturbation variable, e.g. depth or contraction width. While it is possible

to have symmetric hydraulic solutions, the solutions of interest here are those which are

topographically controlled2. Such solutions are characterized by a zero long wave speed at

the perturbation maximum and consequently match smoothly with the upstream subcritical

and downstream supercritical solutions. Dispersive hydraulic solutions, as of interest here,

are those where the same occurs but leading order dispersive effects are retained. In this

case, standing waves are possible but the solutions of interest are those which have no waves

superimposed, and so, the fluid response is effectively only a function of the topographic

perturbation, as for hydraulic solutions. In fact, the purpose of this paper is to study these

solutions in the weakly nonlinear limit and the effect of the contraction on the formation of

these solutions.

A general derivation for the long wave limit of weakly nonlinear stratified flow through

a contraction is presented in Clarke and Grimshaw3. It was demonstrated there that flow

through horizontal contractions, where either the oncoming velocity or contraction width

were a function of height, was equivalent to flow over vertical contractions. For such flows,

the amplitude of the resonant internal wave mode is governed by the forced Korteweg-de

Vries (fKdV) equation:

Bτ + ∆Bx + 6BBx + Bxxx = −γfx, (1)

2



where x, τ are the spatial and time variables respectively, ∆ is a detuning parameter quanti-

fying the difference between the flow velocity and the long wave speed and γ is the coefficient

of the forcing term, f . Consider as an example, two-layer flow past a topographic pertur-

bation in the Boussinesq limit. We assume that the dimensionless undisturbed lower layer

depth is R and the height of the topography is Rǫf(µx). Then following Baines1, the scaled

interface displacement will satisfy (1) where

∆ = − 6

µ2ds

(Fr − 1), γ =
9ǫ1/2

2d2
sµ

2(1 − 2R)
, ds = R(1 − R).

and the Froude number, Fr, is based on the linear long wave speed.

Here we will concentrate on symmetric bell-shaped forcing functions f(x− xp), where xp

is the peak of the forcing and x > xp and x < xp denote the upstream and downstream

regions respectively while f satisfies 0 ≤ f ≤ 1, f → 0 as |x| → ∞ and f(0) = 1. For

such forcings, Grimshaw and Smyth4 (henceforth referred to as GS) considered in detail the

solutions of (1) for the zero initial condition, which we now briefly describe. The boundaries

of the solution regions are such that when |γ| → 0, ∆ is proportional to |γ|2/3, while as

|γ| → ∞, ∆ is proportional to |γ|1/2. This dependence was explicitly demonstrated for γ > 0

where asymptotic solutions were constructed. These solutions consisted of steady dispersive

hydraulic solutions in the vicinity of the topography, matched upstream and downstream to

modulated wavetrains.

The assumption in GS appears to be that dispersive hydraulic solutions exist for inter-

mediate positive γ values, although the existence of a continuum of such solutions has not

been established. The question of the existence of dispersive hydraulic solutions for nega-

tive γ values and their corresponding linear stability in general have not been previously

considered.

There are several relevant recent papers which discuss the fKdV equation and in particu-

lar the steady hydraulic type solutions of (1). Numerous references to the fKdV equation in

general can be found in Baines1 and in the following papers. First, Dias and Vanden-Broeck5

considered critical free surface flows in scenarios where there were supercritical upstream and

wavy solutions downstream. The hydraulic flow solution is the limiting case, i.e. when down-

stream waves disappear. In their subsequent work, Dias and Vanden-Broeck6,7 considered

the dynamics of interfacial waves, in which two contiguous homogeneous fluids, of differ-

ent densities and layer thickness, flow over an obstacle. Further, Dias and Vanden-Broeck8
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considered the flow past two obstacles of arbitrary shape and showed that the resulting

solution was characterised by supercritical flow on one side of the obstacle and a train of

waves trapped between these two obstacles. These solutions were described as generalized

hydraulic falls in the latter paper and were shown to hold when the distance between the

two obstacles is large. In general, these works by Dias and Vanden-Broeck seek solutions

with waves downstream which then re-connect to form these hydraulic solutions. As will

become apparent, this is similar to the periodicity condition imposed in this paper.

The stability of solitary wave solutions of the fKdV equation with compact support was

first considered by Bona et al9, who used the Hamiltonian of the fKdV equation along with

the conserved quantities of mass and momentum to determine the stability of the solitary

wave solution. Pego and Weinstein10 studied the linear eigenvalue problem for the stability

and related it to the derivative of the momentum of the solitary wave. Camassa and Wu11

considered the stability of steady and forced solitary waves. Their approach involved first

finding the parameters in the evolution equation for the perturbation term for which we

have zero eigenvalues and then applying branch following methods to determine the full

eigenvalue spectrum. The method of Pego and Weinstein10 was subsequently generalized by

Pelinovsky and Grimshaw12 to an integro-differential generalization of the KdV equation.

Hence, the objective of this paper is two-fold. First, we search for steady weakly disper-

sive analogues of hydraulic flows that solve (1), subject to a forcing f . In so doing, we aim to

obtain a ∆(γ) parametric curve which describes the steady dispersive hydraulic solutions in

−γ1 ≤ γ ≤ γ2 where γ1, γ2 >> 1 and verify the two analytical limits of γ → 0 and γ → ∞
obtained by GS. To this end in Sec. II, some relevant properties of the fKdV equation are

discussed. Details of the branch following algorithm used to obtain the dispersive hydraulic

solutions are provided in Sec. III and the continuum of the solutions is discussed in Sec.

IV. The second objective is to investigate the linear stability of these solutions. Thus we

are effectively considering the solutions of the fKdV equation with small perturbations to

dispersive hydraulic solutions as the initial condition. This is in contrast to GS who consid-

ered solutions of the fKdV equation for a zero initial condition. In Sec. V, the stability of

dispersive hydraulic solutions is considered using matrix methods. We note that previous

methods to study the stability of the fKdV equation and its generalizations are not neces-

sarily applicable here, due to the solutions not having compact support of forced solitary

waves. The implications of these results are discussed in the conclusion.
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II. PROPERTIES OF THE FORCED KDV

Consider the general forced KdV equation

Aτ + UAx + rAAx + sAxxx = −G0fx(ξ(x − xp)). (2)

where f is a bell-shaped forcing of magnitude unity, as described earlier, G0 is the coefficient

of the forcing and ξ is a characteristic inverse lengthscale of the forcing. This was the

definition of the forcing used in GS. This can be reduced to a two-parameter system by

introducing x̃ = ξx, A(x, τ) = δB(x, τ) + A0 and τ̃ = ξδr/6 where (rδ)/(sξ2) = 6 and A0 is

some characteristic upstream amplitude. Then, B satisfies (1) where

∆ =
6(U + rA0)

rδ
, γ =

6G0

rδ2
.

and the tildes are dropped for the scaled independent variables x and τ . Here, ∆ and γ

represent respectively appropriately scaled detuning and forcing parameters. The limits ξ →
0 (hydraulic) and ξ → ∞ (narrow topography), considered by GS, correspond respectively

to γ → ∞ (large topography) and γ → 0 (small topography). The initial condition to be

considered later is that of a steady dispersive hydraulic solution.

For a particular initial condition, be it a steady dispersive hydraulic solution or the trivial

initial condition, the various types of flows which can occur must be a function of the scaled

parameters ∆ and γ. So the flow regimes for steady and unsteady flows must be given by a

parametric relationship F (γ, ∆) = 0. GS and subsequent papers have classified much of the

unsteady behaviour for (1). As stated in Sec. I, the first goal of this paper is to obtain a

parametric relationship for steady dispersive hydraulic solutions. Hence, we ignore the time

derivative term and integrating (1) with respect to x then gives

∆B + 3B2 + Bxx = −γf, (3)

where it has been assumed without loss of generality that the far upstream amplitude is

B = 0. Ignoring topographic effects in the far-field, we have

∆B + 3B2 + Bxx = 0, (4)

5



which has two critical points B = 0 and B = −∆/3. For ∆ > 0, these correspond respec-

tively to a centre and a saddle point. This is reversed for ∆ < 0. Since we can transform

the latter case to the former through the addition of a mean level, we can therefore assume

that ∆ ≥ 0 for hydraulic solutions and hence the steady flow solutions that are sought are

subcritical upstream and supercritical downstream, leading to asymmetric and dispersive

hydraulic solutions of the fKdV equation.

Assuming that we have such solutions for symmetric topography, the symmetries show

that the reflected version of this solution also satisfies the fKdV equation. Hence if a second

topographic perturbation is placed far downstream then it is possible to construct a periodic

solution consisting of the original solution at the upstream topography and a reflected so-

lution at the downstream topography. A sample of this periodic solution is given in Figure

1. For these periodic solutions, we denote the original solution region as 0.5xu ≤ x ≤ xu

and the reflected region as 0 ≤ x ≤ 0.5xu. In general, it is assumed that the topographic

perturbations are centered at x = 0.75xu and x = 0.25xu. In the original region, due to

the assumption of ∆ ≥ 0, an asymmetric dispersive hydraulic solution will have a mean

increase in amplitude as a function of x over the topographic perturbation. Such solutions

are referred to as upward jumps and the corresponding solution in the reflected region, a

downward jump.

One concern about the construction of such a periodic solution is the possible interaction

of the tails of the original and reflected solutions at x = xu/2. We shall show in Sec. III

that this interaction is typically very small. The periodicity of the combined solution allows

us to avoid the generally asymmetric nature of steady, dispersive hydraulic solutions and

to apply Fourier spectral methods. Hence, standard matrix methods can then be used to

determine the linear stability of the combined periodic solution. These will be described in

greater detail in Sec. V.

Before considering the continuum of dispersive hydraulic solutions, we outline the ap-

proximate solutions of the steady fKdV equation of GS for our forcing. The narrow forcing

limit of GS corresponds to small values of γ. In this limit, we can integrate over the forcing

and match the steady solutions of the KdV equation over this singularity. If K =
∫ ∞
−∞ fdx,

then steady solutions exist for ∆ and γ given by

(
∆

3
)3 = (Kγ)2. (5)
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This approximation is valid for the limits γ → 0±, although GS only considered γ → 0+. The

wide forcing limit corresponds to large and positive γ values. Here, we ignore the dispersive

term in (3) and are thereby considering hydraulic solutions. In this case, B satisfies a

quadratic equation which can be matched at the topographic maximum. In our notation,

solutions only occur when

∆ =
√

12γ. (6)

For the sech2(x) forcing we shall use, a solitary wave solution of the form D = asech2(x−
xp) where a is some constant coefficient also exists, see Camassa and Wu11. Setting ∆ = 0,

(3) reduces to

(3a2 − 6a)sech4(x − xp) + (4a + γ)sech2(x − xp) = 0 (7)

Then either γ = −4a and a = 0, 2, which in turn implies that γ = 0,−8. Therefore the only

non-trivial solution of this form is for γ = −8.

Finally, we should note that we were able to numerically determine one further symmetric

solution in which ∆ = 0 and this was found to occur at γ ≈ −24.55. This will be discussed

later.

III. NUMERICAL PROCEDURE AND PARAMETRIC RELATIONSHIP

Here we outline the numerical procedure for solving (3) such that the solutions are gen-

erally asymmetric, dispersive hydraulic flows. The numerical procedure is characterized by

four levels, namely ODE integration, minimization algorithm, solution refinement and a

branch following algorithm. Let Bu denote the far-field upstream amplitude and Bd denote

the far-field downstream amplitude. The problem at hand is to find hydraulic type solu-

tions such that Bu = 0, Bd = −∆/3 and the gradient of the amplitude in the far-field is

Bux, Bdx = 0 respectively. We assume for given γ this only occurs for particular ∆, which

then leads to a parametric curve ∆(γ). It should be noted that (3) is a three-dimensional

dynamical system and what we are seeking is a unique trajectory for that system starting

at the centre for large x and finishing at a saddle point for x large and negative. We can-

not start the integration from a saddle point because, as will be shown later, this does not

capture the downstream influence which occurs for these solutions. Hence, the difficulty of

7



this problem is shooting to the unstable downstream point. This causes standard methods

such as the Newton-Raphson to fail.

A. ODE Integration

The integration of (3) employs a shooting method implemented from the upstream re-

gion to the downstream region. The Runge-Kutta (4,5) method was used, based on the

Dormand-Prince pair13, as implemented in MATLAB. We can assume, in general, that there

is no upstream influence on the upstream side of the topography, so dispersion is negligible

when the topography is negligible. Hence, the upstream starting point simply needs to be

sufficiently upstream so that the topographic perturbation is negligible. On the downstream

side of the topography, waves occur outside the region where the topography is significant.

However, we still only need to shoot to sufficiently downstream such that the topographic

effect is negligible. The output of this routine is the downstream amplitude, Bd and Bdx, as

functions of the input parameters γ and ∆.

B. Minimization algorithm

Consider the nature of the downstream point. Let us define the Hamiltonian of (3) as

V (B, Bx) = γfB +
1

2
B2

x +
1

2
∆B2 + B3. (8)

In the far-field, Vc = V (−∆/3, 0) = ∆3/54 downstream and Vc = 0 upstream. Referring

to Figure 2, we want to find a minimum ∆ so that the far-field downstream amplitude lies

within the hatched region and ideally on the homoclinic orbit. If this occurs, then we have

effectively reached the saddle point. Note the size of the homoclinic orbit increases with ∆

since we have assumed that ∆ > 0. To ensure that the downstream amplitude solution lies

within the homoclinic orbit, we can specify two conditions:

V (V − Vc) ≤ 0 (9a)

|B| ≤ |∆/3| (9b)

The justification for (9) is evident from consideration of Figure 2 for two reasons. First, for

the solution to be contained in the homoclinic orbit, V must lie between the local maximum
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Vc and the local minimum V = 0. Secondly, within the homoclinic orbit −∆/3 ≤ B ≤ ∆/6,

which is satisfied if (9a) or (9b) are both satisfied.

Since the conditions (9) are highly nonlinear functions of the input parameters ∆ and

γ, it has been found that the following algorithm based on bracketing and bisection is the

most efficient method to obtain a solution for given γ:

(i) Let ∆1 be such that either one of (9) is not satisfied and ∆2 > ∆1 that satisfies (9).

(ii) Divide [∆1, ∆2] into n intervals.

(iii) Apply the shooting algorithm, starting with ∆2 and moving in the direction of de-

creasing ∆ along the interval in (ii) until we have a value of ∆ such that either one of

the conditions in (9) is not satisfied. Let us denote the ∆ value at which this occurs

to be ∆′.

(iv) Set ∆2 = ∆′ + (∆2−∆1)
n

, ∆1 = ∆′

(v) Repeat steps (i) to (iv) above until |(V − Vc)| ≤ ǫ̃ for some small ǫ̃, subject to V (V −
Vc) ≤ 0 and |B| ≤ |∆/3|.

C. Solution Refinement

By shooting from a centre to a saddle, we are actually approaching the saddle point

from this interior point of the orbit. What results is a solution that has a hydraulic profile

with downstream solitary waves appended. As we get closer to the saddle point, these

waves will advance further downstream (towards −∞), but in most cases, will still feature

in the computed solution. As the computed ∆ is already very precise and the trough of the

downstream wave is equal to −∆/3, we can artificially remove these downstream waves by

applying an exponential decay upstream of the first trough encountered in the downstream

region. An example of this is given in the top panel of Figure 3. Let B̃s be the steady solution

of (3) with periodic downstream waves and let xk be the position of the first downstream

trough, i.e. B̃
′

(xk) = 0 and B̃
′′

s (xk) > 0. Since the asymptotic level of this trough is −∆/3,

upstream of xk at a point xc such that |xc − xk| << 1, we apply the exponential decay:
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B∗
1 =











−∆/3 + F1e
(
√

∆)x x ∈ [xu/2, xc]

B̃s x ∈ [xc, xu]
(10)

where F1 = (B̃s(xc) + ∆/3)e−(
√

∆)xc .

Now we can use B∗
1 , valid over [xu/2, xu], to construct a periodic solution Bp which shall

be defined over [0, xu]. To do this, we first reflect B∗
1 so that it spans [0, xu/2]. Then we

attach it with the original B∗
1 at x = xu/2. An example of this was shown in Figure 1. A

linear correction term, H , can then be added to Bp to give us the final steady dispersive

hydraulic solution, Bs = Bp + H . The linearised steady equation (3), can be written, in

terms of this corrective function H , as

Hxx + 6BpH + ∆H = −R (11)

where R = Bpxx + 3Bp
2 + ∆Bp + γf is the residue of the solution due to numerical approx-

imation.

As (11) is a linear in H , we can use standard matrix methods to obtain a solution. The

final periodic solution is obtained on the uniform grid

xj =
xu(j − 1)

nu

, j = 1 . . . nu (12)

and defined on [0, xu]. Then, from Fornberg14, the Fourier differentiation matrix on this grid

is given by

Dij =











π(−1)i−j

xu tan(π(i − j)/nu)
i 6= j

0 i = j.

(13)

Now, (11) can be written as

(D2 + E)H = R, (14)

where E is a diagonal matrix with Ej,j = ∆+6Bp(xj). The solution of this can be obtained

using standard numerical methods. As illustrated in the bottom panel of Figure 3, the value

of the refinement, H , at x = xu/2 is effectively zero. This implies that any interaction at

the point where the original and reflected solutions meet is negligible.
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D. Branch Following Algorithm

To obtain initial values of ∆2 and ∆1 for the minimization routine, a simple branch

following algorithm is used. Commencing from a known solution, e.g. ∆ = 0 and γ0 = 0

or −8, an initial estimate is ∆2 = κ|γ1 − γ0|2/3 using appropriate values of κ and ∆1 = 0.

Linear and then quadratic interpolation are then used beyond the first point.

IV. PARAMETRIC RELATIONSHIP FOR DISPERSIVE HYDRAULIC SOLU-

TIONS

For forcing f(x) = sech2(x), the numerical methods outlined in the previous section can

now be used to obtain the functional relationship between ∆ and γ for the hydraulic type

solutions of the fKdV equation. These results are shown in Figures 4 and 5. Provided nu,

the number of collocation points, is sufficiently large and ∆x, the grid-spacing, is sufficiently

small, the results are largely independent of these latter parameters. For γ < −24.55,

selected values of γ show a similar arch-type ∆(γ) relationship as found in γ ∈ [−24.55,−8]

and [−8, 0]. Therefore, further solutions of compact support may be possible; however as

mentioned in Sec. II, no evidence of such solutions has been obtained.

As illustrated in Figure 4, the narrow forcing limit, (5) is in agreement with the computed

values as γ → 0+, 0− when K = 2. For the wide forcing limit, we see that as γ increases

the relative error, which we shall denote as |E|, between the computed ∆ and the analytical

formulation
√

12γ, valid in the limit γ → ∞, tends to zero. The minima in the ∆(γ) curve

at γ = −8 and γ ≈ −24.55 correspond to the forced solitary wave solutions mentioned in

Sec. III, the former being the sech2(x) solution and the latter a numerically determined

solution shown in Figure 5(a).

We conclude this section by considering the form of the solutions as γ varies. The key

difference is that for γ > 0 there are no local extrema, whereas all solutions for γ < 0

have a local maxima. For γ > 0 as γ is increased, the domain in which Bx is non-zero

becomes more confined to the region of the topographic perturbation. Consequently since

the magnitude of the jump is also increasing along this curve, the magnitude of the slope

must also be monotonically increasing. In this limit as γ → ∞, it is clear that the response of

the fluid, as measured by B, becomes a function primarily of the topographic perturbation,

11



in line with the definition of hydraulic solutions introduced here. Thus we can conclude that

dispersion is only a weak effect as γ → ∞.

For γ < 0, it is again apparent that the solutions become confined to the region of

the topographic perturbation as |γ| → ∞; however, at no stage does dispersion become

insignificant and the solutions always remain dispersive hydraulic jumps. If we consider

the position of the extrema for these solutions, then it can be shown that in the limit

γ → 0−, the extrema must occur far downstream and this approaches the topographic peak

from this downstream position as |γ| increases. This appears to be a monotonic increase

until γ = −8 at which point the soluion peak coincides with the topographic peak. In the

range −24.55 < γ < −8, the position of the extrema moves downstream and returns to the

topographic peak at γ = −24.55. For γ < −8, the form of the solution appears to consist

primarily of forced symmetric solitary wave in the vicinity of the topographic perturbation

coupled to a weak downstream shelf.

V. LINEAR STABILITY ANALYSIS

A. Stability Formulation

To determine the stability of the steady solutions, we seek a perturbation variable C(x, τ)

such that B(x, τ) = Bs(x) + C(x, τ) satisfies the original evolution equation (1) where Bs is

the periodic steady solution discussed in Sec. III. So the full stability equation is

Cτ + ((∆ + 6Bs)C)x + 6CCx + Cxxx = 0. (15)

Clarke and Grimshaw15 considered the transcritical propagation of weakly nonlinear and

long internal waves through a weak contraction. It was shown that the governing evolution

equation for this scenario is the variable coefficient KdV:

Aτ + (∆cA)x + rAAx + sAxxx = 0, (16)

where ∆c describes the velocity perturbation in the contraction. At once, we see that (15)

and (16) are identical. Thus, the dispersive hydraulic solutions effectively act as a contrac-

tion or expansion in channel width, leading to variable velocity upon which perturbations

12



propagate. The corresponding nonlinear stability equation for the solitary wave, as dis-

cussed by Camassa and Wu11, also resembles (15). In general, equations of the form (15)

or (16) will always be the stability equation for KdV-type problems. The key difference is

in the nature of the effective velocity, as represented by ∆ + 6Bs in (15). For solitary wave

instability studies, this has a single lengthscale and is confined to a compact region whereas

here this term has multiple lengthscales, i.e. the sudden change and plateau between two

topographic perturbations.

As we are interested in the linear stability of the steady dispersive hydraulic solutions in

this paper, we simply omit the nonlinear term, 6CCx and end up with

Cτ + ((∆ + 6Bs)C)x + Cxxx = 0. (17)

In this section, we shall outline matrix stability methods and direct numerical simulations

of the solutions of (16). Consider first the evolution of the perturbation momentum for both

(15) and (17). On a periodic domain, this satisfies

dI1

dt
+

∫ xu

0

∆cxC
2

2
dx = 0, (18)

where I1 =
∫ xu

0
C2

2
dx. Outside of the regions where the topographic perturbation occurs we

have ∆cx = 0. Thus, the source of momentum for instabilities is confined to that region

where the dispersive hydraulic solitions have near-zero slope. As discussed in the previous

section, apart from the limit γ → 0, this corresponds to the region of the topographic

perturbation.

The conservation law (18) also applies on an infinite domain. In particular, we can

draw some conclusions regarding the single topographic perturbation problem on an infinite

domain. Most significantly if ∆cx ≥ 0 everywhere, then dI1/dt ≤ 0 and the steady solution

of interest must be stable. Consider the upward jumps for γ > 0. As pointed out in the

previous section, these are monotonic in x and are therefore stable. For other solutions, the

minimum of ∆cx then gives an upper bound on the growth of the perturbation momentum.

If we denote

min
x

(∆cx) = −∆∗
cx,

then we have
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dI1

dt
= −

∫ xu

0

∆cxC
2

2
dx ≤ ∆∗

cxI1

and thus I1 ≤ I1(0)e∆∗

cxt.

Hence a downward jump, i.e. where A0 = 0 downstream, also has a larger bound on

the instability growth rate than the corresponding upward jump. Consequently, we would

expect, for the periodic solutions considered here, an asymmetry between the growth of

instabilities in the original and reflected regions. This law also suggests that the source of

instabilities is those regions where ∆cx < 0. For example, consider the solutions in Figure 4

for γ < 0. Since the extrema for the steady solution always occurs at or downstream of the

topographic maxima, this suggests that the primary source of the instability lies between

the solution extrema and the topographic extrema.

B. Matrix Stability Method

As (17) is linear, a solution can be constructed in terms of eigenfunctions. Let

C = eλtw(x)

then λ and w are respectively the eigenvalues and eigenfunctions of

λw = −(∆w + 6Bsw + wxx)x. (19)

Assuming orthogonality, the complete solution is the sum

C =
∞

∑

j=1

eλjtwj(x)

On the discrete periodic grid defined by (12), the differential operators are replaced by the

Fourier differentiation matrix, D, and (19) can be writen as the matrix eigenvalue problem

M̃ × F = Λ × F, (20)

where Λ is a matrix whose diagonal elements correspond to the eigenvalues of the matrix

M̃ = D × M and is zero everywhere else. The matrix M = E + D2, where E is a diagonal

matrix with elements Ej,j = ∆+6Bs(xj) and the Fourier differentiation matrix, D, is defined
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earlier in Sec. III. The columns of matrix F contain the eigenvectors of M̃ . Standard matrix

methods can then be used to solve (20).

Typically, the eigenvalue spectrum is similar to that found in Pego and Weinstein10,

which consist of a discrete spectrum of modes whose real part are effectively zero and finite

number of growing modes, for each of which a corresponding decaying mode also occurs.

The eigenvalues also have complex conjugate symmetry, and thus, away from the continuous

spectrum, occur as real pairs or complex quartets. In order to characterize the linear stability,

we seek the fastest growing eigenmode, σ, such that

σr = sup
j∈nu

Re(λj).

From the matrix stability method, we can therefore characterize the steady dispersive hy-

draulic solutions of Sec. IV as stable if σr is effectively zero (e.g. 10−8 or smaller) and

unstable otherwise. The spectrum of σr values are given in Figure 6 when three different

grid sizes of ∆x were considered.

Consider the effect of a change in domain size on the spectrum, which could be due to

either a change in ∆x or nu. The primary result of this is a phase shift of the σr spectrum.

For example, the spectrum for γ = −17.5 is illustrated in Figure 6(b). Here, σr is a local

minimum when xu = 170.7 and a local maximum when xu = 256. In Figure 7, the effect of

varying the grid size (and hence domain variation) on the computation of σr is shown for

two values of γ.

For fixed γ, we can define the envelope of this phase shift as the local extrema of σr as

the size of the domain is varied over a small range. Therefore, if γ and xu are fixed, the

upper and lower limits of the envelope can be respectively defined as:

Re(σmax(γ)) = sup
L∈[L−δ,L+δ]

σr(γ, L),

Re(σmin(γ)) = inf
L∈[L−δ,L+δ]

σr(γ, L).

where δ << xu. This envelope is apparent in Figure 6 and we would expect that as more

domain sizes are used in the given ranges, the envelope would become more pronounced.

At γ = −8 and −24.55, the envelope decreases to zero width indicating that the instability

results for those values are largely independent of domain size. Also it is clear that for
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nu = 1024, the width of the envelope is smaller than the corresponding results for nu = 512

indicating that the dependence on the domain size decreases as the domain size increases.

Consequently, we will confine our comments on instability to these larger domain sizes from

here.

The phase shift in the oscillations can be investigated for fixed γ as a function of domain

size. One example each for positive and negative γ is given in Figure 7. In doing so, it is

useful to also consider the behaviour of the next largest eigenvalue (based on the real part).

Figure 7(a) demonstrates the general evolution of the eigenvalues as a function of domain

size. This behaviour appears to be that a quartet of eigenvalues are generated from the

continuous spectrum. The imaginary part increases while the real part reaches a maximum

and then decreases and the quartet is reabsorbed into the continuous spectrum at a larger

value of domain size. Consequently, the spectrum observed for σr is a superposition of

contributions from many different eigenvalues. This is most significant at points where the

dominant and sub-dominant eigenvalues have approximately equal real parts. For example,

this occurs at ∆x = 0.24, 0.253 and 0.26 in Figure 7(a) and at ∆x = 0.147 and 0.2 in Figure

7(b). We will return to this point later.

As evident by the positive leading eigenvalues, given by σr, the matrix stability analysis

shows that we have linear instability for all γ values. The instability can be described as

weak, as σr is relatively small and always smaller than the value for γ = −8. For the

solitary wave solution at γ = −8, our linear instability characterization is in agreement

with the solitary wave instability results by Camassa and Wu11. In addition, it should

be noted that when ∆ = 0, i.e. at γ = −8 and approximately −24.55, the eigenvalues

σr, Re(σmax), Re(σmin) are all equal and strictly real.

Although it is not possible to associate eigenvalues with the downward jump in the

reflected region and the upward jump in the original region, we can expect from our earlier

comments of the evolution of I1, for there to be asymmetry related to the linear instability. In

particular for γ > 0 since the upward jumps are monotonically increasing, this suggests that

the instability is purely associated with the downward jump. For γ < 0, the upward jumps

are no longer monotonically increasing and so instability cannot be ruled out. However,

we would expect growth associated with an upward jump to be slower than that for the

corresponding downward jump.

To see the implication of this eigenvalue variation (or lack thereof) on the eigenfunctions,
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we turn to Figure 8. In plots (a) to (h) of this figure, we see that waves are formed in

the regions x > 0.75xu and x < 0.25xu, which will have a wavenumber k =
√

∆. The

modulation of these waves is a result of changing ∆x and consequently xu which in turn,

changes the dominant eigenfunction. At discrete values of xu, the upstream and downstream

phase match and consequently, optimal growth occurs. Between these discrete values, the

phase of the dominant eigenfunctions do not match and sub-optimal growth occurs.

Consequently, the eigenfunctions profiled in Figure 8(c-h) have modulated periodic mo-

tion in the region x > 0.75xu and x < 0.25xu. In contrast for points around ∆ = 0, waves

in the regions x > 0.75xu and x < 0.25xu are not as significant as k, ∆ → 0. Hence around

γ = −8, where ∆ is effectively zero, there is no variation in the eigenvalue envelope. This

also holds for γ ≈ −24.55 where ∆ ≈ 0.

Consider now the variation of eigenvalues with domain size and the effect on direct nu-

merical simulations. These are accomplished here using standard numerical techniques,

see Clarke and Grimshaw3. Spatial differentiation is accomplished using fast fourier trans-

forms14, and temporal integration using a fourth order Runge-Kutta method. For a given

Bs(x, γ) and ∆(γ), the initial condition used for C is a random initial field normalized to lie

between [−0.01, 0.01].

The evolution of I1 for fixed nu and γ but varying ∆x (and consequently xu) is shown

in Figures 9 and 10. For a random initial field after sufficiently large time, the average

growth for the linear perturbation momentum is O(e2σrt) for all γ being considered. This

average behaviour is clearly observed for both figures. When we impose the real part of the

eigenfunction associated with σr as the initial condition, we see that these oscillations and

variations in I1 no longer occur and the linear perturbation momentum grows according to

O(e2σrt) throughout the numerical simulation.

In relating Figures 7, 9(a-b) and 10(a-b), we see that when σr is a local maximum for

a particular value of γ, there are effectively no oscillations in the perturbation momentum

evolution for sufficiently large time, whereas we observe oscillations of varying frequency

for other σr values. To better understand this, we turn to the evolution of perturbation

variable, C.

At the local maxima of σr, the evolution plots demonstrate that the behaviour is either

steady growth (ref. Figure 9(c)) or steady propagation of wavepackets through the domain

(ref. Figure 10(c)). Near the local minima of σr, the propagation of wavepackets through
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the domain still occur; however, a temporal modulation occurring with the oscillatory period

observed in the evolution of I1 is superimposed. This can be observed in Figures 10(d) and

9(d). From Figure 7, it is clear that the reason for this is due to the fact that at local

maxima of the σr spectrum, we have the dominant growth of a unique mode whereas at a

local minima in the spectrum, the coupled growth of two modes with differing imaginary

parts occurs. An estimate of the period of these oscillations in I1 and C can be obtained

from the spectrum of σr shown in Figure 7. If two eigenvalues have similar real part, then

we would expect that the period of oscillations due to interactions between the two modes

will be:

T =
2π

λid

, (21)

where λid = Im(λ1)− Im(λ2). From Figure 9(b) and Figure 7(b), λd = 0.0781 and T = 80

based on approximately 2.5 cycles within t ∈ [400, 600]. This latter value is 0.56 percent off

the theoretical value. For Figure 10(b) and from Figure 7(d), λid = 0.196 and T = 33.33

based on approximately 6 cycles within t ∈ [600, 800]. This latter value is 3.97 percent off

the theoretical value.

VI. CONCLUSION

The main result of this paper has been to investigate a family of solutions of the fKdV

equation which are flat both upstream and downstream of a confined topographic perturba-

tion, but which in general have differing limits. We refer to these jump solutions as dispersive

hydraulic flows. The impetus for this has been to provide a continuous spectrum of solu-

tions to supplement the limits used by GS to construct approximate solutions to the initial

value problem for the fKdV equation. By a transformation of the detuning parameter, ∆, a

one-parameter family of solutions has been obtained, whereas the solutions of GS occupy a

phase-plane. Therefore, we must first determine the relationship between our solutions and

those of GS. The fKdV equation has the energy conservation property

d

dτ

∫ ∞

−∞
Bdx = 0.

This suggests that the solutions should be able to form, provided B is of opposite sign far

upstream and downstream of a jump. If B has the same value upstream and downstream,
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then energy cannot be conserved for finite energy initial conditions. Let ∆∗(γ) be the

locus of our one-parameter family of solutions when B = 0 upstream of an upward jump.

The downstream level is then Bd = −∆∗/3. Thus, conservation of energy states that the

allowable limits of the upstream level are [−∆∗/3, 0], while the corresponding limits of the

downstream level are [0, ∆∗/3]. For downward jumps, these limits are reversed. Hence, the

dispersive hydraulic solutions are a feasible asymptotic solution of the fKdV equation for

−∆∗ ≤ ∆ ≤ ∆∗. In Figure 11, this range of solutions is shown in comparison with the

boundaries of GS regimes for the same topography.

For γ > 0, it is apparent that the solutions obtained here are in good agreement with the

GS boundaries, except where |∆| becomes large. In both these limits, this appears to be due

to the fact that alternative steady solutions exist which are preferential attractors for the

initial value problem. For negative ∆, GS demonstrated that in the transition regime, the

solution consisted of a steady wavetrain downstream of the topography and an upstream

plateau. When ∆ is positive, supercritical solutions which are largely symmetric about

the topographic maximum were obtained. Interestingly, no such supercritical or subcritical

solutions were obtained for positive γ, even though they are allowable with this method. The

only such solutions are for γ = −8,−24.55. Since the stability of these dispersive hydraulic

solutions have been established, this indicates that the final state is clearly dependent on

the initial condition.

For negative γ, no agreement between the solutions outlined here and the regimes of GS

occurs. In this region, the relevant solutions compatible with the short time asymptotics

for the trivial initial condition are the downward jump solutions, which appear to be the

most linearly unstable of the four types of jump solutions considered. Coincidentally in this

regime, the solutions of GS, both in the resonant and transition regimes are unsteady. It

is therefore of interest to understand the long-time nonlinear evolution of solutions in this

region. In particular, do unsteady solutions similar to those of GS evolve, or do alternative

unsteady states exist.

For both negative and positive γ, there also exist complementary solutions to those

compatible with the fKdV equation trivial initial value problem. For negative γ, this is the

upward jump solution and for positive γ, the downward jump solution. The latter case is

not of particular interest as the downward jump solutions are linearly unstable whereas the

upward jump solutions are stable. For the former case, we would expect the upward jump
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solutions to have a weaker instability than the downward jump solutions. Consequently,

their asymptotic evolution is also of interest.

One other approach that has been used to investigate the linear stability of the solutions

investigated here is the momentum integral derivative. As discussed in the introduction, this

method has been used by Pego and Weinstein10 and others to characterize the stability of

forced and unforced compact solutions of KdV type equations. Unfortunately, most probably

due to the fact that the solutions being investigated here do not have compact support, there

is no correlation between the results of this method and the matrix stability results.

As mentioned in Sec. I, Dias and Vanden-Broeck8 considered periodic hydraulic type

solutions. The periodicity of these solutions was made possible by the presence of a sec-

ond identical topographic perturbation which reversed the first hydraulic transition. The

solutions presented here, where the original solution is reflected, are a limiting example of

the solutions of Dias and Vanden-Broeck8 when there are no waves between the two pertur-

bations. Two comments can be made regarding these solutions. The first is that identical

topographic perturbations are not necessary to reverse a dispersive hydraulic transition. In

fact, to construct asymmetric periodic solutions, one only needs to draw a horizontal line

through Figures 4 and 11. The intersection of the ∆(γ) curve then gives dispersive hy-

draulic solutions with identical downstream levels. Thus, we can construct solutions with

non-matching pairs as illustrated in Figure 12. Secondly, at least for the limiting examples

considered here, the periodic hydraulic type solutions of Dias and Vanden-Broeck8 would

appear to be linearly unstable. In particular, this instability would be expected to be fastest

growing for the downward jump. Again, the nonlinear evolution of such solutions is of

interest.
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Figure captions

• Figure 1 - Numerical solution to (3) for both the (i) original solution region defined

over [xu/2, xu] with xp = 128 and (ii) reflected solution region defined over [0, xu/2]

with xp = 42.67, subject to γ = −4, ∆ = 2.584, xu = 512/3.

• Figure 2 - Top panel: Using ∆ = 3 a sketch of homoclinic orbits of the KdV equation

with centre at B = 0 and saddle point at B = −1 corresponding to far-field upstream

and downstream amplitudes. Bottom panel: sketch of corresponding potential V where

Bx = 0 and f = 0 showing the centre and saddle points.

• Figure 3 - Top panel: Numerical solution to (3) over original region defined over

[xu/2, xu], where ∆ = 2.5854, γ = −4, xu = 512/3. Before applying exponential

decay (solid line), after the application of exponential decay (dashed) and the point of

the application of the exponential decay denoted by asterisk. Bottom panel: Semilog

plot of residue solution H , in original region defined over [xu/2, xu], to (3), ∆ = 2.5854,

γ = −4, xu = 512/3 and xp = 128. The point of application of the exponential decay

on the numerical solution is denoted by the asterisk.

• Figure 4 - Plot of γ vs ∆ using nu = 512 and ∆x = 1/4. This describes the locus of

dispersive hydraulic solutions for (3). Corresponding absolute value of relative error

|E| (bottom panels) between our computed ∆ and that in GS, to verify the (a) narrow

forcing limit and (b) wide forcing limit, both using nu = 512 and ∆x = 1/4.

• Figure 5 - Numerical solution of (3) after solution refinement with xp = 32 and using

(a): γ = −24.55, (b): γ = −20.45, (c): γ = −17.65, (d): γ = −12.15, (e): γ = −5.95,

(f): γ = −3.05, (g): γ = −1.95, (h): γ = 1.25, (i): γ = 3.75. Solutions (a) to (i) have

each been displaced such that the upstream level corresponds to zero.

• Figure 6 - Plots of eigenvalue spectra, σr vs γ formed by combining the eigenvalue plots

using (a) nu = 512, xu = 128, 102.4, 85.3 and (b) nu = 1024, xu = 256, 204.8, 170.6.

σ is the eigenvalue with the largest real part which can be obtained after solving

(20). Smaller box embedded in the bottom panel is a zoomed plot of the spectra for

γ ∈ [−18,−17].
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• Figure 7 - Plots of the Re(λ) and Im(λ) vs ∆x using nu = 1024 of the two lead-

ing eigenvalues, obtained after solving (20), ranked according to the size of the real

components. (a-b): γ = 3.5 and (c-d): γ = −5.

• Figure 8 - Plots of Re(w) and Im(w): real and imaginary components of the eigen-

function associated with σ, the eigenvalue with the largest real part which can be

obtained after solving (20). (a-b): γ = −5, xu = 170.66, (c-d): γ = −5, xu = 256,

(e-f): γ = 3.5, xu = 246.7, (g-h): γ = 3.5, xu = 265.9, (i): γ = −8, xu = 256. The

solutions all have mean value zero but have been displaced for clarity.

• Figure 9 - Logarithmic scale plot of perturbation momentum vs time over combined

region [0, xu], using nu = 1024 and γ = −5 for (a): ∆x = 0.167, σ = 0.02802 + 5.090i

and (b): ∆x = 0.25, σ = 0.01718 + 0.5467i. The dotted lines show the exponential

growth due to σr. Normalized numerical solutions to (17) with nu = 1024 and γ = −5

for (c): ∆x = 0.167, σ = 0.02802 + 5.090i and (d): ∆x = 0.25, σ = 0.01718 + 0.5467i.

• Figure 10 - Logarithmic scale plot of perturbation momentum vs time over combined

region [0, xu], using nu = 1024 and γ = 3.5 for (a): ∆x = 0.2409, σ = 0.01907+2.109i

and (b): ∆x = 0.2597, σ = 0.01563 + 1.570i. The dotted lines show the exponential

growth due to σr. Normalized numerical solutions to (17) with nu = 1024 and γ = 3.5

for (c): ∆x = 0.2409, σ = 0.01907+2.109i and (d): ∆x = 0.2597, σ = 0.01563+1.570i.

• Figure 11 - A depiction of the parameter space for solutions of (1) for f = sech2(x).

The dashed lines and text denote denote asymptotic regimes for the solutions of (1) for

the trivial initial condition. The solid lines and shading depict allowable boundaries

for the dispersive hydraulic solutions considered here.

• Figure 12 - Numerical solution of (3) after solution refinement with xp = −32, 32, 96,

nu = 512 along with topographic perturbations using γ = −10.25, γ = −7.85 and

γ = 0.05.
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