
CORE OF IDEALS IN ONE-DIMENSIONAL NOETHERIAN DOMAINS (?)

S. KABBAJ AND A. MIMOUNI

Abstract. This paper contributes to the study of the core of ideals in Noetherian
rings. We use techniques and objects from multiplicative ideal theory to develop
explicit formulas for the core in various classes of one-dimensional Noetherian
domains. All results are illustrated with original examples, where we explicitly
compute the core.

1. Introduction

Throughout, all rings considered are commutative with identity. Let R be a ring and
I an ideal of R. An ideal J ✓ I is a reduction of I if JIn = In+1 for some positive integer
n. The notion of reduction was introduced by Northcott and Rees [31] to contribute
to the analytic theory of ideals in Noetherian local rings with infinite residue field,
and later was studied by Hays [15, 16] in arbitrary Noetherian rings and Prüfer
domains. The core of I, denoted core(I), is the intersection of all reductions of I.
The core was initially introduced by Sally [37] and appeared, among others, in
the context of Briancon-Skoda’s Theorem, which asserts that if R is regular with
dimension d, then core(I) contains the integral closure of Id [21, Chapter 13].

Most of the works on the core dealt with special settings of Noetherian rings.
Huneke and Swanson [20] investigated the core of integrally closed ideals in two-
dimensional regular local rings. Corso, Polini and Ulrich [6, 7, 35] provided ex-
plicit formulas for the core and extended the results in [20] to Cohen-Macaulay
local rings. Hyry and K. E. Smith [23] generalized the results in [20] to arbitrary
dimensions and more general rings. Huneke and Trung [22] answered several
open questions raised in the literature. Polini, Ulrich, and Vitulli [36] examined
the core of zero-dimensional monomial ideals. In 2008, Fouli, Polini and Ulrich
[11, 12] studied the core in arbitrary characteristic and, among others, character-
ized Cayley-Bacharach sets of points in terms of the structure of the core of the
maximal ideal of their homogeneous coordinate ring. B. Smith [39] established a
formula for the core of some special ideals in a polynomial ring over a field.

In [26], we established explicit formulas for the core of ideals in valuation
domains and pseudo-valuation domains as well as in various classes of Prüfer
domains. In particular, under some ideal-theoretic conditions, we investigated
settings where the equality core(I) = I2I�1 holds for every non-zero ideal I. This
paper contributes to the study of the core of ideals in Noetherian rings. Similarly
to [26], we use techniques and objects from multiplicative ideal theory to develop
explicit formulas for the core in various classes of one-dimensional Noetherian
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domains. All results are illustrated with original examples, where we explicitly
compute the core.

Throughout this paper, given a domain R, we shall denote by qf(R) its quotient
field, by R its integral closure, by U(R) the group of its units, and by Max(R) the
set of its maximal ideals. By a non-trivial domain, we mean a domain which is
not a field. If R/M is infinite for each M 2Max(R), R is said to have infinite residue
fields. For any given nonzero ideal I of R, let

(I : I) :=
n
x 2 qf(R) | xI ✓ I

o
; I�1 :=

n
x 2 qf(R) | xI ✓ R

o
.

2. Results

Let R be a Noetherian ring and I an ideal of R. A reduction J of I is called minimal
if no ideal strictly contained in J is a reduction of I. In general, there may not be
a minimal reduction of I. However, if R is local with maximal ideal M, I always
admits a minimal reduction [31, Section 2, Theorem 1] or [21, Theorem 8.3.5], which
is not unique in general. In fact, if R/M is infinite, then any l non-special elements
of I generate a minimal reduction of I, where l denotes the analytic spread of I [31,
Section 5, Theorem 1]. Also, recall that I is called basic if it has no proper reduction
(i.e., core(I) = I). Invertible ideals and idempotent ideals are basic [26, Lemma 2.1].

A domain R is said to have the trace property if for each nonzero ideal I of R,
either I is invertible in R or I(R : I) is a prime ideal of R (for brevity, we say R is a
TP-domain) [8, 9, 28]. Common examples of TP-domains are valuation domains
[1, Theorem 2.8], pseudo-valuation domains [18, Example 2.12], and Dedekind
domains [9, Corollary 2.5].

A Noetherian TP-domain R is either Dedekind or a one-dimensional domain
with a unique non-invertible maximal ideal M such that M�1 coincides with its
integral closure R [9, Theorem 3.5]. In particular, dim(R)  1. In this vein, the
first main result of this paper (Theorem 2.1) shows that, in Noetherian settings, the
class of domains satisfying core(I)= I2I�1 for all nonzero ideals lies strictly between
the two classes of TP-domains and one-dimensional domains; and the equivalence
holds in a large class of Noetherian domains. To this purpose, it is worthwhile
recalling Hays’ result that “in a Noetherian domain R with infinite residue fields, each
nonzero ideal of R has an invertible reduction if and only if dim(R)  1” [15, Theorem
4.4]; and Huckaba-Papick’s result that “given a Noetherian local domain (R,M), the
fractional ideal M�1 is a domain if and only if either dim(R) � 2 or dim(R) = 1 with R$ R
[19, Theorem 3.0].

Theorem 2.1. Let R be a Noetherian domain with infinite residue fields. Consider the
following conditions:

(1) R is a TP domain,
(2) core(I) = I2I�1, for each nonzero ideal I of R,
(3) dim(R)  1.

Then:
(1) =) (2) =) (3)

and both implications are irreversible in general. Moreover, if (R,M) is local such that M�1

is a local domain with maximal ideal M, then the above conditions are equivalent.

The proof of this theorem draws on the following lemma, which will also be
used later in this paper.
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Lemma 2.2. Let R be a domain, I a finitely generated ideal, and S :=
S

n�1(In : In).
Suppose I has an invertible reduction Jo and let no be the smallest positive integer such
that JoIno = Ino+1. Then:

(1) S = (In : In), for any n � no.
(2) JS = JoS = IS, for any reduction J of I.
(3) Jo(R : S) = I(R : S) ✓ core(I).

Proof. (1) Notice first that the sequence of rings
n
(In : In)

o
n�1

is increasing. Now, let
r be an integer � 1 and let x 2 (Ino+r : Ino+r). Then

xJoIno+r�1 = xIno+r ✓ Ino+r = JoIno+r�1.

Since Jo is invertible, xIno+r�1 ✓ Ino+r�1; that is, (Ino+r : Ino+r) = (Ino+r�1 : Ino+r�1). By
induction on r, we obtain (Ino+r : Ino+r) = (Ino : Ino ), for all r � 1. It follows that
S = (In : In), for any n � no, proving the first assertion of the lemma.

(2) We have J�1
o Ino+1 = Ino and so J�1

o I ✓ (Ino : Ino ) = S by (1). Hence J�1
o IS is an

ideal of S and whence
(J�1

o IS)Ino = J�1
o Ino+1 = Ino .

By [27, Theorem 76], there is x 2 J�1
o IS such that (1+x)Ino = 0, which forces J�1

o IS= S.
That is, JoS = IS. Next, let J be an arbitrary reduction of I. Then JIn = In+1, for some
positive integer n. Without loss of generality, we may assume that n� no. Therefore,
JoIn = In+1 = JIn and so J�1

o JIn = In. Hence, J�1
o J ✓ (In : In) = S by (1); that is, J�1

o JS
is an ideal of S. Again by [27, Theorem 76], we obtain J�1

o JS = S. It follows that
JS = JoS = IS, as desired.

(3) Straightforward by (2), completing the proof of the lemma. ⇤

Proof of Theorem 2.1. (1)) (2) Assume R is a TP-domain. As recalled above,
either R is a Dedekind domain or R is a one-dimensional domain with a unique
non-invertible maximal ideal Mo such that M�1

o = R [9, Theorem 3.5]. In the first
case, every ideal is invertible and hence basic; that is, (2) holds trivially. Next,
assume that dim(R) = 1 and R has a unique non-invertible maximal ideal Mo with
M�1

o = R. Let I be a nonzero ideal of R. Without loss of generality, we assume that
I is not invertible. Since R is one-dimensional with infinite residue fields, I has an
invertible reduction by [15, Theorem 4.4]. Let Jo be an invertible reduction of I and
let no be the smallest positive integer such that JoIno = Ino+1. Observe that Jo $ I.
Next, let f (R) denote the set of all fractional ideals of R and let

T := (I : I)
S :=

S
n�1(In : In)

FT :=
Tn

F 2 f (R) | FT = T
o

FS :=
Tn

F 2 f (R) | FS = S
o
.

Claim 1. JoFS ✓ core(I) ✓ JoFT.

Indeed, let J be an arbitrary reduction of I. Then, there is a positive integer
n � no such that JIn = In+1 = JoIn. Hence J�1

o JIn = In, whence J�1
o J ✓ (In : In) = S by

Lemma 2.2. Hence J�1
o JS is an ideal of S with (J�1

o JS)In = J�1
o In+1 = In. We appeal to

[27, Theorem 76] to conclude that J�1
o JS = S. Therefore FS ✓ J�1

o J and so JoFS ✓ J. It
follows that JoFS ✓ core(I). On the other hand, let F 2 f (R) with FT = T. Then

JFT = JoT ✓ IT = I.
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Hence JoF ✓ I. Further, we have

JFIno = JFSIno = JSIno = JoIno = Ino+1.

That is, JoF is a reduction of I and so core(I) ✓ JoF. Hence J�1
o core(I) ✓ F. Therefore

J�1
o core(I) ✓ FT. Consequently, JoFS ✓ core(I) ✓ JoFT, proving the claim.

Claim 2. (R : S) =Mo.

First, observe that (R : S) $ R; otherwise, R = S and then Jo = I by Lemma 2.2,
which is absurd. Therefore the inclusions R ⇢ S ✓ R =M�1

o yield

Mo =Mov ✓ (R : S) $ R

and hence (R : S) =Mo, proving the claim.
Now, R is a one-dimensional Noetherian TP-domain, Mo is its unique non-

invertible maximal ideal, and I is not invertible, then necessarily II�1 =Mo. There-
fore, by Claim 1, we obtain

JoMo ✓ JoFS ✓ core(I) ✓ JoFT

and then
Mo ✓ FS ✓ J�1

o core(I) ✓ FT ✓ R.

Claim 3. J�1
o core(I) $ R.

Deny and assume that J�1
o core(I) = R. Then, core(I) = Jo. Now, let JRMo be a

reduction of IRMo . By [15, Corollary 3.7], (J\ I)+ IMo is a reduction of I in R and
hence

JoRMo ✓ (J\ I)RMo + IMoRMo .

However, RMo is a TP-domain, then by [26, Lemma 2.2] we have

IMoRMo = (I2I�1)RMo = (IRMo )2(IRMo )�1 ✓ core(IRMo ).

It follows that JoRMo ✓ JRMo and thus

core(IRMo ) = JoRMo .

This is absurd since RMo is local Noetherian with infinite residue field and IRMo
is not basic [15, Theorem 3.6], and then IRMo has more than one (in fact, infinitely
many) minimal reduction(s) [31, Section 5, Theorem 1].

By Claim 3, we have Mo = J�1
o core(I) and consequently

core(I) = JoMo = JoSMo = ISMo = IMo = I2I�1

as desired.
(2)) (3) Let I be a nonzero basic ideal of R. Then, (2) yields

I = core(I) = I2I�1.

We appeal to [27, Theorem 76] to conclude that II�1 =R. Next, let k� 1 and let J be a
reduction of Ik. Then, there is a positive integer n such that JInk = Ikn+k. Composing
the two sides by I�1 and using the fact that I is invertible, we obtain

JInk�1 = Ink+k�1.

Iterating this process kn times, we get J = Ik; that is, Ik is basic. Therefore, by [15,
Theorem 2.7], dim(R)  1.
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This completes the proof of the first statement of the theorem. Further, the
irreversibility of the two implications is handled by Examples 3.1 and 3.2 in the
next section.

Next, assume that (R,M) is local such that M�1 is local with maximal ideal M.
We prove (3)) (1). Assume that dim(R) = 1. If M(M�1 : M) ✓M, then

(M�1 : M) = (M : M) =M�1.

Since dim(M�1) = 1, we get

M =Mt1 =Mv1 =M�1

where t1- and v1- denote the t- and v- operations with respect to M�1, which is
absurd. Therefore, necessarily, M is invertible in M�1 and hence M�1 is a DVR.
It follows that R is a pseudo-valuation domain issued from M�1; precisely, by [2,
Proposition 2.6], R is the pullback issued from the following diagram:

R := ��1(k) �! k = R/M
# #

M�1 ��! K =M�1/M.

Consequently, R is a TP-domain, completing the proof of the theorem. ⇤

Observe that the “infinite residue fields” assumption was used only in the proof of
the implication (1) =) (2). Moreover, note that Examples 3.1 and 3.2 feature one-
dimensional Noetherian local domains (R,M) such that M�1 is local with maximal
ideal ,M and Condition (2) above holds in 3.1 but not in 3.2. This shows that the
assumption “M�1 is local with maximal ideal M” is neither necessary nor super-
fluous. Also note that the result is not true, in general, if one restricts Condition
(2) to the nonzero prime ideals of R, as shown by Example 3.3.

At this point, recall that a domain is divisorial if all its nonzero (fractional) ideals
are divisorial. Divisorial domains have been studied by Bass [4] and Matlis [29]
for the Noetherian case, Heinzer [17] for the integrally closed case, Bastida-Gilmer
[3] for the D+M rings, and Bazzoni [5] for more general settings. In this vein,
recall Matlis’ result that a non-trivial Noetherian local domain is divisorial if and only if
dim(R) = 1 and M�1/R is a simple R-module [5, Theorem A]. Finally, recall that two
of Hays’ results assert that, in a one-dimensional local Noetherian domain with infinite
residue field, every nonzero ideal has a principal reduction; and a nonzero ideal is basic
if and only if it is principal [15, Theorem 4.4 & Corollary 4.5]. A recent result, due
to Fouli and Olberding, ensures that if (R,M) is a one-dimensional local Noetherian
domain, then

���Max(R)
��� 
���R/M

��� if and only if every ideal of R has a principal reduction
[10, Corollary 3.3].

Throughout, for an ideal I, we denote by pcore(I) the principal core of I; i.e.,
the intersection of all principal reductions of I. The second main result of this
paper (Theorem 2.4) establishes correlation between the core and principal core in
a special class of Noetherian local divisorial domains, and will be used to compute
the core explicitly for various examples in the next section.

Notice that, in general, core(I) $ pcore(I), as shown by Example 3.7. The follow-
ing lemma sheds more light on the structure of principal reductions, and will be
used in the proof of Theorem 2.4 and, later, in the construction of examples.
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Lemma 2.3. Let R be a domain and I a finitely generated ideal. Suppose I has a principal
reduction aoR and let

S :=
S

n�1(In : In)
Uo := U(S)\ (I : aoR) =

n
u 2U(S) | aou 2 I

o
◆U(R)

Po :=
T

u2Uo uR.

Then, J is a principal reduction of I if and only if J = aouR for some u 2 Uo. Moreover,
pcore(I) = aoPo.

Proof. Let J := bR be a principal reduction of I. By Lemma 2.2, aoS = bS; that is,
ba�1

o S= S. Hence J = ao(ba�1
o )R with ba�1

o 2Uo. Conversely, let u 2Uo. By Lemma 2.2,
S = (In : In), where n is the smallest positive integer such that aoIn = In+1. It follows
that

aouIn = aouSIn = aoSIn = aoIn = In+1

and thus aouR is a principal reduction of I.
By the first statement, we have

pcore(I) =
T

u2Uo aouR
= ao

T
u2Uo uR

= aoPo

completing the proof of the lemma. ⇤

Theorem 2.4. Let (R,M) be a one-dimensional Gorenstein (i.e., non-trivial Noetherian
divisorial) local domain such that

���Max(R)
��� 
���R/M

��� and M�1 is a TP-domain. Let I be a
non-basic ideal of R and let aR be an arbitrary principal reduction of I.

(1) If M�1 is local, then core(I) = pcore(I).
(2) If M�1 is not local, then core(I) = aM\pcore(I).

Proof. First, recall that the assumption “
���Max(R)

��� 
���R/M

���” ensures the existence
of principal reductions by [10, Corollary 3.3]. Then, notice that M is not principal
(since M�1 is a ring by assumption) and throughout this proof, let

T :=M�1 = (M : M)
S :=

S
n�1(In : In)

Q := (R : S).

Moreover, since I is not principal (i.e., not invertible), II�1 ✓M and then

I ⇢ R ✓ T ✓ (II�1)�1 = (Iv : Iv) = (I : I) ✓ S

forcing I to be an ideal of T. So, for any non-principal reduction J of I in R, as seen
above, J is an ideal of T and hence a reduction of I in T. Whence, coreT(I) ✓ J. It
follows that

core(I) = pcore(I)\ coreT(I)
where coreT(I) denotes the core of I as an ideal of T.

(1) Assume T is local with maximal ideal N. Since, R⇢ T is an integral extension,
then N\R=M and hence U(R)$U(T). Let u 2U(T)\R. Then, u�1 2U(S) and au�1 2
IT = I. By Lemma 2.3, au�1R is a principal reduction of I. Hence pcore(I) ✓ au�1R.
By consequence, pcore(I) $ aR and so a�1 pcore(I) $ R. Thus, a�1 pcore(I) ✓M and
so

pcore(I) ✓ aM.
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We claim that M2 ✓ Q. By hypothesis, T is a TP-domain. By [9, Theorem 3.5],
two cases are possible. Either T is Dedekind and so

T ✓ S ✓ S = R = T = T

yielding
Q = (R : S) = (R : T) =M ◆M2.

Or T is not Dedekind and has a unique non-invertible maximal ideal N with
(T : N) = T. Again, we obtain

T ✓ S ✓ S = T = (T : N) = (R : MN).

Hence
M2 ✓MN ✓ (MN)v ✓ (R : S) =Q

proving the claim.
By Lemma 2.2, a(T : S) ✓ coreT(I). Moreover, we have

(T : S) = (M�1 : S) = (R : MS) = ((R : S) : M) = (Q : M).

Since M2 ✓Q, then M ✓ (Q : M) = (T : S) and so

pcore(I) ✓ aM ✓ a(T : S) ✓ coreT(I).

It follows that core(I) = pcore(I), completing the proof of (1).
(2) Assume T is not local and let N1,N2 be two maximal ideals of T. We claim

that T has exactly two maximal ideals. Indeed, if N is a maximal ideal of T, then

N1\R =N2\R =N\R =M

as the extension R ⇢ T is integral. Further, the fact that it is a minimal extension
forces N1\N2 =M ✓N by [14, Lemma 2.1]. Hence N =N1 or N =N2, as claimed.
Further, in view of [9, Theorem 3.5], we envisage two cases. Assume T is Dedekind.
Then, I = aT and so T = (I : I); that is, I is strongly stable in R. Since I is by hypothesis
non-principal, R $ T and hence (R : T) =M. By [26, Theorem 2.12], we have

core(I) = I2I�1

= I2a�1M
= aM
= aM\pcore(I).

Next, assume T is not Dedekind. In this case, say, N1 is invertible but N2 is not,
and hence the trace of every non-invertible (nonzero) ideal of T equals N1. If I is
invertible in T, then I = aT and, as seen above, we are done. So, assume I is not
invertible in T and let n be a positive integer such that aIn = In+1. By [18, Remark
2.13 (b)], the trace property implies

In(T : In) = I(T : I) =N1.

So Theorem 2.1 yields

aN1 = aIn(T : In)
= In+1(T : In)
= IN1
= coreT(I).
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Hence, we get
core(I) = coreT(I)\

⇣
aR\pcore(I)

⌘

=
⇣
aN1\ aR

⌘
\pcore(I)

= aM\pcore(I)
✓ aN1\pcore(I)
= coreT(I)\pcore(I)
= core(I).

Consequently, core(I) = aM\pcore(I), completing the proof of the theorem. ⇤

Illustrative examples are provided in the next section.

3. Examples

In this section, all results obtained in the previous section are illustrated with
original examples, where we explicitly compute the core. The first example features
a Noetherian local domain R in which core(I) = I2I�1 for each nonzero ideal I and
R is not a TP-domain. This shows that the implication (1)) (2) of Theorem 2.1
is not reversible in general. For this purpose, recall that a nonzero ideal I of a
domain R is stable (resp., strongly stable) if it is invertible (resp., principal) in its
endomorphism ring (I : I) (cf. [1, 24, 25, 32, 33, 34, 38, 39]).

Example 3.1. Let k be a field and X an indeterminate over k. Let R := k[[X2,X5]].
Then, R is a one-dimensional Noetherian local domain with maximal ideal M =
(X2,X5). We claim that R is a strongly stable divisorial domain. Indeed, it is
easy to check that M�1 = k[[X2,X3]]. Further, k[[X2,X5]] $ k[[X2,X3]] is a minimal
extension; that is, M�1/R is a simple R-module. Hence R is a divisorial domain by
[5, Theorem A]. Next, let I be a non-invertible ideal of R and set T := (I : I). Then
II�1 ✓M and so

k[[X2,X3]] =M�1 ✓ (II�1)�1 = (Iv : Iv) = (I : I) = T ✓ k[[X]].

Since the extension k[[X2,X3]]$ k[[X]] is minimal, either T= k[[X]] or T= k[[X2,X3]].
In the first case, k[[X]] is a DVR and so I would be invertible in T. Next, assume
T = k[[X2,X3]] and I(T : I) ✓ (X2,X3). Then, we get

k[[X]] = (X2,X3)�1 ✓ (T : (I(T : I))) = (Iv1 : Iv1 )

where v1- denotes the v-operation with respect to T. Similar arguments as above
ensure (via [5, Theorem A]) that T is a divisorial domain. So (Iv1 : Iv1 ) = (I : I) = T
forcing k[[X]]=T, which is absurd. Necessarily, I is invertible in T. Consequently, in
both cases, I is strongly stable. Since T is local, by [26, Theorem 2.12], core(I)= I2I�1,
as desired. But, R is not a TP-domain as M�1 $ R = k[[X]]. ⇤

The next example features a one-dimensional Noetherian local domain with
maximal ideal M such that core(M)=M3 $M2M�1. This shows that the implication
(2)) (3) of Theorem 2.1 is not reversible in general.

Example 3.2. Let k be a field and X an indeterminate over k. Let R := k[[X3,X4]].
Then, R is a one-dimensional Noetherian local domain with maximal ideal M :=
(X3,X4) and hence

T := (M : M) =M�1 = k[[X3,X4,X5]].
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Since R $ T is a minimal extension, R is a divisorial domain [5, Theorem A]. Also,
we have

S := RM = (M2 : M2) = k[[X]]
and so

(R : S) =M2 = X6k[[X]].
Now, let f 2 core(M), say f =X3

⇣
ao+ a3X3+ a4X4+ a6X6+ . . .

⌘
and let J1 :=X3(X+1)R

and J�1 := X3(X�1)R. Both J1 and J�1 are subideals of M with

J1M2 = J�1M2 =M3

that is, both are (principal) reductions of M in R. Hence f 2 J1\ J�1 and a routine
verification shows that ao = a3 = a4 = 0. So f 2X9k[[X]] =M3; that is, core(M) ✓M3.
On the other hand, let J be any arbitrary reduction of M in R. By Lemma 2.2,
JS =MS and so JM2 =M3 ✓ J. It follows that M3 ✓ core(M) and thus core(M) =
M3 $M2 =M2T =M2M�1. ⇤

The next example features a two-dimensional Noetherian local domain with
maximal ideal M such that M�1 is local with maximal ideal M, and core(P) = P2P�1

for every nonzero prime ideal P. This shows that the implication (2) =) (3) in
Theorem 2.1 is not true, in general, if the formula “core(I) = I2I�1” holds only for
the nonzero prime ideals.

Example 3.3. Let Q be the field of rational numbers and X,Y two indeterminates
overQ. Let M := (X,Y)Q(

p
2)[[X,Y]], T :=Q(

p
2)+M, and R :=Q+M. Observe that

R and T are two-dimensional Noetherian local domains with the same spectrum
[2, 13] and M�1 = (M : M) = T. Let P be a height-one prime ideal of R. Then P is
a height-one prime ideal of T and hence principal (since T is a UFD). Therefore,
T = (P : P) and thus P is a strongly stable ideal of R. By [26, Theorem 2.12],
core(P) = P2P�1. It remains to prove that

core(M) =M2M�1 =M2T =M2.

Indeed, since M is a 2-generated height-two ideal of T (i.e., it is of the principal
class), then M is a basic ideal of T by [15, Theorem 2.3]. Next, let J be a reduction
of M in R. Then, JT is a reduction of M in T and so JT =M, hence JM =M2,
whence M2 ✓ J. It follows that M2 ✓ core(M). Conversely, let f 2 core(M) and let
Jo := (X,Y)R. Then,

p
2JoM = JoM =M2 and so core(M) ✓ Jo\

p
2Jo. So, write

f = Xg+Yh = Xu
p

2+Yv
p

2

for some g,h,u,v 2 R, and write

g = a1+m1, h = a2+m2, u = b1+m01, v = b2+m02
where a1,a2,b1,b2 2Q and m1,m2,m01,m

0
2 2M. Then, we have

(a1� b1
p

2)X+ (a2� b2
p

2)Y = (m01
p

2�m1)X+ (m02
p

2�m2)Y 2M2.

Necessarily, a1 = b1 = a2 = b2 = 0 and hence f = m1X+m2Y 2M2. Consequently,
core(M) =M2 =M2M�1, as desired. ⇤

The following three examples illustrate Theorem 2.4. The first two examples
provide local Noetherian divisorial domains (R,M) such that M�1 is a local TP-
domain, where we compute the core for a non-basic ideal I. While R is a strongly
stable domain in the first example, it is not in the second example.
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Example 3.4. Let k be an infinite field and X an indeterminate over k, and let
R := k[[X2,X5]]. In Example 3.1, we saw that R is a local Noetherian strongly stable
divisorial domain with maximal ideal M = (X2,X5) and M�1 = k[[X2,X3]]. Since⇣
M�1 : (X2,X3)

⌘
=M�1 = k[[X]], M�1 is a local TP-domain [9, Theorem 3.5]. Next,

let I := (X4,X5)R =X4k[[X]]. Now, consider S, Uo, and Po from Lemma 2.3. Clearly,
X4I = I2 and then Lemma 2.2 yields S = (I : I) = k[[X]]. Moreover, Uo = U(S) and
Po ✓M. Let f 2 Po. Then, f 2 (1+X)R\M and, through polynomial identification,
one can check that f 2X4k[[X]]; that is, Po ✓X4k[[X]]. The reverse inclusion trivially
holds since I is an ideal of S. It follows that pcore(I) = X4Po = X8k[[X]]. By
Theorem 2.4, core(I) = pcore(I) = X8k[[X]]. ⇤

Example 3.5. Let k be an infinite field, X an indeterminate over k, and let R :=
k[[X3,X4]] and I := (X7,X8) ✓M := (X3,X4). Then, (R,M) is divisorial [30, Theorem
2.2] and T :=M�1 = k[[X3,X4,X5]] is local with maximal ideal N := (X3,X4,X5). Since
(T : N) = T = k[[X]], T is a TP-domain [9, Theorem 3.5]. Notice that I (and a fortiori
R) is not stable since (I : I) = T and so I(T : I) = I

⇣
X�4k[[X]]

⌘
= N. Next, consider

S, Uo, and Po from Lemma 2.3. Clearly I2 = (X14,X15,X16) and I3 = (X21,X22,X23),
yielding X7I = (X14,X15) $ I2 and X7I2 = I3; that is, X7R is a principal reduction of I
and so S = (I2 : I2) = k[[X]] by Lemma 2.2. Moreover, one can easily check that Uo =n
a+bX+X3g | a,b 2 k and g 2 k[[X]]

o
. Let f 2 Po. Then, f 2M\

⇣T
p(1+pX)R

⌘
, where

p ranges over the positive prime integers. Through polynomial identification,
we get f 2 X6k[[X]]; that is, Po ✓ X6k[[X]]. On the other hand, for every u 2 Uo,
u�1X6k[[X]]=X6k[[X]]✓R and so X6k[[X]]✓ uR. Hence X6k[[X]]✓ Po and therefore
Po =X6k[[X]]. It follows that pcore(I) =X7Po =X13k[[X]]. By Theorem 2.4, core(I) =
pcore(I) = X13k[[X]]. ⇤

The third example provides a local Noetherian divisorial domain (R,M) such
that M�1 is a non-local TP-domain, where we compute the core for a non-basic ideal.

Example 3.6. Let k be an infinite field, X an indeterminate over k, and let R :=
k+X(X�1)k[X](X)[(X+1). Then R is one-dimensional local Noetherian domain with
maximal ideal M := X(X� 1)k[X](X)[(X+1). Since M�1 = k[X](X)[(X+1) is a semilocal
Dedekind domain with exactly two maximal ideals N1 and N2 with M = N1N2,
M�1/M is a 2-dimensional R/M-vector space. Hence R is a divisorial domain [5,
Theorem A]. Also, since M�1 = R̄ is Dedekind, R is a TP-domain [9, Theorem 3.5].
Next, let I be a non-basic ideal of R with a principal reduction aoR and consider S,
Uo, and Po from Lemma 2.3. Then, II�1 =M and so M�1 = (II�1)�1 = (II�1 : II�1) =
(Iv : Iv) = (I : I). Hence, M�1 ✓ S ✓ R =M�1; that is, S = (I : I) =M�1. It follows that
Uo = U(S) and so, for every u 2 U(S) and m 2M, mu�1 2M ✓ R. Hence m 2 uR,
whence M ✓ Po. Thus Po =M. Consequently, pcore(I) = aoP = aoM and therefore
core(I) = aoM\pcore(I) = aoM by Theorem 2.4. ⇤

The last example provides a non-local (i.e., beyond the scope of Theorem 2.4)
Noetherian divisorial domain R with a maximal ideal M such that M�1 is a non-local
TP-domain, and with a non-basic ideal I ✓M that has a principal reduction aR such
that core(I) = aM\pcore(I) $ pcore(I).

Example 3.7. Let k be an infinite field, X an indeterminate over k, R := k[X2,X5] and
I := (X4,X5)R ✓M := (X2,X5)R. Then, M�1 = k[X2,X3] and, by [30, Theorem 2.2], R
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is divisorial. Moreover,
⇣
M�1 : (X2,X3)

⌘
=M�1 = k[X] and, for any N 2Max(M�1),

N(M�1 : N) = N implies (M�1 : N) = (N : N) ✓ k[X] and so N = (X2,X3). Hence, by
[9, Theorem 3.5], M�1 is a TP-domain. Further, X4I = I2; that is, X4R is a principal
reduction of I. By Lemma 2.2, S :=

S
n�1(In : In) = (I : I) = k[X] and X4k[X] = I.

Since U(R) = U(S), by Lemma 2.3, X4R is the unique principal reduction of I
and so pcore(I) = X4R. Moreover, it is easy to check that I�1 = k[X] and hence
Q := (R : S) = (R : I�1) = Iv = I. By Lemma 2.2, X8k[X] = X4Q ✓ core(I). On the other
hand, let f := X4g 2 core(I) ✓ pcore(I) with g = ao + a2X2 +X4g0, for some ao,a2 2 k
and g0 2 k[X], and let J := X4(1+X,X4)R ⇢ I. The basic fact that 1�X4 2 (1+X)S
yields (1+X,X4)S = S and so JS = X4S. Hence JI = I2; that is, J is a reduction of
I. Therefore f 2 J. It follows that g = (1+X)h+X4h0, for some h,h0 2 R, which
forces ao = a2 = 0 and so f 2 X8k[X]. Consequently, we have core(I) = X8k[X] =
X4M\pcore(I) $ X4R = pcore(I). ⇤

In view of the above example , where R is not local, we close this paper with the
following open question:

Question 3.8. Can Theorem 2.4 be extended to non-local settings? Namely, a possible
extension may exhibit as follows: Let R be a one-dimensional Gorenstein (i.e., Noetherian
divisorial) domain with infinite residue fields such that M�1 is a TP-domain for each
M 2Max(R). Let I be a non-basic ideal of R and Jo an arbitrary invertible reduction of I.

(1) If M�1 is local, then core(I) = icore(I),
(2) If M�1 is not local, then core(I) = JoM\ icore(I),

where icore(I) denotes the invertible core of I; i.e., the intersection of all invertible
reductions of I.

Notice that the “infinite residue fields” assumption ensures the existence of
invertible reductions in one-dimensional Noetherian domains [15, Theorem 4.4].
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