King Fahd University of Petroleum \& Minerals

Department of Mathematics and Statistics
MATH 101 - Calculus I
EXAM I
2009-2010 (091)
Monday, November 2, 2009
Allowed Time: 2 Hours

Name: \qquad
ID Number: \qquad Serial Number: \qquad
Section Number: \qquad Instructor's Name: \qquad

Instrunctions:

1. Write neatly and legibly. You may lose points for messy work.
2. Show all your work. No points for answers without justification.
3. Calculators and Mobiles are not allowed.
4. Make sure that you have 10 different problems (6 pages + cover page).

Problem No.	Points	Maxiumum Points
1		12
2		7
$3(\mathrm{a}, \mathrm{b}, \mathrm{c})$		18
4		12
5	6	
6		10
7		12
8		12
9		4
10	Total:	

1. (12-points) Sketch the graph of a function f that satisfies all of the following conditions:

$$
\begin{aligned}
& \lim _{x \rightarrow-4^{-}} f(x)=-\infty ; \quad \lim _{x \rightarrow-4^{+}} f(x)=\infty ; \quad \lim _{x \rightarrow-\infty} f(x)=0 ; \\
& \lim _{x \rightarrow-2} f(x)=1 ; \quad f \text { is undefined at }-2 ; \\
& \lim _{x \rightarrow 1^{-}} f(x)=-1 ; \quad \lim _{x \rightarrow 1^{+}} f(x)=2 ; \quad f(1)=1
\end{aligned}
$$

2. (7-points) If $x^{3}-x+4 \leq x+f(x) \leq 3 x^{2}+1$ for all real numbers x, then find $\lim _{x \rightarrow 1} f(x)$. (Give reasons to your steps).
3. Evaluate the limit, if it exists:
(a) (6-points) $\lim _{x \rightarrow 1 / 2}\left(\frac{2}{2 x-1}-\frac{3}{2 x^{2}+x-1}\right)$.
(b) (6-points) Let $f(x)=\left[\frac{1}{2} x+1\right]$ be the greatest integer less than or equal to $\frac{1}{2} x+1$.

Find each of the following limits:
(i) $\lim _{x \rightarrow-2^{-}} f(x)$
(ii) $\lim _{x \rightarrow-2^{+}} f(x)$
(iii) $\lim _{x \rightarrow-2} f(x)$
(c) (6-points) $\lim _{x \rightarrow 3^{-}} \frac{\left|x^{2}-9\right|}{x-3}$.
4. (12-points) Find the horizontal asymptotes of the graph of the function

$$
f(x)=\arctan \frac{\sqrt{9 x^{2}+2}}{3 x+7}
$$

5. (6-points) Let $f(x)=\frac{4-x^{2}}{2-x-x^{2}}$. Find the following limits (write the answer as a real number, ∞, or $-\infty$).
(a) $\lim _{x \rightarrow 1^{-}} f(x)$.
(b) $\lim _{x \rightarrow 1^{+}} f(x)$.
6. (10-points) Use the graph of $f(x)=\frac{1}{x}$ to find the largest number δ such that if $|x-1|<\delta$, then $|f(x)-1|<0.1$. (Show your work and write your answer in simplest rational form $\frac{p}{q}$).
7. (7-points) Use the Intermediate Value Theorem to show that there is a root of the equation $e^{-x^{2}}=x$ between 0 and 1.
8. (12-points) The displacement (in meters) of a particle moving in a straight line is given by $s=\frac{1}{\sqrt{5-t}}$ where t is measured in seconds. Use limits to find the instantaneous velocity of the particle when $t=1$.
9. (12 points) Find the values of a and b that make the function

$$
f(x)= \begin{cases}3 & \text { if } x=1 \\ a x^{2}-b x+3 & \text { if } 1<x<2 \\ 2 x-a+b & \text { if } 2 \leq x<3 \\ 6 & \text { if } x=3\end{cases}
$$

continuous on the closed interval [1,3]. (Use limits to justify your steps)
10. (4-points) Given the function $f(x)=\frac{2 x^{2}+k x-14}{x-2}$, where k is a constant, find k such that $x=2$ is a removable discontinuity of f. (Give reasons to your steps).

