t-CLASS SEMIGROUPS OF NOETHERIAN DOMAINS
S. KABBAJ AND A. MIMOUNI

ABSTRACT. The #-class semigroup of an integral domain R, denoted
Z(R), is the semigroup of fractional ¢-ideals modulo its subsemigroup

of nonzero principal ideals with the operation induced by ideal #-multiplication.
This paper investigates ring-theoretic properties of a Noetherian domain

that reflect reciprocally in the Clifford or Boolean property of its 7-class
semigroup.

1. INTRODUCTION

Let R be an integral domain. The class semigroup of R, denoted . (R),
is the semigroup of nonzero fractional ideals modulo its subsemigroup of
nonzero principal ideals [3], [19]. We define the z-class semigroup of R, de-
noted .7} (R), to be the semigroup of fractional z-ideals modulo its subsemi-
group of nonzero principal ideals, that is, the semigroup of the isomorphy
classes of the z-ideals of R with the operation induced by #-multiplication.
Notice that .#;(R) stands as the z-analogue of .%’(R), whereas the class
group CI(R) is the r-analogue of the Picard group Pic(R). In general, we
have

Pic(R) C CI(R) C .%(R) C .#(R)

where the first and third containments turn into equality if R is a Priifer
domain and the second does so if R is a Krull domain.

A commutative semigroup S is said to be Clifford if every element x
of S is (von Neumann) regular, i.e., there exists a € S such that x = ax. A
Clifford semigroup S has the ability to stand as a disjoint union of subgroups
G., where e ranges over the set of idempotent elements of S, and G, is the
largest subgroup of S with identity equal to e (cf. [7]). The semigroup S is
said to be Boolean if for each x € S, x = x2. A domain R is said to be Clifford
(resp., Boole) t-regular if S;(R) is a Clifford (resp., Boolean) semigroup.

Date: November 28, 2008.

2000 Mathematics Subject Classification. 13C20, 13F05, 11R65, 11R29, 20M 14.

Key words and phrases. Class semigroup, ¢-class semigroup, t-ideal, 7-closure, Clifford
semigroup, Clifford ¢-regular, Boole ¢-regular, z-stable domain, Noetherian domain, strong
Mori domain.

This work was funded by KFUPM under Project # MS/t-Class/257.

1



2 S. KABBAJ AND A. MIMOUNI

This paper investigates the 7-class semigroups of Noetherian domains.
Precisely, we study conditions under which ¢-stability characterizes ¢-regularity.
Our first result, Theorem 2.2 compares Clifford z-regularity to various forms
of stability. Unlike regularity, Clifford (or even Boole) ¢-regularity over
Noetherian domains does not force the z-dimension to be one (Example[2.4).
However, Noetherian strong 7-stable domains happen to have 7-dimension
1. Indeed, the main result, Theorem asserts that “R is strongly t-stable
if and only if R is Boole t-regular and t-dim(R) = 1.” This result is not
valid for Clifford z-regularity as shown by Example We however ex-
tend this result to the Noetherian-like larger class of strong Mori domains
(Theorem 2.10).

All rings considered in this paper are integral domains. Throughout, we
shall use qf(R) to denote the quotient field of a domain R, I to denote the
isomorphy class of a ¢-ideal I of R in S;(R), and Max, (R) to denote the set
of maximal z-ideals of R.

2. MAIN RESULTS

We recall that for a nonzero fractional ideal I of R, I, := (I _1)_1, I, =
UJy where J ranges over the set of finitely generated subideals of /, and
I, :=J(I : J) where the union is taken over all finitely generated ideals J
of R with J=! = R. The ideal I is said to be divisorial or a v-ideal if I = I,,,
a t-ideal if I = I;, and a w-ideal if I = [,,. A domain R is called strong
Mori if R satisfies the ascending chain condition on w-ideals [5]. Trivially,
a Noetherian domain is strong Mori and a strong Mori domain is Mori.
Suitable background on strong Mori domains is [3]. Finally, recall that the
t-dimension of R, abbreviated ¢-dim(R), is by definition equal to the length
of the longest chain of #-prime ideals of R.

The following lemma displays necessary and sufficient conditions for ¢-
regularity. We often will be appealing to this lemma without explicit men-
tion.

Lemma 2.1 (]9, Lemma 2.1]). Let R be a domain.

(1) R is Clifford t-regular if and only if, for each t-ideal I of R, I =
(I*(I: 1%)),.

(2) R is Boole t-regular if and only if, for each t-ideal I of R, I = c(I*);
for some ¢ # 0 € qf(R). O

An ideal 7 of a domain R is said to be L-stable (here L stands for Lipman)
if RT :=J,;~1(I" : I") = (I : T), and R is called L-stable if every nonzero ideal
is L-stable. Lipman introduced the notion of stability in the specific setting
of one-dimensional commutative semi-local Noetherian rings in order to
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give a characterization of Arf rings; in this context, L-stability coincides
with Boole regularity [[12].
Next, we state our first theorem of this section.

Theorem 2.2. Let R be a Noetherian domain and consider the following
statements:

(1) R is Clifford t-regular;

(2) Each t-ideal I of R is t-invertible in (I : I);

(3) Each t-ideal is L-stable.
Then (1) = (2) = (3). Moreover, ift-dim(R) = 1, then (3) = (1).

Proof. (1) = (2). Let I be a t-ideal of a domain A. Then for each ideal J
of A, (1:J)=(I:J;). Indeed, since J C J;, then (1 : J;) C (I:J). Conversely,
letx € (I:J). Then xJ C I implies that xJ, = (xJ), C I, =1, as claimed. So
x € (I:J;) and therefore (1:J) C (I:J;). Now, let I be at-ideal of R, B= (I :
I)and J = I(B:1). Since I is regular in .7 (R), then I = (I>(I : I?)), = (IJ);.
By theclaim,B=(I:1)=(I:(1J);)={:1J)=((I:1):J)=(B:J). Since
B is Noetherian, then (I(B: 1)), = J;, =J,, = B, where ;- and v; denote
the 7- and v-operations with respect to B. Hence I is t-invertible as an ideal
of (1:1).

(2) = (3). Letn>1, and x € (" : I"). Then xI" C I" implies that
xI"(B:1) CI(B:1). Sox(I"™ 1), =x(I"(B:1)),, C (I"(B:1)),, = (I""1),,.
Now, we iterate this process by composing the two sides by (B : I), applying
the ¢-operation with respect to B and using the fact that [ is ¢-invertible in
B, we obtain that x € (I : I). Hence I is L-stable.

(3) = (1) Assume that #-dim(R) = 1. Let / be a t-ideal of R and J =
(I*(I1 : I?)); = (I*(I : I?)), (since R is Noetherian, and so a TV-domain).
We wish to show that I = J. By [10, Proposition 2.8.(3)], it suffices to show
that IRy, = JRy for each t-maximal ideal M of R. Let M be a t-maximal
ideal of R. If I M, then J & M. So IRy = JRy; = Ry;. Assume that
I C M. Since t-dim(R) = 1, then dim(R)y = 1. Since IRy is L-stable,
then by [12, Lemma 1.11] there exists a nonzero element x of Rys such
that I2Ry; = xIRy;. Hence (IRy; : I?Ry;) = (IRy : xIRy) = x~ ' (IRy : IRyy).
So I”Ry(IRy; : IPRyy) = xIRyx ' (IRys : IRy) = IRys. Now, by [[10, Lemma
5111, JRy = (I*(I:17)))Ry = (I*(1 : I?))Ryr)y = (IPRyg (IR : IPRyy) )y =
(IRy)y = IRy = LRy = IRy O

According to [2, Theorem 2.1] or [8, Corollary 4.3], a Noetherian domain
R is Clifford regular if and only if R is stable if and only if R is L-stable and
dim(R) = 1. Unlike Clifford regularity, Clifford (or even Boole) z-regularity
does not force a Noetherian domain R to be of 7-dimension one. In order
to illustrate this fact, we first establish the transfer of Boole ¢-regularity to
pullbacks issued from local Noetherian domains.
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Proposition 2.3. Let (T,M) be a local Noetherian domain with residue
field K and ¢ : T — K the canonical surjection. Let k be a proper subfield
of K and R := ¢~ (k) the pullback issued from the following diagram of
canonical homomorphisms:

R — &k

! !

T % K=T/M

Then R is Boole t-regular if and only if so is T.

Proof. By [4, Theorem 4] (or [6, Theorem 4.12]) R is a Noetherian local
domain with maximal ideal M. Assume that R is Boole ¢-regular. Let J
be a t-ideal of T. If J(T : J) =T, then J = aT for some a € J (since T is
local). Then J? = aJ and so (J?),, = aJ, where t; is the t-operation with
respect to T (note that 1; = vy since T is Noetherian), as desired. Assume
that J(T : J) C T. Since T is local with maximal ideal M, then J(T : J) C M.
Hence J™! = (R:J) C (T :J) C (M :J) CJ~! and therefore J~=! = (T : J).
So(T:J*)=((T:J):J)=((R:J):J)=(R:J?). Now, since R is Boole
t-regular, then there exists 0 # ¢ € qf(R) such that (J?), = ((J;)?); = cJ;.
Then (T:J?)=(R:J*)=R:(J*))=R:c)=c ' (R:J)=cY(R:
J)=c YT :J). Hence (J?),, = (J?),, = cJy, = cJy, = cJ, as desired. It
follows that 7" is Boole z-regular.

Conversely, assume that 7" is Boole ¢-regular and let / be a ¢-ideal of R.
If 117! =R, then I = aR for some a € I. So I*> = al, as desired. Assume
that /I"' CR. Then II"' CM. SoT C (M :M) =M~ C (II'"Y~' =(I,:
I,) = (I:1). Hence I is an ideal of T. If I(T : I) =T, then I = aT for
some a € I and so I? = al, as desired. Assume that I(T : 1) C T. Then
I(T:I1)CM,andsol ' C(T:1)C(M:I)CI ' HencelI ' =(T:I).So
(T:1?)=((T:1):1)=((R:1):I)=(R:I?). Butsince T is Boole ¢-regular,
then there exists 0 # ¢ € gf(T) = qf(R) such that (I*),, = ((I;,)?)s, = cl;,.
Then (R:1?) = (T :I?) = (T : (I*),) = (T :cly,)) =c (T : L)) =c |(T:
I)=c Y (R:1I). Hence (I?); = (I?), = cl, = cI; = cI, as desired. It follows
that R is Boole ¢-regular. U

Now we are able to build an example of a Boole 7-regular Noetherian
domain with #-dimension = 1.

Example 2.4. Let K be a field, X and Y two indeterminates over K, and k
a proper subfield of K. Let T := K[[X,Y]] = K+ M and R := k+ M where
M = (X,Y). Since T is a UFD, then T is Boole ¢-regular [9, Proposition
2.2]. Further, R is a Boole z-regular Noetherian domain by Proposition
Now M is a v-ideal of R, so that 7-dim(R) = dim(R) = 2.
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Recall that an ideal I of a domain R is said to be stable (resp., strongly sta-
ble) if I is invertible (resp., principal) in its endomorphism ring (7 : I), and R
is called a stable (resp., strongly stable) domain provided each nonzero ideal
of R is stable (resp., strongly stable). Sally and Vasconcelos [17] used this
concept to settle Bass’conjecture on one-dimensional Noetherian rings with
finite integral closure. Recall that a stable domain is L-stable [1, Lemma
2.1]. For recent developments on stability, we refer the reader to [1] and
[14}115,116]. By analogy, we define the following concepts:

Definition 2.5. A domain R is ¢-stable if each t-ideal of R is stable, and R
is strongly t-stable if each t-ideal of R is strongly stable.

Strong t-stability is a natural stability condition that best suits Boolean
t-regularity. Our next theorem is a satisfactory f-analogue for Boolean reg-
ularity [8, Theorem 4.2].

Theorem 2.6. Let R be a Noetherian domain. The following conditions are
equivalent:

(1) R is strongly t-stable;

(2) R is Boole t-regular and t-dim(R) = 1.

The proof relies on the following lemmas.
Lemma 2.7. Let R be a t-stable Noetherian domain. Then t-dim(R) = 1.

Proof. Assume t-dim(R) > 2. Let (0) C P; C P, be a chain of 7-prime ideals
of Rand T := (P, : P»). Since R is Noetherian, then sois T (as (R: T) # 0)
and T C R = R', where R and R’ denote respectively the complete integral
closure and the integral closure of R. Let Q be any minimal prime over P in
T and let M be a maximal ideal of 7" such that Q C M. Then QT}, is minimal
over P>Tys which is principal by #-stability. By the principal ideal theorem,
ht(Q) = ht(QTy) = 1. By the Going-Up theorem, there is a height-two
prime ideal Q, of T contracting to P> in R. Further, there is a minimal prime
ideal Q of P, such that P, C Q ; 0. Hence QNR = 0, NR = P,, which is
absurd since the extension R C T is INC. Therefore 7-dim(R) = 1. U

Lemma 2.8. Let R be a one-dimensional Noetherian domain. If R is Boole
t-regular, then R is strongly t-stable.

Proof. Let I be a nonzero t-ideal of R. Set T := (I :1) and J :=I(T : I).
Since R is Boole t-regular, then there is 0 # ¢ € gf(R) such that (I?), = cI.
Then (T:1)=((I:1):D)=1:1P)=I:(I?))=I:c)=c'I:])=
¢ 'T.SoJ=I(T:1)=c"'I. Since J is a trace ideal of T, then (T : J) = (J :
J)=(c"':c7'I)=(I:1)=T. Hence J,, = T, where v, is the v-operation
with respect to 7. Since R is one-dimensional Noetherian domain, then
so is T ([11, Theorem 93]). Now, if J is a proper ideal of 7', then / C N
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for some maximal ideal N of T. Hence T = J,; C N,, C T and therefore
N,, =T. Since dim(T') = 1, then each nonzero prime ideal of T is z-prime
and since T is Noetherian, then t; = v;. So N = N,, =T, a contradiction.
Hence J = T and therefore I = ¢J = ¢T is strongly t-stable, as desired. [J

Proof of Theorem 2.6} (1) = (2) Clearly R is Boole ¢-regular and, by Lemmal[2.7]
t-dim(R) = 1.

(2) = (1) Let I be a nonzero t-ideal of R. Set T := (I : I) and J :=
I(T :I). Since R is Boole t-regular, then there is 0 # ¢ € qf(R) such that
(IP);=cl. Then (T:1)=(I:1):)=I:1P)=I:(*),)=U:cl) =
c'I1:1)=c"'T. SoJ =I(T : I) = ¢ 'I. It suffices to show that J = T.
Since T = (I:1) = (II"")~!, then T is a divisorial (fractional) ideal of R,
and since J = ¢~ I, then J is a divisorial (fractional) ideal of R too. Now,
for each t-maximal ideal M of R, since Ry, is a one-dimensional Noetherian
domain which is Boole #-regular, by Lemma [2.8] Ry, is strongly #-stable. If
1 Z M, then TM = (I . I)M = (IRM . IRM) ZRM and JM =I(T . I)M ZRM.
Assume that I C M. Then IRy, is a t-ideal of Ry;. Since Ry is strongly
t-stable, then IRy = aRy for some nonzero a € I. Hence Tyy = (1 : )Ry =
(IRM . ]RM) = Ry. Then Ju = IM(TM . IM) =Ry =1T1jy. Hence J = Jy =
NaeMax, () IM = NpreMax,(r) Im = Tr = T It follows that I = ¢J = ¢T and
therefore R is strongly ¢-stable. U

An analogue of Theorem [2.6] does not hold for Clifford z-regularity, as
shown by the next example.

Example 2.9. There exists a Noetherian Clifford z-regular domain with ¢-
dim(R) = 1 such that R is not ¢-stable. Indeed, let us first recall that a
domain R is said to be pseudo-Dedekind if every v-ideal is invertible [10]. In
[18], P. Samuel gave an example of a Noetherian UFD domain R for which
R[[X]] is not a UFD. In [10], Kang noted that R[[X]] is a Noetherian Krull
domain which is not pseudo-Dedekind; otherwise, CI(R[[X]]) = CI(R) =0
forces R[[X]] to be a UFD, absurd. Moreover, R[[X]] is a Clifford ¢-regular
domain by [9] Proposition 2.2] and clearly R[[X]] has 7-dimension 1 (since
Krull). But for R[[X]] not being a pseudo-Dedekind domain translates into
the existence of a v-ideal of R[[X]] that is not invertible, as desired.

We recall that a domain R is called strong Mori if it satisfies the ascending
chain condition on w-ideals. Noetherian domains are strong Mori. Next we
wish to extend Theorem [2.6|to the larger class of strong Mori domains.

Theorem 2.10. Let R be a strong Mori domain. Then the following condi-
tions are equivalent:

(1) R is strongly t-stable;
(2) R is Boole t-regular and t-dim(R) = 1.
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Proof. We recall first the following useful facts:

Fact 1 ([10, Lemma 5.11]). Let / be a finitely generated ideal of a Mori
domain R and S a multiplicatively closed subset of R. Then (Is), = (I,)s.
In particular, if 7 is a ¢-ideal (i.e., v-ideal) of R, then I is v-finite, that is,
I = A, for some finitely generated subideal A of I. Hence (Is), = ((A4,)s)y =
((As)v)v = (As)y = (Ay)s = Is and therefore Is is a v-ideal of Rg.

Fact 2. For each v-ideal I of R and each multiplicatively closed subset
Sof R, (I:1)s= (Is : Is). Indeed, set I = A, for some finitely generated
subideal A of I and let x € (I : Is). Then xA C xA, = xI C xIg C Is. Since
A is finitely generated, then there exists u € S such that xuA C 1. So xul =
xuA, CI,=1. Hence xu € (I:1) and then x € (I : I)g. It follows that
(I . I)S = (IS . Is).

(1) = (2) Clearly R is Boole ¢-regular. Let M be a maximal z-ideal of
R. Then Ry, is a Noetherian domain ([S, Theorem 1.9]) which is strongly
t-stable. By Theorem [2.6] z-dim(Rys) = 1. Since MRy is a t-maximal ideal
of Ry (Fact 1), then ht(M) = ht(MRy;) = 1. Therefore t-dim(R) = 1.

(2) = (1) Let I be a nonzero t-ideal of R. Set T := (I : I) and J := I(T :
I). Since R is Boole t-regular, then (I1?); = cI for some nonzero ¢ € gf(R).
So J =c¢ !'I. Since J and T are (fractional) z-ideals of R, to show that
J =T, it suffices to show it z-locally. Let M be a t-maximal ideal of R.
Since Ry, is one-dimensional Noetherian domain which is Boole z-regular,
by Theorem [2.6] Ry is strongly z-stable. By Fact 1, Iy is a r-ideal of Ry.
So Iyy = a(ly : Iy). Now, by Fact 2, Tyy = (I : Iy = (Iy : Iyy) and then
Iy = aTy. Hence Jyy = Iy (Tyy - ) = Ty, as desired. O

We close the paper with the following discussion about the limits as well
as possible extensions of the above results.

Remark 2.11. (1) Unlike Clifford regularity, Clifford (or even Boole) ¢-
regularity does not force a strong Mori domain to be Noetherian. Indeed, it
suffices to consider a UFD domain which is not Noetherian.

(2) Example[2.4]provides a Noetherian Boole 7-regular domain of #-dimension
two. We do not know whether the assumption “¢-dim(R) = 1” in Theo-
rem [2.2] can be omitted.

(3) Following [8, Proposition 2.3], the complete integral closure R of a
Noetherian Boole regular domain R is a PID. We do not know if R is a UFD
in the case of Boole ¢-regularity. However, it’s the case if the conductor
(R:R) #0. Indeed, it’s clear that R is a Krull domain. But (R : R) # 0 forces
R to be Boole ¢-regular, when R is Boole ¢-regular, and by [9, Proposition
2.2], Ris a UFD.
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(4) The Noetherian domain provided in Example [2.4] is not strongly 7-
discrete since its maximal ideal is 7-idempotent. We do not know if the as-
sumption “R strongly z-discrete, i.e., R has no ¢t-idempotent ¢-prime ideals”
forces a Clifford z-regular Noetherian domain to be of #-dimension one.
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