
t-REDUCTIONS AND t-INTEGRAL CLOSURE OF IDEALS (?)

S. KABBAJ AND A. KADRI

Abstract. Let R be an integral domain and I a nonzero ideal of R. An ideal J ⊆ I
is a t-reduction of I if (JIn)t = (In+1)t for some integer n ≥ 0. An element x ∈ R is
t-integral over I if there is an equation xn + a1xn−1 + ...+ an−1x + an = 0 with ai ∈ (Ii)t
for i = 1, ...,n. The set of all elements that are t-integral over I is called the t-
integral closure of I. This paper investigates the t-reductions and t-integral closure
of ideals. Our objective is to establish satisfactory t-analogues of well-known
results, in the literature, on the integral closure of ideals and its correlation with
reductions. Namely, Section 2 identifies basic properties of t-reductions of ideals
and features explicit examples discriminating between the notions of reduction
and t-reduction. Section 3 investigates the concept of t-integral closure of ideals,
including its correlation with t-reductions. Section 4 studies the persistence and
contraction of t-integral closure of ideals under ring homomorphisms. All along
the paper, the main results are illustrated with original examples.

1. Introduction

Throughout, all rings considered are commutative with identity. Let R be a ring
and I an ideal of R. An ideal J ⊆ I is a reduction of I if JIn = In+1 for some positive
integer n. An ideal which has no reduction other than itself is called a basic ideal
[12, 13, 23]. The notion of reduction was introduced by Northcott and Rees and its
usefulness resides mainly in two facts: “First, it defines a relationship between two
ideals which is preserved under homomorphisms and ring extensions; secondly,
what we may term the reduction process gets rid of superfluous elements of an
ideal without disturbing the algebraic multiplicities associated with it” [23]. The
main purpose of their paper was to contribute to the analytic theory of ideals in
Noetherian (local) rings via minimal reductions.

Reductions happened to be a very useful tool for the theory of integral depen-
dence over ideals. Let I be an ideal in a ring R. An element x ∈ R is integral over I
if there is an equation xn + a1xn−1 + ...+ an−1x + an = 0 with ai ∈ Ii for i = 1, ...,n. The
set of all elements that are integral over I is called the integral closure of I, and is
denoted by I. If I = I, then I is called integrally closed. It turned out that an element
x ∈ R is integral over I if and only if I is a reduction of I + Rx; and if I is finitely
generated, then I ⊆ J if and only if J is a reduction of I [17, Corollary 1.2.5]. This
correlation allowed to prove a number of crucial results in the theory including
the fact that the integral closure of an ideal is an ideal [17, Corollary 1.3.1]. For
a full treatment of this topic, we refer the reader to Huneke and Swanson’s book
“Integral closure of ideals, rings, and modules” [17].
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2 S. KABBAJ AND A. KADRI

Let R be a domain with quotient field K, I a nonzero fractional ideal of R, and let
I−1 := (R : I) = {x ∈ K | xI ⊆ R}. The v- and t-closures of I are defined, respectively, by
Iv := (I−1)−1 and It :=∪Jv, where J ranges over the set of finitely generated subideals
of I. The ideal I is a v-ideal (or divisorial) if Iv = I and a t-ideal if It = I. Under the ideal
t-multiplication (I, J) 7→ (IJ)t the set Ft(R) of fractional t -ideals of R is a semigroup
with unit R. Recall that factorial domains, Krull domains, GCDs, and PvMDs can
be regarded as t-analogues of the principal domains, Dedekind domains, Bézout
domains, and Prüfer domains, respectively. For instance, a domain is Prüfer
(resp., a PvMD) if every nonzero finitely generated ideal is invertible (resp., t-
invertible). For some relevant works on v- and t-operations, we refer the reader to
[10, 16, 19, 20, 21, 24, 25, 26, 27].

This paper investigates the t-reductions and t-integral closure of ideals. Our
objective is to establish satisfactory t-analogues of well-known results, in the liter-
ature, on the integral closure of ideals and its correlation with reductions. Namely,
Section 2 identifies basic properties of t-reductions of ideals and features explicit
examples discriminating between the notions of reduction and t-reduction. Section
3 investigates the concept of t-integral closure of ideals, including its correlation
with t-reductions. Section 4 studies the persistence and contraction of t-integral
closure of ideals under ring homomorphisms. All along the paper, the main results
are illustrated with original examples.

2. t-Reductions of ideals

This section identifies basic ideal-theoretic properties of the notion of t-reduction
including its behavior under localizations. As a prelude to this, we provide explicit
examples discriminating between the notions of reduction and t-reduction.

Recall that, in a ring R, a subideal J of an ideal I is called a reduction of I if
JIn = In+1 for some positive integer n [23]. An ideal which has no reduction other
than itself is called a basic ideal [12, 13].

Definition 2.1 (cf. [15, Definition 1.1]). Let R be a domain and I a nonzero ideal of
R. An ideal J ⊆ I is a t-reduction of I if (JIn)t = (In+1)t for some integer n ≥ 0 (and, a
fortiori, the relation holds for n� 0). The ideal J is a trivial t-reduction of I if Jt = It.
The ideal I is t-basic if it has no t-reduction other than the trivial t-reductions.

At this point, recall a basic property of the t-operation (which, in fact, holds for
any star operation) that will be used throughout the paper. For any two nonzero
ideals I and J of a domain, we have (IJ)t = (It J)t = (IJt)t = (It Jt)t. So, obviously, for
nonzero ideals J ⊆ I, we always have:

J is a t-reduction of I⇔ J is a t-reduction of It⇔ Jt is a t-reduction of It.

Notice also that a reduction is necessarily a t-reduction; and the converse is not
true, in general, as shown by the next example which exhibits a domain R with
two t-ideals J $ I such that J is a t-reduction but not a reduction of I.

Example 2.2. We use a construction from [18]. Let x be an indeterminate over Z
and let R :=Z[3x,x2,x3], I := (3x,x2,x3), and J := (3x,3x2,x3,x4). Then J $ I are two
finitely generated t-ideals of R such that:

JIn $ In+1
∀ n ∈N and (JI)t = (I2)t.
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Proof. I, being a height-one prime ideal [18], is a t-ideal of R. Next, we prove that J is
a t-ideal. We first claim that J−1 = 1

xZ[x]. Indeed, notice thatQ(x) is the quotient field
of R and since 3x ⊆ J, then J−1

⊆
1
3x R. So, let f := g

3x ∈ J−1 where g =
∑m

i=0 aixi
∈Z[x]

with a1 ∈ 3Z. Then the fact that x3 f ∈ R implies that ai ∈ 3Z for i = 0,2, ...,m; i.e.,
g ∈ 3Z[x]. Hence f ∈ 1

xZ[x], whence J−1
⊆

1
xZ[x]. The reverse inclusion holds since

1
x JZ[x] = (3,3x,x2,x3)Z[x] ⊆ R, proving the claim. Next, let h ∈ (R :Z[x]) ⊆ R. Then
xh ∈R forcing h(0) ∈ 3Z and thus h ∈ (3,3x,x2,x3). So, (R :Z[x])⊆ (3,3x,x2,x3), hence
(R :Z[x]) = 1

x J. It follows that Jt = Jv =
(
R : 1

xZ[x]
)

= x(R :Z[x]) = J, as desired.
Next, let n ∈N. It is to see that x3x2n = x2n+3 is the monic monomial with the

smallest degree in JIn. Therefore x2(n+1) = x2n+2
∈ In+1

\ JIn. That is, J is not a
reduction of I. It remains to prove (JI)t = (I2)t. We first claim that (JI)−1 = 1

x2Z[x].
Indeed, (JI)−1

⊆ (J−1)2 = 1
x2Z[x] and the reverse inclusion holds since

1
x2 JIZ[x] = (3,3x,x2,x3)(3,x,x2)Z[x] ⊆ R

proving the claim. Now, observe that I2 = (9x2,3x3,x4,x5). It follows that (IJ)t =

(IJ)v =
(
R : 1

x2Z[x]
)

= x2(R :Z[x]) = xJ ⊇ I2. Thus (IJ)t ⊇ (I2)t, as desired. �

Observe that the domain R in the above example is not integrally closed. Next,
we provide a class of integrally closed domains where the notions of reduction and
t-reduction are always distinct.

Example 2.3. Let R be any integrally closed Mori domain that is not completely
integrally closed (i.e., not Krull). Then there always exist nonzero ideals J $ I in R
such that J is a t-reduction but not a reduction of I.

Proof. These domains do exist; for instance, let k $ K be a field extension with k
algebraically closed and let x be an indeterminate over K. Then, R := k+xK[x] is an
integrally closed Mori domain [9, Theorem 4.18] that is not completely integrally
closed [11, Lemma 26.5] (see [8, p. 161]).
Now, by [15, Proposition 1.5(1)], there exists a t-ideal A in R that is not t-basic; say,
B ⊆ A is a t-reduction of A with Bt $ At. By [4, Theorem 2.1], there exist finitely
generated ideals F ⊆A and J ⊆ B such that A−1 = F−1 and B−1 = J−1; yielding At = Ft
and Bt = Jt. Let I := F+ J. Then, one can easily see, that J is a non-trivial t-reduction
of I. Finally, we claim that J is not a reduction of I. Deny. Since I is finitely
generated, I ⊆ J by [17, Corollary 1.2.5]. But, J ⊆ Jt by [22, Proposition 2.2]. It
follows that Jt = It, the desired contradiction. �

Another crucial fact concerns reductions of t-ideals. Indeed, if J is a reduction
of a t-ideal, then so is Jt; and the converse is not true, in general, as shown by the
following example which features a domain R with a t-ideal I and an ideal J ⊆ I
such that Jt is a reduction but J is not a reduction of I.

Example 2.4. Let k be a field and let x, y,z be indeterminates over k. Let R := k[x]+M,
where M := (y,z)k(x)[[y,z]] and let J := M2. Note that R is a classical pullback issued
from the local Noetherian and integrally closed domain T := k(x)[[y,z]]. Then M is
a divisorial ideal of R by [14, Corollary 5] and clearly, ∀ n ∈N, Mn+2 $Mn+1; that
is, J is not a reduction of M in R. On the other hand, notice that (M : M) = T (since
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T is integrally closed) and M is not principal in T. Therefore, by [14, Theorem 13],
we have

(R : (R : M2)) = (R : (M−1 : M)) = (R : ((M : M) : M)) =

(R : (T : M)) = (R : M−1) = M.
So that Jt = Jv = M. Hence, Jt is trivially a reduction of M in R.

In the sequel, R will denote a domain. For convenience, recall that, for any
nonzero ideals I, J,H of R, the equality (IJ + H)t = (It J + H)t always holds since
It J ⊆ (It J)t = (IJ)t ⊆ (IJ +H)t. This property will be used in the proof of the next basic
result which examines the t-reduction of the sum and product of ideals.

Lemma 2.5. Let J ⊆ I and J′ ⊆ I′ be nonzero ideals of R. If J and J′ are t-reductions of I
and I′, respectively, then J + J′ is a t-reduction of I + I′ and JJ′ is a t-reduction of II′.

Proof. Let n be a positive integer. Then the following implication always holds

(JIn)t = (In+1)t ⇒ (JIm)t = (Im+1)t ∀m ≥ n. (1)

Indeed, multiply the first equation through by Im−n and apply the t-closure to both
sides. By (1), let m be a positive integer such that

(JIm)t = (Im+1)t and (J′I′m)t = (I′m+1)t. (2)

By (2), we get (
(I + I′)2m+1

)
t
⊆

(
Im+1(I + I′)m + I′m+1(I + I′)m

)
t

=
(
(Im+1)t(I + I′)m + (I′m+1)t(I + I′)m

)
t

=
(
(JIm)t(I + I′)m + (J′I′m)t(I + I′)m

)
t

=
(
JIm(I + I′)m + J′I′m(I + I′)m

)
t

⊆

(
(J + J′)(I + I′)2m

)
t

⊆

(
(I + I′)2m+1

)
t

and then equality holds throughout, proving the first statement. The proof of the
second statement is straightforward via (2). �

The next basic result examines the transitivity for t-reduction.

Lemma 2.6. Let K ⊆ J ⊆ I be nonzero ideals of R. Then:
(a) If K is a t-reduction of J and J is a t-reduction of I, then K is a t-reduction of I.
(b) If K is a t-reduction of I, then J is a t-reduction of I.

Proof. For any positive integer m, we always have

(JIm)t = (Im+1)t ⇒ (JnIm)t = (Im+n)t ∀n ≥ 1. (3)

Indeed, multiply the first equation through by Jn−1, apply the t-closure to both
sides, and conclude by induction on n. Let (KJn)t = (Jn+1)t and (JIm)t = (Im+1)t, for
some positive integers n and m. By (3), we get

(Im+n+1)t = (Jn+1Im)t =
(
(Jn+1)tIm

)
t
=

(
(KJn)tIm

)
t
= (KIm+n)t

proving (a). The proof of (b) is straightforward. �

The next basic result examines the t-reduction of the power of an ideal.

Lemma 2.7. Let J ⊆ I be nonzero ideals of R and let n be a positive integer. Then:
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(a) J is a t-reduction of I⇔ Jn is a t-reduction of In.
(b) If J = (a1, ...,ak), then: J is a t-reduction of I⇔ (an

1 , ...,a
n
k ) is a t-reduction of In.

Proof. (a) The “only if” implication holds by Lemma 2.5. For the converse, suppose
(JnInm)t = (Inm+n)t for some positive integer m. Then

(Inm+n)t = (JJn−1Inm)t ⊆ (JInm+n−1)t ⊆ (Inm+n)t

and so equality holds throughout, as desired.
(b) Assume that J is a t-reduction of I. From [17, (8.1.6)], we always have the

following equality (
an

1 , ...,a
n
k

)(
a1, ...,ak

)(k−1)(n−1)
=

(
a1, ...,ak

)(n−1)k+1
(4)

and, multiplying (4) through by Jk−1, we get
(
an

1 , ...,a
n
k

)
Jnk−n = Jnk. Therefore

(an
1 , ...,a

n
k ) is a t-reduction of Jn and a fortiori of In by (a) and Proposition 2.6.

The converse holds by (a) and Proposition 2.6. �

The next basic result examines the t-reduction of localizations.

Lemma 2.8. Let J ⊆ I be nonzero ideals of R and let S be a multiplicatively closed subset
of R. If J is a t-reduction of I, then S−1 J is a t-reduction of S−1I.

Proof. Assume that (JIn)t = (In+1)t for some positive integer n. Let t1 denote the
t-operation with respect to S−1R. By [21, Lemma 3.4], we have:
((S−1I)n+1)t1 = (S−1(In+1))t1 = (S−1((In+1)t))t1 = (S−1((JIn)t))t1 = (S−1(JIn))t1

= ((S−1 J)(S−1I)n)t1 . �

It is worthwhile noting here that, in a PvMD, J is a t-reduction of I if and only
if J is t-locally a reduction of I; i.e., JRM is a reduction of IRM for every maximal
t-ideal M of R [15, Lemma 2.2].

3. t-Integral closure of ideals

This section investigates the concept of t-integral closure of ideals and its correlation
with t-reductions. Our objective is to establish satisfactory t-analogues of (and in
some cases generalize) well-known results, in the literature, on the integral closure
of ideals and its correlation with reductions.

Definition 3.1. Let R be a domain and I a nonzero ideal of R. An element x ∈ R is
t-integral over I if there is an equation

xn + a1xn−1 + ...+ an−1x + an = 0 with ai ∈ (Ii)t ∀i = 1, ...,n.

The set of all elements that are t-integral over I is called the t-integral closure of I,
and is denoted by Ĩ. If I = Ĩ, then I is called t-integrally closed.

Notice that the t-integral closure of the ideal R is always R, whereas the t-integral
closure of the ring R (also called pseudo-integral closure) may be larger than R; e.g.,
consider any non v-domain [3, 8]. Also, we have J ⊆ I⇒ J̃ ⊆ Ĩ. More ideal-theoretic
properties are provided in Remark 3.8.

It is well-known that the integral closure of an ideal is an ideal which is integrally
closed [17, Corollary 1.3.1]. Next, we establish a t-analogue for this result.

Theorem 3.2. The t-integral closure of an ideal is an integrally closed ideal. In general,
it is not t-closed and, a fortiori, not t-integrally closed.
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The proof of this theorem relies on the following lemma which sets a t-analogue
for the notion of Rees algebra of an ideal [17, Chapter 5]. Recall, for convenience,
that the Rees algebra of an ideal I (in a ring R) is the graded subring of R[x] given
by R[Ix] :=

⊕
n≥0 In xn [17, Definition 5.1.1] and whose integral closure in R[x] is

the graded ring
⊕

n≥0 In xn [17, Proposition 5.2.1].

Lemma 3.3. Let R be a domain, I a t-ideal of R, and x an indeterminate over R. Let
Rt[Ix] :=

⊕
n≥0(In)txn. Then Rt[Ix] is a graded subring of R[x] and its integral closure in

R[x] is the graded ring
⊕

n≥0 Ĩnxn.

Proof. That Rt[Ix] isN-graded follows from the fact that (Ii)t · (I j)t ⊆ (Ii+ j)t,∀i, j ∈N.
Let Rt[Ix] denote its integral closure in R[x]. By [17, Theorem 2.3.2], Rt[Ix] is an
N-graded ring. Let k ∈N and let Sk denote the homogeneous component of Rt[Ix]

of degree k. We shall prove that Sk = Ĩkxk. Let s := skxk
∈ Sk, for some sk ∈ R.

Then, sn + a1sn−1 + · · ·+ an = 0 for some positive integer n and ai ∈ Rt[Ix], i = 1, . . . ,n.
Expanding each ai =

∑ki
j=0 ai, jx j with ai, j ∈ (I j)t, the coefficient of the monomial of

degree kn in the above equation is sn
k +

∑n
i=1 ai,iksn−i

k = 0, with ai,ik ∈ (Iik)t. It follows

that sk ∈ Ĩk and thus Sk ⊆ Ĩkxk. For the reverse inclusion, let zk := ykxk
∈ Ĩkxk, for some

yk ∈ Ĩk. Then, yn
k + a1yn−1

k + · · ·+ an = 0 for some positive integer n and a j ∈ (Ikj)t, j =

1, . . . ,n. Multiplying through by xkn yields the equation zn
k +a1xkzn−1

k + · · ·+anxkn = 0,

with a jxkj
∈ (Ikj)txkj

⊆ Rt[Ix], j = 1, . . . ,n. That is, zk ∈ Rt[Ix]. But zk is homogeneous

of degree k in Rt[Ix]. Therefore zk ∈ Sk and hence Ĩkxk
⊆ Sk, completing the proof of

the lemma. �

Definition 3.4. The t-Rees algebra of an ideal I (in a domain R) is the graded
subring of R[x] given by Rt[Ix] :=

⊕
n≥0(In)txn.

Proof of Theorem 3.2. Let R be a domain and I a nonzero ideal of R. Since Ĩ = Ĩt, we
may assume I to be a t-ideal. We first prove that Ĩ is an ideal. Clearly, Ĩ is closed
under multiplication. Next, we show that Ĩ is closed under addition. Let a,b ∈ Ĩ.
Then, by Lemma 3.3, ax and bx ∈ Rt[Ix]. Hence, ax+bx = (a+b)x ∈ Rt[Ix]. Again, by
Lemma 3.3, a + b ∈ Ĩ, as desired. Next, we prove that Ĩ is integrally closed. For this
purpose, observe that, ∀n ∈N, (S1)n

⊆ Sn, forcing(
Ĩ
)n
⊆ Ĩn ∀n ∈N. (5)

Consider the Rees algebra of the ideal Ĩ, R[̃Ix] =
⊕

n≥0

(
Ĩ
)n

xn. Therefore R[̃Ix] ⊆

Rt[Ix] and hence R[̃Ix] ⊆ Rt[Ix]. Now, a combination of Lemma 3.3 and [17, Propo-

sition 5.2.1] yields
⊕

n≥0

(
Ĩ
)n

xn
⊆

⊕
n≥0 Ĩnxn. In particular, Ĩ ⊆ Ĩ; that is, Ĩ is

integrally closed. The proof of the last statement of the theorem is handled by
Example 3.10(b), where we provide a domain with an ideal I such that Ĩ $ ( Ĩ )t.

That is, Ĩ is not a t-ideal and, hence, not t-integrally closed since ( Ĩ )t ⊆
˜̃I always

holds. �
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The next result shows that the t-integral closure collapses to the t-closure in the
class of integrally closed domains. It also completes two existing results in the
literature on the integral closure of ideals (Gilmer [11] and Mimouni [22]).

Theorem 3.5. Let R be a domain. The following assertions are equivalent:
(a) R is integrally closed;
(b) Every principal ideal of R is integrally closed;
(c) Every t-ideal of R is integrally closed;
(d) I ⊆ It for each nonzero ideal I of R;
(e) Every principal ideal of R is t-integrally closed;
(f) Every t-ideal of R is t-integrally closed;
(g) Ĩ = It for each nonzero ideal I of R.

Proof. (a) ⇔ (b) and (a) ⇔ (c) ⇔ (d) are handled by [11, Lemma 24.6] and [22,
Proposition 2.2], respectively. Also, (g)⇔ (f)⇒ (e)⇒ (b) are straightforward. So,
it remains to prove (a)⇒ (g). Assume R is integrally closed and let I be a nonzero
ideal of R. The inclusion It ⊆ Ĩ holds in any domain. Next, let α ∈ Ĩ.

Claim 1. There exists a finitely generated ideal J ⊆ I such that α ∈ J̃.

Indeed, α satisfies an equation of the form αn + a1αn−1 + ...+ an = 0 with ai ∈

(Ii)t ∀i = 1, ...,n. Now, let i ∈ {1, ...,n}. Hence, there exists a finitely generated ideal
Fi ⊆ Ii such that ai ∈ Fiv. Further, each generator of Fi is a finite combination of
elements of the form

∏
1≤ j≤i c j ∈ Ii. Let J denote the subideal of I generated by all

c j’s emanating from all Fi’s. Clearly, ai ∈ (Ji)t ∀i = 1, ...,n. That is, α ∈ J̃, proving the
claim.

Claim 2. J̃ ⊆ Jt.

Indeed, we first prove that J−1 = ( J̃ )−1. Clearly, ( J̃ )−1
⊆ J−1. For the reverse

inclusion, let x ∈ J−1 and y ∈ J̃. Then y satisfies an equation of the form yn +a1yn−1 +

...+ an = 0 with ai ∈ (Ji)t ∀i = 1, ...,n. It follows that (yx)n + a1x(yx)n−1 + · · ·+ anxn = 0
with aixi

∈ (Ji)t(J−1)i
⊆ (Ji)t(Ji)−1 = (Ji)t((Ji)t)−1

⊆ R. Hence yx ∈ R. Thus, x ∈ ( J̃ )−1,
as desired. Therefore, J̃ ⊆ ( J̃ )v = Jv = Jt, proving the claim.

Now, by the above claims, we haveα∈ J̃⊆ Jt ⊆ It. Consequently, Ĩ = It, completing
the proof of the theorem. �

In case all ideals of a domain are t-integrally closed, then it must be Prüfer. This
is a well-known result in the literature:

Corollary 3.6 ([11, Theorem 24.7]). A domain R is Prüfer if and only if every ideal of R
is (t-)integrally closed.

Now, we examine the correlation between the t-integral closure and t-reductions
of ideals. In this vein, recall that, for the trivial operation, two crucial results assert
that x ∈ I⇔ I is a reduction of I + Rx [17, Corollary 1.2.2] and if I is finitely generated
and J ⊆ I, then: I ⊆ J ⇔ J is a reduction of I [17, Corollary 1.2.5]. Next, we establish
t-analogues of these two results.

Proposition 3.7. Let R be a domain and let J ⊆ I be nonzero ideals of R.

(a) x ∈ Ĩ⇒ I is a t-reduction of I + Rx.
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(b) Assume I is finitely generated. Then: I ⊆ J̃⇒ J is a t-reduction of I.
Moreover, both implications are irreversible in general.

Proof. (a) Let x ∈ Ĩ. Then, xn + a1xn−1 + · · ·+ an = 0 for some ai ∈ (Ii)t for each i ∈
{1, . . . ,n}. Hence

xn
∈ Itxn−1 + · · ·+ (In)t ⊆

(
Itxn−1 + · · ·+ (In)t

)
t
⊆

(
I(I + Rx)n−1

)
t
.

It follows that (I +Rx)n
⊆

(
I(I + Rx)n−1

)
t
. Hence, ((I +Rx)n)t =

(
I(I + Rx)n−1

)
t
. Thus, I

is a t-reduction of I + Rx.
(b) Assume I = (a1, . . . ,an), for some integer n ≥ 1 and ai ∈ R ∀i = 1, . . . ,n. Suppose

that I ⊆ J̃. By (a), J is a t-reduction of J + Rai, for each i ∈ {1, . . . ,n}. By Lemma 2.5, J
is a t-reduction of J + (a1, . . . ,an) = I, as desired.

The converse of (a) is not true, in general, as shown by Example 3.10(a). Also,
(b) can be irreversible even with I and J both being finitely generated. For instance,
consider the integrally domain R of Example 2.3 with two ideals J $ I, where J is a
non-trivial t-reduction of I (i.e., Jt $ It). By Theorem 3.5, J̃ = Jt + I. �

Next, we collect some ideal-theoretic properties of the integral closure of ideals.

Remark 3.8. Let R be a domain and let I, J be nonzero ideals of R. Then:

(1) I ⊆ I ⊆ Ĩ ⊆
√

It. Example 3.9(a) features a t-ideal for which these three con-
tainments are strict. However, note that radical (and, a fortiori, prime) t-deals are
necessarily t-integrally closed.

(2) Ĩ∩ J ⊆ Ĩ∩ J̃. The inclusion can be strict, for instance, in any integrally closed
domain that is not a PvMD by [1, Theorem 6] and Theorem 3.5. Another example
is provided in the non-integrally closed case by Example 3.9(c).

(3) Ĩ + J̃ ⊆ Ĩ + J . The inclusion can be strict. For instance, in Z[x], we have
(̃2) + (̃x) = (2,x) and (2,x)−1 =Z[x] so that (̃2,x) = (2,x)t =Z[x] (via Theorem 3.5).

(4) By (5),∀n≥ 1, ( Ĩ )n
⊆ Ĩn. The inclusion can be strict, as shown by Example 3.9(b).

(5) ∀ x ∈ R, x Ĩ ⊆ x̃I . Indeed, let y ∈ x Ĩ. Then, there is an equation of the form
yn + (xa1)yn−1 + · · ·+ xnan = 0 with xiai ∈ xi(Ii)t = ((xI)i)t, i = 1, . . . ,n. Hence, y ∈ x̃I .
Note that x Ĩ = x̃I , ∀ x ∈ R and ∀ I ideal⇔ R is integrally closed (Theorem 3.5).

We close this section by the two announced examples.

Example 3.9. Let R :=Z[
√
−3][2x,x2,x3], I := (2x2,2x3,x4,x5), and J := (x3), where x

is an indeterminate over Z. Then I is a t-ideal of R such that
(a) I $ I $ Ĩ $

√
I.

(b) ( Ĩ )2 $ Ĩ2.
(c) J̃∩ I $ J̃∩ Ĩ.

Proof. We first show that I is a t-ideal. Clearly, 1
x2Z[

√
−3][x] ⊆ I−1. For the reverse

inclusion, let f ∈ I−1
⊆ x−4R. Then f = 1

x4 (a0 + a1x + · · ·+ anxn) for some n ∈ N,

a0 ∈ Z[
√
−3], a1 ∈ 2Z[

√
−3], and ai ∈ Z[

√
−3] for i ≥ 2. Since 2x2 f ∈ R, then a0 =

a1 = 0. It follows that f ∈ 1
x2Z[

√
−3][x]. Therefore I−1 = 1

x2Z[
√
−3][x]. Next,

let g ∈ (R : Z[
√
−3][x]) ⊆ R. Then xg ∈ R, forcing g(0) ∈ 2Z[

√
−3] and hence g ∈
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(2,2x,x2,x3). So (R : Z[
√
−3][x]) ⊆ (2,2x,x2,x3). The reverse inclusion is obvious.

Thus, (R :Z[
√
−3][x]) = (2,2x,x2,x3). Consequently, we obtain

It = Iv = (R :
1
x2Z[

√

−3][x]) = x2(R :Z[
√

−3][x]) = I.

(a) Next, we prove the strict inclusions I $ I $ Ĩ $
√

I. For I $ I, notice that

(1 +
√
−3)x2

∈ I \ I as
(
(1 +
√
−3)x2

)3
= −8x6

∈ I3 and 1 +
√
−3 < 2Z[

√
−3].

For I$ Ĩ, we claim that x3
∈ Ĩ\I. Indeed, let f ∈ (I2)−1

⊆ x−8R. Then there are n ∈N,
ai ∈Z[

√
−3] for i ∈ {0,2, . . . ,n}, and a1 ∈ 2Z[

√
−3] such that f = 1

x8 (a0 +a1x+ · · ·+anxn).

Since 4x4 f ∈ R, then a0 = a1 = a2 = a3 = 0. Therefore, (I2)−1
⊆

1
x4Z[

√
−3][x]. The

reverse inclusion is obvious. Hence, (I2)−1 = 1
x4Z[

√
−3][x]. It follows that

(I2)t = (I2)v = (R :
1
x4
Z[
√

−3][x]) = x4(R :Z[
√

−3][x]) = x2I.

Hence x6
∈ (I2)t and thus x3

∈ Ĩ. It remains to show that x3 < I. By [17, Corollary
1.2.2], it suffices to show that I is not a reduction of I + (x3). Let n ∈N. It is easy
to see that x4x3n is the monic monomial with the smallest degree in I

(
I + (x3)

)n
.

Therefore, x3(n+1) = x3n+3
∈

(
I + (x3)

)n+1
\ I

(
I + (x3)

)n
. Hence, I is not a reduction of

I + (x3), as desired.
For Ĩ $

√
I, we claim that x2

∈
√

I \ Ĩ. Obviously, x2
∈
√

I. In order to prove that
x2 < Ĩ, it suffices by Proposition 3.7 to show that I is not a t-reduction of I + (x2).
To this purpose, notice that I + (x2) = (x2). Suppose by way of contradiction that
(I(I + (x2))n)t = ((I + (x2))n+1)t for some n ∈N. Then (x2)n+1 = x2n+2

∈ (I(I + (x2))n)t =
x2nI. Consequently, x2

∈ I, absurd.
(b) We first prove that Ĩ = (2x2, (1 +

√
−3)x2,x3,x4). In view of (a) and its proof,

we have (2x2, (1 +
√
−3)x2,x3,x4) ⊆ Ĩ. Next, let α := (a + b

√
−3)x2

∈ Ĩ where a,b ∈Z.
If b = 0, then a , 1 as x2 < Ĩ. Moreover, since 2x2

∈ Ĩ, a must be even; that is,
α ∈ (2x2). Now assume b , 0. If a = 0, then b , 1 as

√
−3x2 < Ĩ. Moreover, since

2
√
−3x2

∈ Ĩ, b must be even; that is, α ∈ (2x2). So suppose a , 0. Then similar
arguments force a and b to be of the same parity. Further, if a and b are even, then
α ∈ (2x2); and if a and b are odd, then α ∈ (2x2, (1 +

√
−3)x2). Finally, we claim that

Ĩ contains no monomials of degree 1. Deny and let ax ∈ Ĩ, for some nonzero a ∈

2Z[
√
−3]. Then, by [17, Remark 1.1.3(7)], ax ∈ Ĩ ⊆ (̃x2) = (x2) ⊆ x2Z[

√
−3][x]. By [17,

Corollary 1.2.2], (x2) is a reduction of (ax,x2) in Z[
√
−3][x], absurd. Consequently,

Ĩ = (2x2, (1 +
√
−3)x2,x3,x4). Now, we are ready to check that ( Ĩ )2 $ Ĩ2. For this

purpose, recall that (I2)t = x2I. So, 2x4
∈ Ĩ2. We claim that 2x4 < ( Ĩ )2. Deny. Then,

2x4
∈ (4x4,2(1 +

√
−3)x4), which yields x2

∈ (2x2, (1 +
√
−3)x2) ⊆ Ĩ, absurd.

(c) We claim that x3
∈ Ĩ∩ J̃ \ Ĩ∩ J . We proved in (a) that x3

∈ Ĩ. So, x3
∈ Ĩ∩ J̃.

Now, observe that I∩ J = xI and assume, by way of contradiction, that x3
∈ Ĩ∩ J =

x̃I . Then x3 satisfies an equation of the form (x3)n + a1(x3)n−1 + · · ·+ an = 0 with
ai ∈ ((xI)i)t = xi(Ii)t, i = 1, . . . ,n. For each i, let ai = xibi, for some bi ∈ (Ii)t. Therefore
(x2)n + b1(x2)n−1 + · · ·+ bn = 0. It follows that x2

∈ Ĩ, the desired contradiction. �
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Example 3.10. Let R :=Z+ xQ(
√

2)[x], I := ( x
√

2
), and a := x

2 , where x is an indeter-
minate over Q. Then:

(a) I is a t-reduction of I + aR and a < Ĩ.

(b) Ĩ $ ( Ĩ )t and hence Ĩ $˜̃I.
Proof. (a) First, we prove that (I(I + aR))t = ((I + aR)2)t. It suffices to show that
a2
∈ (I(I + aR))t. For this purpose, let f ∈ (I(I + aR))−1 = ( x2

2 ,
x2

2
√

2
)−1
⊆ ( x2

2 )−1 = 2
x2 R.

Then, f = 2
x2 (a0 + a1x + . . .+ anxn), for some n ≥ 0, a0 ∈ Z, and ai ∈ Q(

√
2) for i ≥ 1.

Since x2

2
√

2
f ∈ R, a0 = 0. It follows that (I(I +aR))−1

⊆
1
xQ(
√

2)[x]. On the other hand,

(I(I + aR))( 1
xQ(
√

2)[x]) ⊆ R. So, we have

(
I(I + aR)

)−1
=

(
x2

2
,

x2

2
√

2

)−1

=
1
x
Q(
√

2)[x] (6)

Now, clearly, a2(I(I + aR))−1
⊆ R. Therefore, a2

∈ (I(I + aR))v = (I(I + aR))t, as desired.
Next, we prove that a < Ĩ = I. By [17, Corollary 1.2.2], it suffices to show that I is

not a reduction of I + aR. Deny and suppose that I(I + aR)n = (I + aR)n+1, for some
positive integer n. Then an+1 = ( x

2 )n+1
∈ I(I + aR)n = x

√
2
( x
√

2
, x

2 )n. One can check that

this yields 1 ∈
√

2(
√

2,1)n
⊆ (
√

2) in Z[
√

2], the desired contradiction.
(b) We claim that a ∈ ( Ĩ )t. Notice first that x ∈ Ĩ as x2

∈ I2 = (I2)t. Therefore,
A := (x, x

√
2
) ⊆ Ĩ. Clearly, A = 2

x ( x2

2 ,
x2

2
√

2
). Hence, by (6), A−1 = Q(

√
2)[x]. However,

aA−1
⊆ R. Whence, a ∈ Av = At ⊆ ( Ĩ )t. Consequently, a ∈ ( Ĩ )t \ Ĩ. �

4. Persistence and contraction of t-integral closure

Recall that the persistence and contraction of integral closure describe, respec-
tively, the facts that for any ring homomorphism ϕ : R→ T, ϕ( I ) ⊆ ϕ(I)T for every
ideal I of R, and ϕ−1(J) = ϕ−1(J) for every integrally closed ideal J of T.

This section studies the persistence and contraction of t-integral closure. To this
purpose, we first introduce the concept of t-compatible homomorphism which
extends the well-known notion of t-compatible extension [2]. Throughout, we
denote by t (resp. t1) and v (resp. v1) the t- and v- closures in R (resp., T).

Lemma 4.1. Let ϕ : R −→ T be a homomorphism of domains. Then, the following
statements are equivalent:

(a) ϕ(Iv)T ⊆
(
ϕ(I)T

)
v1

, for each nonzero finitely generated ideal I of R;

(b) ϕ(It)T ⊆
(
ϕ(I)T

)
t1

, for each nonzero ideal I of R;

(c) ϕ−1(J) is a t-ideal of R for each t1-ideal J of T such that ϕ−1(J) , 0.

Proof. (a)⇒ (c) Let J be a t1-ideal of T and let A be any finitely generated ideal of
R contained in ϕ−1(J). Then, ϕ(A)T ⊆ J = Jt1 . Further, ϕ(A)T is finitely generated.
Hence,

(
ϕ(A)T

)
v1
⊆ J. It follows, via (a), that ϕ(Av)T ⊆

(
ϕ(A)T

)
v1
⊆ J. Therefore,

Av ⊆ ϕ−1(J) and thus ϕ−1(J) is a t-ideal.
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(c)⇒ (b) Let I be a nonzero ideal of R. The ideal J :=
(
ϕ(I)T

)
t1

is clearly a t1-ideal

of T with ϕ−1(J) , 0. By (c), ϕ−1(J) is a t-ideal of R. Consequently, we obtain

It ⊆
(
ϕ−1(ϕ(I)T)

)
t
⊆

(
ϕ−1

(
ϕ(I)T

)
t1

)
t
=

(
ϕ−1(J)

)
t
= ϕ−1(J).

So that ϕ(It)T ⊆ J =
(
ϕ(I)T

)
t1

, as desired.
(b)⇒ (a) Trivial. �

Definition 4.2. A homomorphism of domains ϕ : R −→ T is called t-compatible if
it satisfies the equivalent conditions of Lemma 4.1.

Whenϕdenotes the natural embedding R⊆T, this definition matches the notion
of t-compatible extension (i.e., ItT ⊆ (IT)t1 for every ideal I of R) well studied in the
literature [2, 5, 6, 7].

Next, we announce the main result of this section which establishes persistence
and contraction of t-integral closure under t-compatible homomorphisms.

Proposition 4.3. Let ϕ : R −→ T be a t-compatible homomorphism of domains, I an ideal
of R, and J an ideal of T. Then:

(a) ϕ( Ĩ )T ⊆ ϕ̃(I)T.
(b) ϕ̃−1(J) ⊆ ϕ−1( J̃ ). Moreover, if J is t-integrally closed, then ϕ̃−1(J) = ϕ−1(J).

Proof. (a) Let x ∈ Ĩ, y := ϕ(x), and z ∈ T. We shall prove that yz ∈ ϕ̃(I)T. Suppose
that x satisfies the equation xn +a1xn−1 + ...+an = 0 with ai ∈ (Ii)t for i = 1, ...,n. Then,
apply ϕ to this equation and multiply through by zn to obtain

(yz)n + b1z(yz)n−1 + ...+ bn−1zn−1(yz) + bnzn = 0

where bi :=ϕ(ai) ∈ϕ((Ii)t)T ⊆ (ϕ(Ii)T)t1 =
((
ϕ(I)T

)i)
t1

by t-compatibility. Hence bizi
∈((

ϕ(I)T
)i)

t1
, for i = 1, ...,n. Consequently, yz ∈ ϕ̃(I)T.

(b) Let H := ϕ(ϕ−1(J))T. Then, by (a), we have

ϕ
(
ϕ̃−1(J)

)
T ⊆ H̃ ⊆ J̃.

It follows that ϕ̃−1(J) ⊆ ϕ−1 (̃J), as desired. Now, if J is t-integrally closed, then
ϕ̃−1(J) ⊆ ϕ−1 (̃J) = ϕ−1(J) ⊆ ϕ̃−1(J) and hence the equality holds. �

In the special case when both R and T are integrally closed, persistence of t-
integral closure coincides with t-compatibility by Theorem 3.5. This shows that
the t-compatibility assumption in Proposition 4.3 is imperative.

Corollary 4.4. Let R⊆ T be a t-compatible extension of domains and I an ideal of R. Then:

(a) ĨT ⊆ ĨT.
(b) Ĩ ⊆ ˜IT∩R ⊆ ĨT∩R.

Moreover, the above inclusions are strict in general.

Proof. (a) and (b) are direct consequences of Proposition 4.3. The inclusion in
(a) and second inclusion in (b) can be strict as shown by Example 4.6. The first
inclusion in (b) can also be strict. For instance, let R be an integrally closed domain
and let P $ Q be prime ideals of R with x ∈ Q \P. Then (̃x) = (x) by Theorem 3.5.
While ˜xRP∩R = R̃P∩R = R. That is, (̃x) $ ˜(x)RP∩R. �
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Corollary 4.5. Let R be a domain, I an ideal of R, and S a multiplicatively closed subset
of R. Then S−1̃I ⊆ S̃−1I.

Proof. It is well-known that flatness implies t-compatibility [7, Proposition 0.6].
Hence, Corollary 4.4 leads to the conclusion. �

For the integral closure, we always have S−1I = S−1I [17, Proposition 1.1.4]. But in
the above corollary the inclusion can be strict, as shown by the following example.

Example 4.6. We use a construction due to Zafrullah [25]. Let E be the ring of
entire functions and x an indeterminate over E. Let S denote the set generated by
the principal primes of E. Then, we claim that R := E + xS−1E[x] contains a prime
ideal P such that S−1P̃ $ S̃−1P. Indeed, R is a P-domain that is not a PvMD [25,
Example 2.6]. By [26, Proposition 3.3], there exists a prime t-ideal P in R such that
PRP is not a t-ideal of RP. By Theorem 3.5, we have

P̃RP = PRP $ Rp = (PRP)t = P̃RP

since R is integrally closed. Also notice that P = ˜PRP∩R $ P̃RP∩R = R.

Corollary 4.7. Let R be a domain and I a t-ideal that is t-locally t-integrally closed (i.e.,
IM is t-integrally closed in RM for every maximal t-ideal M of R). Then I is t-integrally
closed.

Proof. Let Maxt(R) denote the set of maximal t-ideals of R. By Corollary 4.5, we
have

Ĩ ⊆
⋂

Mi∈Maxt(R)
( Ĩ )Mi

⊆
⋂

Mi∈Maxt(R)
ĨMi

=
⋂

Mi∈Maxt(R)
IMi

= I.
Consequently, I is t-integrally closed. �
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