King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 101 – Calculus I EXAM I 2009-2010 (091)

Monday, November 2, 2009	Allowed Time: 2 Hours	
Name:		
ID Number:	Serial Number:	
Section Number:	Instructor's Name:	

Instrunctions:

- 1. Write neatly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.
- 3. Calculators and Mobiles are not allowed.
- 4. Make sure that you have 10 different problems (6 pages + cover page).

Problem No.	Points	Maxiumum Points
1		12
2		7
3(a,b,c)		18
4		12
5		6
6		10
7		7
8		12
9		12
10		4
Total:		100

Page 1 of 6

2. (7-points) If $x^3 - x + 4 \le x + f(x) \le 3x^2 + 1$ for all real numbers x, then find $\lim_{x \to 1} f(x)$. (Give reasons to your steps).

MATH 101 EXAM I (Term 091)

3. Evaluate the limit, if it exists:

(a) (6-points)
$$\lim_{x \to 1/2} \left(\frac{2}{2x-1} - \frac{3}{2x^2 + x - 1} \right)$$
.

(b) (6-points) Let
$$f(x) = \left[\frac{1}{2}x + 1\right]$$
 be the greatest integer less than or equal to $\frac{1}{2}x + 1$.
Find each of the following limits:

(i)
$$\lim_{x \to -2^-} f(x)$$

(ii)
$$\lim_{x \to -2^+} f(x)$$

(iii)
$$\lim_{x \to -2} f(x)$$

(c) (6-points)
$$\lim_{x \to 3^-} \frac{|x^2 - 9|}{x - 3}$$
.

4. (12-points) Find the horizontal asymptotes of the graph of the function

$$f(x) = \arctan \frac{\sqrt{9x^2 + 2}}{3x + 7}.$$

5. (6-points) Let $f(x) = \frac{4-x^2}{2-x-x^2}$. Find the following limits (write the answer as a real number, ∞ , or $-\infty$).

(a)
$$\lim_{x \to 1^-} f(x).$$

(b) $\lim_{x \to 1^+} f(x)$.

6. (10-points) Use the graph of $f(x) = \frac{1}{x}$ to find the largest number δ such that if $|x - 1| < \delta$, then |f(x) - 1| < 0.1. (Show your work and write your answer in simplest rational form $\frac{p}{q}$).

7. (7-points) Use the Intermediate Value Theorem to show that there is a root of the equation $e^{-x^2} = x$ between 0 and 1.

8. (12-points) The displacement (in meters) of a particle moving in a straight line is given by $s = \frac{1}{\sqrt{5-t}}$ where t is measured in seconds. Use limits to find the instantaneous velocity of the particle when t = 1. 9. (12 points) Find the values of a and b that make the function

$$f(x) = \begin{cases} 3 & \text{if } x = 1\\ ax^2 - bx + 3 & \text{if } 1 < x < 2\\ 2x - a + b & \text{if } 2 \le x < 3\\ 6 & \text{if } x = 3 \end{cases}$$

continuous on the closed interval [1,3]. (Use limits to justify your steps)

10. (4-points) Given the function $f(x) = \frac{2x^2 + kx - 14}{x - 2}$, where k is a constant, find k such that x = 2 is a removable discontinuity of f. (Give reasons to your steps).