t-CLASS SEMIGROUPS OF NOETHERIAN DOMAINS

S. KABBAJ AND A. MIMOUNI

ABSTRACT. The *t*-class semigroup of an integral domain *R*, denoted $\mathscr{S}_t(R)$, is the semigroup of fractional *t*-ideals modulo its subsemigroup of nonzero principal ideals with the operation induced by ideal *t*-multiplication. This paper investigates ring-theoretic properties of a Noetherian domain that reflect reciprocally in the Clifford or Boolean property of its *t*-class semigroup.

1. INTRODUCTION

Let *R* be an integral domain. The class semigroup of *R*, denoted $\mathscr{S}(R)$, is the semigroup of nonzero fractional ideals modulo its subsemigroup of nonzero principal ideals [3], [19]. We define the *t*-class semigroup of *R*, denoted $\mathscr{S}_t(R)$, to be the semigroup of fractional *t*-ideals modulo its subsemigroup of nonzero principal ideals, that is, the semigroup of the isomorphy classes of the *t*-ideals of *R* with the operation induced by *t*-multiplication. Notice that $\mathscr{S}_t(R)$ stands as the *t*-analogue of $\mathscr{S}(R)$, whereas the class group Cl(*R*) is the *t*-analogue of the Picard group Pic(*R*). In general, we have

$$\operatorname{Pic}(R) \subseteq \operatorname{Cl}(R) \subseteq \mathscr{S}_t(R) \subseteq \mathscr{S}(R)$$

where the first and third containments turn into equality if R is a Prüfer domain and the second does so if R is a Krull domain.

A commutative semigroup *S* is said to be Clifford if every element *x* of *S* is (von Neumann) regular, i.e., there exists $a \in S$ such that $x = ax^2$. A Clifford semigroup *S* has the ability to stand as a disjoint union of subgroups G_e , where *e* ranges over the set of idempotent elements of *S*, and G_e is the largest subgroup of *S* with identity equal to *e* (cf. [7]). The semigroup *S* is said to be Boolean if for each $x \in S$, $x = x^2$. A domain *R* is said to be *Clifford* (resp., *Boole*) *t*-regular if $S_t(R)$ is a Clifford (resp., Boolean) semigroup.

Date: November 28, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 13C20, 13F05, 11R65, 11R29, 20M14.

Key words and phrases. Class semigroup, *t*-class semigroup, *t*-ideal, *t*-closure, Clifford semigroup, Clifford *t*-regular, Boole *t*-regular, *t*-stable domain, Noetherian domain, strong Mori domain.

This work was funded by KFUPM under Project # MS/t-Class/257.

S. KABBAJ AND A. MIMOUNI

This paper investigates the *t*-class semigroups of Noetherian domains. Precisely, we study conditions under which *t*-stability characterizes *t*-regularity. Our first result, Theorem 2.2, compares Clifford *t*-regularity to various forms of stability. Unlike regularity, Clifford (or even Boole) *t*-regularity over Noetherian domains does not force the *t*-dimension to be one (Example 2.4). However, Noetherian strong *t*-stable domains happen to have *t*-dimension 1. Indeed, the main result, Theorem 2.6, asserts that "*R is strongly t-stable if and only if R is Boole t-regular and t*-dim(R) = 1." This result is not valid for Clifford *t*-regularity as shown by Example 2.9. We however extend this result to the Noetherian-like larger class of strong Mori domains (Theorem 2.10).

All rings considered in this paper are integral domains. Throughout, we shall use qf(R) to denote the quotient field of a domain R, \overline{I} to denote the isomorphy class of a *t*-ideal I of R in $S_t(R)$, and $Max_t(R)$ to denote the set of maximal *t*-ideals of R.

2. MAIN RESULTS

We recall that for a nonzero fractional ideal I of R, $I_v := (I^{-1})^{-1}$, $I_t := \bigcup J_v$ where J ranges over the set of finitely generated subideals of I, and $I_w := \bigcup (I : J)$ where the union is taken over all finitely generated ideals J of R with $J^{-1} = R$. The ideal I is said to be divisorial or a v-ideal if $I = I_v$, a t-ideal if $I = I_t$, and a w-ideal if $I = I_w$. A domain R is called *strong Mori* if R satisfies the ascending chain condition on w-ideals [5]. Trivially, a Noetherian domain is strong Mori and a strong Mori domain is Mori. Suitable background on strong Mori domains is [5]. Finally, recall that the t-dimension of R, abbreviated t-dim(R), is by definition equal to the length of the longest chain of t-prime ideals of R.

The following lemma displays necessary and sufficient conditions for *t*-regularity. We often will be appealing to this lemma without explicit mention.

Lemma 2.1 ([9, Lemma 2.1]). Let R be a domain.

- (1) *R* is Clifford t-regular if and only if, for each t-ideal *I* of *R*, $I = (I^2(I : I^2))_t$.
- (2) *R* is Boole t-regular if and only if, for each t-ideal I of R, $I = c(I^2)_t$ for some $c \neq 0 \in qf(R)$.

An ideal *I* of a domain *R* is said to be *L*-stable (here *L* stands for Lipman) if $R^I := \bigcup_{n \ge 1} (I^n : I^n) = (I : I)$, and *R* is called *L*-stable if every nonzero ideal is *L*-stable. Lipman introduced the notion of stability in the specific setting of one-dimensional commutative semi-local Noetherian rings in order to

2

give a characterization of Arf rings; in this context, L-stability coincides with Boole regularity [12].

Next, we state our first theorem of this section.

Theorem 2.2. *Let R be a Noetherian domain and consider the following statements:*

- (1) *R* is Clifford t-regular;
- (2) Each t-ideal I of R is t-invertible in (I : I);
- (3) Each t-ideal is L-stable.

Then $(1) \Longrightarrow (2) \Longrightarrow (3)$. Moreover, if t-dim(R) = 1, then $(3) \Longrightarrow (1)$.

Proof. (1) \Longrightarrow (2). Let *I* be a *t*-ideal of a domain *A*. Then for each ideal *J* of *A*, $(I:J) = (I:J_t)$. Indeed, since $J \subseteq J_t$, then $(I:J_t) \subseteq (I:J)$. Conversely, let $x \in (I:J)$. Then $xJ \subseteq I$ implies that $xJ_t = (xJ)_t \subseteq I_t = I$, as claimed. So $x \in (I:J_t)$ and therefore $(I:J) \subseteq (I:J_t)$. Now, let *I* be a *t*-ideal of *R*, B = (I:I) and J = I(B:I). Since \overline{I} is regular in $\mathscr{S}_t(R)$, then $I = (I^2(I:I^2))_t = (IJ)_t$. By the claim, $B = (I:I) = (I:(IJ)_t) = (I:IJ) = ((I:I):J) = (B:J)$. Since *B* is Noetherian, then $(I(B:I))_{t_1} = J_{t_1} = J_{v_1} = B$, where t_1 - and v_1 denote the *t*- and *v*-operations with respect to *B*. Hence *I* is *t*-invertible as an ideal of (I:I).

 $(2) \Longrightarrow (3)$. Let $n \ge 1$, and $x \in (I^n : I^n)$. Then $xI^n \subseteq I^n$ implies that $xI^n(B:I) \subseteq I^n(B:I)$. So $x(I^{n-1})_{t_1} = x(I^n(B:I))_{t_1} \subseteq (I^n(B:I))_{t_1} = (I^{n-1})_{t_1}$. Now, we iterate this process by composing the two sides by (B:I), applying the *t*-operation with respect to *B* and using the fact that *I* is *t*-invertible in *B*, we obtain that $x \in (I:I)$. Hence *I* is L-stable.

(3) \Longrightarrow (1) Assume that *t*-dim(R) = 1. Let *I* be a *t*-ideal of *R* and $J = (I^2(I : I^2))_t = (I^2(I : I^2))_v$ (since *R* is Noetherian, and so a *TV*-domain). We wish to show that I = J. By [10, Proposition 2.8.(3)], it suffices to show that $IR_M = JR_M$ for each *t*-maximal ideal *M* of *R*. Let *M* be a *t*-maximal ideal of *R*. If $I \not\subseteq M$, then $J \not\subseteq M$. So $IR_M = JR_M = R_M$. Assume that $I \subseteq M$. Since *t*-dim(R) = 1, then dim $(R)_M = 1$. Since IR_M is L-stable, then by [12, Lemma 1.11] there exists a nonzero element *x* of R_M such that $I^2R_M = xIR_M$. Hence $(IR_M : I^2R_M) = (IR_M : xIR_M) = x^{-1}(IR_M : IR_M)$. So $I^2R_M(IR_M : I^2R_M) = xIR_Mx^{-1}(IR_M : IR_M) = IR_M$. Now, by [10, Lemma 5.11], $JR_M = ((I^2(I : I^2))_v)R_M = (I^2(I : I^2))R_M)_v = (I^2R_M(IR_M : I^2R_M))_v = (IR_M)_v = I_vR_M = I_tR_M$.

According to [2, Theorem 2.1] or [8, Corollary 4.3], a Noetherian domain R is Clifford regular if and only if R is stable if and only if R is L-stable and dim(R) = 1. Unlike Clifford regularity, Clifford (or even Boole) *t*-regularity does not force a Noetherian domain R to be of *t*-dimension one. In order to illustrate this fact, we first establish the transfer of Boole *t*-regularity to pullbacks issued from local Noetherian domains.

Proposition 2.3. Let (T,M) be a local Noetherian domain with residue field K and $\phi : T \longrightarrow K$ the canonical surjection. Let k be a proper subfield of K and $R := \phi^{-1}(k)$ the pullback issued from the following diagram of canonical homomorphisms:

$$\begin{array}{cccc} R & \longrightarrow & k \\ \downarrow & & \downarrow \\ T & \stackrel{\phi}{\longrightarrow} & K = T/M \end{array}$$

Then R is Boole t-regular if and only if so is T.

Proof. By [4, Theorem 4] (or [6, Theorem 4.12]) *R* is a Noetherian local domain with maximal ideal *M*. Assume that *R* is Boole *t*-regular. Let *J* be a *t*-ideal of *T*. If J(T:J) = T, then J = aT for some $a \in J$ (since *T* is local). Then $J^2 = aJ$ and so $(J^2)_{t_1} = aJ$, where t_1 is the *t*-operation with respect to *T* (note that $t_1 = v_1$ since *T* is Noetherian), as desired. Assume that $J(T:J) \subsetneq T$. Since *T* is local with maximal ideal *M*, then $J(T:J) \subseteq M$. Hence $J^{-1} = (R:J) \subseteq (T:J) \subseteq (M:J) \subseteq J^{-1}$ and therefore $J^{-1} = (T:J)$. So $(T:J^2) = ((T:J):J) = ((R:J):J) = (R:J^2)$. Now, since *R* is Boole *t*-regular, then there exists $0 \neq c \in qf(R)$ such that $(J^2)_t = ((J_t)^2)_t = cJ_t$. Then $(T:J^2) = (R:J^2) = (R:(J^2)_t) = (R:cJ_t) = c^{-1}(R:J_t) = c^{-1}(R:J_t)$. Hence $(J^2)_{t_1} = (J^2)_{v_1} = cJ_{v_1} = cJ$, as desired. It follows that *T* is Boole *t*-regular.

Conversely, assume that *T* is Boole *t*-regular and let *I* be a *t*-ideal of *R*. If $II^{-1} = R$, then I = aR for some $a \in I$. So $I^2 = aI$, as desired. Assume that $II^{-1} \subsetneq R$. Then $II^{-1} \subseteq M$. So $T \subseteq (M : M) = M^{-1} \subseteq (II^{-1})^{-1} = (I_v : I_v) = (I : I)$. Hence *I* is an ideal of *T*. If I(T : I) = T, then I = aT for some $a \in I$ and so $I^2 = aI$, as desired. Assume that $I(T : I) \subsetneq T$. Then $I(T : I) \subseteq M$, and so $I^{-1} \subseteq (T : I) \subseteq (M : I) \subseteq I^{-1}$. Hence $I^{-1} = (T : I)$. So $(T : I^2) = ((T : I) : I) = ((R : I) : I) = (R : I^2)$. But since *T* is Boole *t*-regular, then there exists $0 \neq c \in qf(T) = qf(R)$ such that $(I^2)_{t_1} = ((I_{t_1})^2)_{t_1} = cI_{t_1}$. Then $(R : I^2) = (T : I^2) = (T : (I^2)_{t_1}) = (T : cI_{t_1}) = c^{-1}(T : I_{t_1}) = c^{-1}(T : I)$. Hence $(I^2)_t = (I^2)_v = cI_v = cI_t = cI$, as desired. It follows that *R* is Boole *t*-regular.

Now we are able to build an example of a Boole *t*-regular Noetherian domain with *t*-dimension ≥ 1 .

Example 2.4. Let *K* be a field, *X* and *Y* two indeterminates over *K*, and *k* a proper subfield of *K*. Let T := K[[X,Y]] = K + M and R := k + M where M := (X,Y). Since *T* is a UFD, then *T* is Boole *t*-regular [9, Proposition 2.2]. Further, *R* is a Boole *t*-regular Noetherian domain by Proposition 2.3. Now *M* is a *v*-ideal of *R*, so that *t*-dim(R) = dim(R) = 2.

Recall that an ideal *I* of a domain *R* is said to be *stable* (resp., *strongly stable*) if *I* is invertible (resp., principal) in its endomorphism ring (I : I), and *R* is called a stable (resp., strongly stable) domain provided each nonzero ideal of *R* is stable (resp., strongly stable). Sally and Vasconcelos [17] used this concept to settle Bass' conjecture on one-dimensional Noetherian rings with finite integral closure. Recall that a stable domain is *L*-stable [1, Lemma 2.1]. For recent developments on stability, we refer the reader to [1] and [14, 15, 16]. By analogy, we define the following concepts:

Definition 2.5. A domain *R* is *t*-stable if each *t*-ideal of *R* is stable, and *R* is *strongly t*-stable if each *t*-ideal of *R* is strongly stable.

Strong *t*-stability is a natural stability condition that best suits Boolean *t*-regularity. Our next theorem is a satisfactory *t*-analogue for Boolean regularity [8, Theorem 4.2].

Theorem 2.6. *Let R be a Noetherian domain. The following conditions are equivalent:*

- (1) *R* is strongly *t*-stable;
- (2) *R* is Boole *t*-regular and *t*-dim(R) = 1.

The proof relies on the following lemmas.

Lemma 2.7. Let *R* be a *t*-stable Noetherian domain. Then t-dim(R) = 1.

Proof. Assume *t*-dim $(R) \ge 2$. Let $(0) \subset P_1 \subset P_2$ be a chain of *t*-prime ideals of *R* and $T := (P_2 : P_2)$. Since *R* is Noetherian, then so is *T* (as $(R : T) \ne 0$) and $T \subseteq \overline{R} = R'$, where \overline{R} and R' denote respectively the complete integral closure and the integral closure of *R*. Let *Q* be any minimal prime over P_2 in *T* and let *M* be a maximal ideal of *T* such that $Q \subseteq M$. Then QT_M is minimal over P_2T_M which is principal by *t*-stability. By the principal ideal theorem, ht $(Q) = ht(QT_M) = 1$. By the Going-Up theorem, there is a height-two prime ideal Q_2 of *T* contracting to P_2 in *R*. Further, there is a minimal prime ideal *Q* of P_2 such that $P_2 \subseteq Q \subsetneq Q_2$. Hence $Q \cap R = Q_2 \cap R = P_2$, which is absurd since the extension $R \subset T$ is INC. Therefore *t*-dim(R) = 1.

Lemma 2.8. Let *R* be a one-dimensional Noetherian domain. If *R* is Boole *t*-regular, then *R* is strongly *t*-stable.

Proof. Let *I* be a nonzero *t*-ideal of *R*. Set T := (I : I) and J := I(T : I). Since *R* is Boole *t*-regular, then there is $0 \neq c \in qf(R)$ such that $(I^2)_t = cI$. Then $(T : I) = ((I : I) : I) = (I : I^2) = (I : (I^2)_t) = (I : cI) = c^{-1}(I : I) = c^{-1}T$. So $J = I(T : I) = c^{-1}I$. Since *J* is a trace ideal of *T*, then $(T : J) = (J : J) = (c^{-1}I : c^{-1}I) = (I : I) = T$. Hence $J_{v_1} = T$, where v_1 is the *v*-operation with respect to *T*. Since *R* is one-dimensional Noetherian domain, then so is *T* ([11, Theorem 93]). Now, if *J* is a proper ideal of *T*, then $J \subseteq N$ for some maximal ideal *N* of *T*. Hence $T = J_{v_1} \subseteq N_{v_1} \subseteq T$ and therefore $N_{v_1} = T$. Since dim(T) = 1, then each nonzero prime ideal of *T* is *t*-prime and since *T* is Noetherian, then $t_1 = v_1$. So $N = N_{v_1} = T$, a contradiction. Hence J = T and therefore I = cJ = cT is strongly *t*-stable, as desired. \Box

Proof of Theorem 2.6. (1) \Longrightarrow (2) Clearly *R* is Boole *t*-regular and, by Lemma 2.7, t-dim(*R*) = 1.

 $(2) \Longrightarrow (1)$ Let *I* be a nonzero *t*-ideal of *R*. Set T := (I : I) and J := I(T : I). Since *R* is Boole *t*-regular, then there is $0 \neq c \in qf(R)$ such that $(I^2)_t = cI$. Then $(T : I) = ((I : I) : I) = (I : I^2) = (I : (I^2)_t) = (I : cI) = c^{-1}(I : I) = c^{-1}T$. So $J = I(T : I) = c^{-1}I$. It suffices to show that J = T. Since $T = (I : I) = (II^{-1})^{-1}$, then *T* is a divisorial (fractional) ideal of *R*, and since $J = c^{-1}I$, then *J* is a divisorial (fractional) ideal of *R* too. Now, for each *t*-maximal ideal *M* of *R*, since R_M is a one-dimensional Noetherian domain which is Boole *t*-regular, by Lemma 2.8, R_M is strongly *t*-stable. If $I \nsubseteq M$, then $T_M = (I : I)_M = (IR_M : IR_M) = R_M$ and $J_M = I(T : I)_M = R_M$. Assume that $I \subseteq M$. Then IR_M is a *t*-ideal of R_M . Since R_M is strongly *t*-stable, then $IR_M = aR_M$ for some nonzero $a \in I$. Hence $T_M = (I : I)R_M = (IR_M : IR_M) = R_M = T_M$. Hence $J = J_t = \bigcap_{M \in Max_t(R)} J_M = \bigcap_{M \in Max_t(R)} T_M = T_t = T$. It follows that I = cJ = cT and therefore *R* is strongly *t*-stable.

An analogue of Theorem 2.6 does not hold for Clifford *t*-regularity, as shown by the next example.

Example 2.9. There exists a Noetherian Clifford *t*-regular domain with t-dim(R) = 1 such that R is not *t*-stable. Indeed, let us first recall that a domain R is said to be pseudo-Dedekind if every *v*-ideal is invertible [10]. In [18], P. Samuel gave an example of a Noetherian UFD domain R for which R[[X]] is not a UFD. In [10], Kang noted that R[[X]] is a Noetherian Krull domain which is not pseudo-Dedekind; otherwise, Cl(R[[X]]) = Cl(R) = 0 forces R[[X]] to be a UFD, absurd. Moreover, R[[X]] is a Clifford *t*-regular domain by [9, Proposition 2.2] and clearly R[[X]] has *t*-dimension 1 (since Krull). But for R[[X]] not being a pseudo-Dedekind domain translates into the existence of a *v*-ideal of R[[X]] that is not invertible, as desired.

We recall that a domain R is called strong Mori if it satisfies the ascending chain condition on *w*-ideals. Noetherian domains are strong Mori. Next we wish to extend Theorem 2.6 to the larger class of strong Mori domains.

Theorem 2.10. *Let R be a strong Mori domain. Then the following conditions are equivalent:*

- (1) *R* is strongly *t*-stable;
- (2) *R* is Boole *t*-regular and t-dim(*R*) = 1.

Proof. We recall first the following useful facts:

Fact 1 ([10, Lemma 5.11]). Let *I* be a finitely generated ideal of a Mori domain *R* and *S* a multiplicatively closed subset of *R*. Then $(I_S)_v = (I_v)_S$. In particular, if *I* is a *t*-ideal (i.e., *v*-ideal) of *R*, then *I* is *v*-finite, that is, $I = A_v$ for some finitely generated subideal *A* of *I*. Hence $(I_S)_v = ((A_v)_S)_v = ((A_S)_v)_v = (A_S)_v = (A_v)_S = I_S$ and therefore I_S is a *v*-ideal of R_S .

Fact 2. For each *v*-ideal *I* of *R* and each multiplicatively closed subset *S* of *R*, $(I : I)_S = (I_S : I_S)$. Indeed, set $I = A_v$ for some finitely generated subideal *A* of *I* and let $x \in (I_S : I_S)$. Then $xA \subseteq xA_v = xI \subseteq xI_S \subseteq I_S$. Since *A* is finitely generated, then there exists $\mu \in S$ such that $x\mu A \subseteq I$. So $x\mu I = x\mu A_v \subseteq I_v = I$. Hence $x\mu \in (I : I)$ and then $x \in (I : I)_S$. It follows that $(I : I)_S = (I_S : I_S)$.

 $(1) \Longrightarrow (2)$ Clearly *R* is Boole *t*-regular. Let *M* be a maximal *t*-ideal of *R*. Then R_M is a Noetherian domain ([5, Theorem 1.9]) which is strongly *t*-stable. By Theorem 2.6, *t*-dim $(R_M) = 1$. Since MR_M is a *t*-maximal ideal of R_M (Fact 1), then ht $(M) = ht(MR_M) = 1$. Therefore *t*-dim(R) = 1.

 $(2) \Longrightarrow (1)$ Let *I* be a nonzero *t*-ideal of *R*. Set T := (I : I) and J := I(T : I). Since *R* is Boole *t*-regular, then $(I^2)_t = cI$ for some nonzero $c \in qf(R)$. So $J = c^{-1}I$. Since *J* and *T* are (fractional) *t*-ideals of *R*, to show that J = T, it suffices to show it *t*-locally. Let *M* be a *t*-maximal ideal of *R*. Since R_M is one-dimensional Noetherian domain which is Boole *t*-regular, by Theorem 2.6, R_M is strongly *t*-stable. By Fact 1, I_M is a *t*-ideal of R_M . So $I_M = a(I_M : I_M)$. Now, by Fact 2, $T_M = (I : I)_M = (I_M : I_M)$ and then $I_M = aT_M$. Hence $J_M = I_M(T_M : I_M) = T_M$, as desired.

We close the paper with the following discussion about the limits as well as possible extensions of the above results.

Remark 2.11. (1) Unlike Clifford regularity, Clifford (or even Boole) *t*-regularity does not force a strong Mori domain to be Noetherian. Indeed, it suffices to consider a UFD domain which is not Noetherian.

(2) Example 2.4 provides a Noetherian Boole *t*-regular domain of *t*-dimension two. We do not know whether the assumption "t-dim(R) = 1" in Theorem 2.2 can be omitted.

(3) Following [8, Proposition 2.3], the complete integral closure R of a Noetherian Boole regular domain R is a PID. We do not know if \overline{R} is a UFD in the case of Boole *t*-regularity. However, it's the case if the conductor $(R:\overline{R}) \neq 0$. Indeed, it's clear that \overline{R} is a Krull domain. But $(R:\overline{R}) \neq 0$ forces \overline{R} to be Boole *t*-regular, when R is Boole *t*-regular, and by [9, Proposition 2.2], \overline{R} is a UFD.

(4) The Noetherian domain provided in Example 2.4 is not strongly *t*-discrete since its maximal ideal is *t*-idempotent. We do not know if the assumption "*R* strongly *t*-discrete, i.e., *R* has no *t*-idempotent *t*-prime ideals" forces a Clifford *t*-regular Noetherian domain to be of *t*-dimension one.

REFERENCES

- D. D. Anderson, J. A. Huckaba and I. J. Papick, A note on stable domains, *Houston J. Math.* 13 (1) (1987), 13–17. 5
- [2] S. Bazzoni, Clifford regular domains, J. Algebra 238 (2001), 703–722. 3
- [3] S. Bazzoni and L. Salce, Groups in the class semigroups of valuation domains, *Israel J. Math.* 95 (1996), 135–155. 1
- [4] J. W. Brewer and E. A. Rutter, *D*+*M* constructions with general overrings, *Michigan Math. J.* 23 (1976), 33–42. 4
- [5] W. Fangui, R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), 155–165. 2, 7
- [6] S. Gabelli and E. Houston, Coherentlike conditions in pullbacks, *Michigan Math. J.* 44 (1997), 99–122. 4
- [7] J. M. Howie, Fundamentals of semigroup theory, Oxford University Press, Oxford, 1995. 1
- [8] S. Kabbaj and A. Mimouni, Class semigroups of integral domains, J. Algebra 264 (2003), 620–640. 3, 5, 7
- [9] S. Kabbaj and A. Mimouni, *t*-Class semigroups of integral domains, *J. Reine Angew. Math.* 612 (2007), 213–229. 2, 4, 6, 7
- [10] B. G. Kang, *-Operations in integral domains, Ph.D. thesis, The University of Iowa, Iowa City, 1987. 3, 6, 7
- [11] I. Kaplansky, Commutative rings, The University of Chicago Press, Chicago, 1974. 5
- [12] J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649–685. 3
- [13] S. Malik, J. Mott and M. Zafrullah, On *t*-invertibility, Comm. Algebra 16 (1988), 149–170.
- [14] B. Olberding, Globalizing local properties of Prüfer domains, J. Algebra 205 (1998), 480–504. 5
- [15] B. Olberding, On the classification of stable domains, J. Algebra 243 (2001), 177– 197. 5
- [16] B. Olberding, On the structure of stable domains, *Comm. Algebra* 30 (2002), 877–895.5
- [17] J. D. Sally and W. V. Vasconcelos, Stable rings and a problem of Bass, Bull. Amer. Math. Soc. 79 (1973), 574–576. 5
- [18] P. Samuel, On unique factorization domains, Illinois J. Math. 5 (1961), 1-17.6
- [19] P. Zanardo and U. Zannier, The class semigroup of orders in number fields, *Math. Proc. Cambridge Phil. Soc.* **115** (1994), 379–391. 1

DEPARTMENT OF MATHEMATICAL SCIENCES, KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, P.O. BOX 5046, DHAHRAN 31261, KSA *E-mail address*: kabbaj@kfupm.edu.sa

DEPARTMENT OF MATHEMATICAL SCIENCES, KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, P.O. BOX 5046, DHAHRAN 31261, KSA *E-mail address*: amimouni@kfupm.edu.sa