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Abstract. In this paper, we investigate the linkage of ideals, in
Noetherian and non-Noetherian settings, with the aim to estab-
lish new characterizations of classical notions of domains through
linkage theory. Two main results assert that a Noetherian domain
is Dedekind if and only if it has the primary linkage property; and
a domain is almost Dedekind (resp., Prüfer) if and only if it has
the linkage (resp., finite linkage) property. Also, we prove that a
finite-dimensional valuation domain is a DVR (i.e., Noetherian)
if and only if it has the primary linkage property.

1. Introduction

Throughout this paper, all rings are commutative with identity elements.
Linkage theory lies on the border between commutative algebra and
algebraic geometry and dates back to the early twentieth century, and
was initially used to study algebraic curves in P3. From [27]: “Linkage
allows to pass from a given curve to another curve, related in a geometric
way to the original one. Iterating the procedure one obtains a whole
series of curves in the same linkage class. The usefulness of this technique
is explained by two observations: (a) certain properties of the curve are
preserved under linkage, and (b) the resulting curves may be simpler,
and thus easier to handle, than the original one. ... Linkage was applied
in more general situations, and during the decades straddling the second
world war, significant contributions were made by Dubreil [8], Apéry
[1, 2], and Gaeta [9]. The breakthrough, however, came with the 1974
paper [18]. Using sheaves, duality, and homological tools, Peskine and
Szpiro reduced general linkage to algebraic questions about certain ideals
of regular local rings and thus put linkage theory on a sound algebraic
footing.”
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Since then, linkage has been an active area of research and turned
out to be a powerful tool which has been successfully put into use in a
number of contexts in commutative algebra and algebraic geometry alike;
including, study of special varieties (e.g., [13], [25]) and class groups (e.g.,
[16]).

Before we define linkage, we first recall the following basic definitions.
A Noetherian local ring (R,M) is Cohen-Macaulay if the grade and
height of M coincide; R is Gorenstein if its injective dimension is finite
when viewed as a module over itself; and R is a complete intersection if
its M -completion is the quotient ring of a local regular ring modulo an
ideal generated by a regular sequence; R is regular if its Krull dimension
and embedding dimensions coincide. All these notions are globalized by
carrying over to localizations.

In a Noetherian local ring R, two ideals I and J are linked by a
complete intersection ideal A (i.e., generated by a regular sequence) if
A ✓ I\J with I = (A :R J) and J = (A :R I). The traditional definition
of linkage of ideals was set with respect to complete intersection ideals,
first, in the context of regular rings and, later, in the more general con-
text of Cohen-Macaulay rings. In 1982, Schenzel extended the notion of
linkage to Gorenstein ideals. Namely, in a Gorenstein local ring R, two
ideals I and J of pure height h (i.e., all associated primes have height
h) are linked by a Gorenstein ideal A (i.e., R/A is Gorenstein) of pure
height h if A ✓ I \ J with I = (A :R J) and J = (A :R I) [35].

Among the prominent works on complete intersection and/or Goren-
stein linkage are Artin-Nagata [3], Peskine-Szpiro [33], Rao [34], Huneke
[13, 14], Kustin-Miller [24, 25], Kustin-Miller-Ulrich [26], Huneke-Ulrich
[16, 17, 18, 19, 20], Bologio-Migliore [4], Migliore [28], Nagel [30], and
Migliore-Nagel [29].

In 2004, Martsinkovsky-Strooker extended the definition of Goren-
stein linkage of ideals to arbitrary finitely generated modules over Noe-
therian semi-perfect rings [27]. Their module-theoretic approach brought
about more general and more precise results providing, thus, simple
proofs for some traditional settings of algebraic geometry and local alge-
bra. In their general definition of Gorenstein linkage of ideals, they have
dispensed with the requirement of purity. In 2000, Yoshino-Isogawa [36]
introduced and studied linkage in the special case of Cohen-Macaulay
modules which agrees with Martsinkovsky-Strooker’s definition. Other
notable works on linkage of modules are, among others, Nagel [31],
Dibaei-Gheibi-Hassanzadeh-Sadeghi [5], Dibaei-Sadeghi [6, 7], and Iima-
Takahashi [21].

In this work, we extend the definition of linkage of ideals to a much
more general and fundamental formalism which deals with linking ideals
of arbitrary (commutative) rings by arbitrary ideals (i.e., not necessarily
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subject to the complete intersection or Gorenstein conditions): In a ring
R, two ideals I and J are linked if there is an ideal A ✓ I \ J such that
I = (A :R J) and J = (A :R I).

As a first phase, in this paper, we restrict our study of linkage of ideals
to integral domains (i.e., commutative rings without zero-divisors). We
examine both Noetherian and non-Noetherian settings. Our main goal
is to characterize the notion of linkage of ideals in some classical classes
of integral domains. Two main results assert that a Noetherian domain
is Dedekind if and only if it has the primary linkage property (Theo-
rem 3.6); and a domain is almost Dedekind (resp., Prüfer) if and only if
it has the linkage (resp., finite linkage) property (Theorem 3.3). Also, we
prove that a finite-dimensional valuation domain is a DVR (i.e., Noether-
ian) if and only if it has the primary linkage property (Proposition 3.7).

Throughout, given a ring R and two ideals I and J of R, we let

(I :R J) =
�
x 2 R | xJ ✓ I

 

and, if R is a domain with quotient field qf(R), we let

(I : J) =
�
x 2 qf(R) | xJ ✓ I

 

and
I�1 = (R : I) =

�
x 2 qf(R) | xI ✓ R

 
.

2. Basic properties and examples

This sections provides basic properties of linkage of ideals in an arbitrary
(commutative) ring along with natural examples of linked and non-linked
ideals. We first recall the definition.

Definition 2.1. In a ring R, two ideals I and J are linked if there is an
ideal A ✓ I \ J such that I = (A :R J) and J = (A :R I). We say that
I and J are linked over A.

Next, we show that two ideals are linked if and only if they are linked
over their product.

Lemma 2.2. In a ring R, two ideals I and J are linked if and only if
they are linked over IJ .

Proof. Assume that I and J are linked. Then, there is an ideal A ✓ I\J
such that I = (A :R J) and J = (A :R I). Therefore, IJ = J(A :R J) ✓
A. Hence I ✓ (IJ :R J) ✓ (A :R J) = I. Whence I = (IJ :R J).
Similarly, J = (IJ :R I) and so I and J are linked over IJ . ⇤

Observe that we always have I ✓ (IJ :R J) and J ✓ (IJ :R I) and so
I and J are linked if and only if the two reverse inclusions hold. Also, an
ideal I is self-linked (i.e., linked to itself) means I = (I2 :R I). Clearly,
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invertible ideals are self-linked, whereas proper idempotent ideals are not
self-linked.

Next, we provide families of pairs of ideals which are always linked in
any arbitrary (commutative) ring.

Lemma 2.3. Let R be a ring. Then:

(1) Any two comaximal ideals are linked.
(2) Any two incomparable prime ideals are linked.
(3) Any two primary ideals with incomparable radicals are linked.
(4) Any two prime ideals P ✓ M , with M maximal, are linked if

and only if PM 6= P .

Proof. (1) Let I and J be two ideals of R with I + J = R. Then, we
have

(IJ :R J) = I(IJ :R J) + J(IJ :R J) ✓ I + IJ ✓ I

and, likewise, (IJ :R I) ✓ J .
(2) This is a particular case of (3).
(3) Let I and J be two primary ideals of R such that P :=

p
I and

Q :=
p
J are incomparable. Then, J(IJ :R J) ✓ IJ ✓ I with J * P . It

follows that (IJ :R J) ✓ I and, similarly, (IJ :R I) ✓ J .
(4) Clearly, M = (M2 :R M) if and only if (M2 :R M) $ R if

and only if M 6= M2. So, we may assume P $ M . Then, M(PM :R
M) ✓ PM ✓ P forces (PM :R M) ✓ P . Moreover, maximality yields
(PM :R P ) = M if and only if (PM :R P ) $ R if and only if PM 6= P ,
completing the proof of the lemma. ⇤

The following example features two non-linked primary ideals (a for-
tiori, with comparable radicals) and two linked comparable prime ideals
in a Noetherian domain.

Example 2.4. Let k be a field and let x, y, z be indeterminates over k.
Let R := k[x, y, z], I := (x2, y2), and J := (x3, y3, z3). Observe that

p
I = (x, y) ⇢

p
J = (x, y, z).

Clearly, we have

IJ = (x5, x2y3, x2z3, y2x3, y5, y2z3)

and
x2y2z2I = (x4y2z2, x2y4z2) ✓ IJ.

It follows that x2y2z2 2 (IJ :R I) \ J . Hence J $ (IJ :R: I) and so
I and J are not linked. Moreover, by Lemma 2.3(4), P := (x, y) and
M := (x, y, z) are linked since, obviously, PM $ P .

Given a nonzero ideal A in a domain, an ideal I is said to be A-
divisorial if (A : (A : I)) = I. Next, we show that A-divisoriality is a
necessary condition for linkage over A.
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Lemma 2.5. Let R be a domain and A a nonzero ideal of R with (A :
A) = R. Then, any two linked ideals over A are A-divisorial.

Proof. Let I and J be two ideals of R with I = (A :R J) and J = (A :R
I). Then, I = (A :R (A :R I) and J = (A :R (A :R J). Since A(A : I) ✓
I(A : I) ✓ A, (A : I) ✓ (A : A) = R; that is, (A : I) = (A :R I). Hence

I = (A :R (A :R I) = (A :R (A : I)).

Now, let x 2 (A : (A : I)). Then xA ✓ x(A : I) ✓ A and so x 2
(A : A) = R. Therefore, (A : (A : I)) ✓ R and hence (A : (A : I) =
(A :R (A : I)). It follows that I = (A : (A : I)). Likewise, we have
J = (A : (A : J)), completing the proof of the proposition. ⇤

The converse of the above result is not true in general, as shown below.

Example 2.6. Let k be a field and let x, y be indeterminates over k.
Let R := k[[x, y]], M := (x, y), I := xM , J := yM and A := xyM . Then

IJ = xyM2 $ A $ xyR = I \ J

and (A : A) = R. Moreover,

(A : I) = (xyM : xM) = y(M : M) = yR

and so
(A : (A : I)) = (xyM : yR) = (I : R) = I.

Likewise, we have

(A : (A : J)) = (xyM : xR) = (J : R) = J.

Hence I and J are A-divisorial. But (A :R I) = (A : I) = yR % J .
Thus, I and J are not linked over A.

Next, we provide another necessary condition for linkage related to
the dual I�1 and endomorphism ring (I : I) of an ideal I.

Lemma 2.7. Let R be a domain and let I, J be two nonzero ideals with
I�1 = J�1. Then, I and J are linked only if (I : I) = (J : J).

Proof. Let x 2 (I : I) ✓ I�1 = J�1. Then xI ✓ I and xJ ✓ R. Hence
xIJ ✓ IJ and so xJ ✓ (IJ :R I) = J ; that is, x 2 (J : J) and so
(I : I) ✓ (J : J). Likewise, we get (J : J) ✓ (I : I), completing the
proof of the lemma. ⇤

Here is an illustrative example.

Example 2.8. Let x be an indeterminate over Q. Let V := Q[[x]] =
Q + M , where M := xV , R := Z + M , I := x(Z(p) + M) and J :=
x(Z(q) + M), where p and q are distinct prime integers. It is easy to
check that I�1 = J�1 = V . However, we have

(I : I) = Z(p) +M 6= Z(q) +M = (J : J)
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and hence I and J are not linked.

3. Characterizations through linkage

This section investigates the concept of linkage of ideals, in Noetherian
and non-Noetherian settings, with the aim to establish new characteri-
zations of classical notions of integral domains through linkage theory.

Next, we characterize two large classes of (integral) domains through
linkage.

Proposition 3.1. Let R be a domain. The following statements are
equivalent:

(1) R is integrally closed (resp., completely integrally closed);
(2) Each nonzero finitely generated ideal (resp., each nonzero ideal)

is linked to a principal subideal.
(3) Each nonzero finitely generated ideal (resp., each nonzero ideal)

is linked to an invertible subideal.

Proof. Assume that R is integrally closed (resp., completely integrally
closed) and let I be a nonzero finitely generated ideal (resp., nonzero
ideal) of R. Then (I : I) = R. Let 0 6= a 2 I and J := aR. So
(IJ :R J) = (I :R R) = I and

(IJ :R I) = (aI :R I)
= (aI : I) \R
= a(I : I) \R
= aR
= J.

Thus, I and J are linked.
Next, let I be a nonzero finitely generated ideal (resp., nonzero ideal)

of R and assume that I is linked to an invertible ideal J ✓ I. Let
x 2 (I : I). Then

xJ ✓ xI ✓ I ✓ R

and xIJ ✓ IJ . Hence, xJ ✓ (IJ :R I) = J and whence x 2 (J : J) = R.
Therefore, (I : I) = R, completing the proof of the proposition. ⇤
Remark 3.2. The above proof ensures that: in a domain R, a nonzero
ideal I is linked to an invertible (resp., principal) subideal if and only if
(I : I) = R.

Next, we use linkage to characterize two important subclasses of inte-
grally closed domains and completely integrally closed domains; namely,
Prüfer domains and almost Dedekind domain, respectively. To this pur-
pose, recall that, given an ideal I in a ring R, an ideal J is called a
reduction of I if J ✓ I with JIn = In+1, for some positive integer n;
and I is called basic if it has no proper reduction [15, 32]. Invertible
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ideals and idempotent ideals are basic [22, Lemma 2.1]. Of relevance to
our study of linkage is Hays’ characterization of Prüfer domains through
reduction: a domain “R is Prüfer if and only if every finitely generated
ideal of R is basic. [10, 11].”

Throughout, for the sake of convenience, we say that a ring R has
the linkage property if any two distinct nonzero ideals of R are linked;
and R has the finite linkage property if any two distinct nonzero finitely
generated ideals of R are linked.

Next, we establish the first main result of this paper.

Theorem 3.3. A domain has the finite linkage property (resp., linkage
property) if and only if it is Prüfer (resp., almost Dedekind).

Proof. Let R be a domain satisfying the finite linkage property and let
I be a proper finitely generated ideal of R. We prove that I is basic.
Deny, for a contradiction, and suppose that J is a proper reduction of I;
i.e., JIn = In+1, for some positive integer n. Without loss of generality,
we may assume that J is finitely generated (cf. [12, Lemma 2.7]). If
n = 1, then JI = I2. Since I and J are linked, we have

J $ I ✓ (I2 :R I) = (IJ :R I) = J

which is a contradiction. Next, suppose n � 2. Necessarily, J 6= In.
Otherwise, if J = In we obtain

In�1In+1 = JIn = In+1

which yields, via [23, Theorem 76], (1 + a)In+1 = 0 for some a 2 In�1,
forcing thus 1 = �a 2 In�1 ✓ I, which is absurd. Therefore, J and In

are linked and hence

J $ I ✓ (In+1 :R In) = (JIn :R In) = J

which is a contradiction. Consequently, I is basic and so R is a Prüfer do-
main by [10, Theorem 6.5]. The converse is straightforward through the
fact that, in a Prüfer domain, every finitely generated ideal is invertible,
completing the proof of the first statement.

Now, let R be a domain satisfying the linkage property. Then, R is a
Prüfer domain. Moreover, we claim that dim(R) = 1. Deny and suppose,
for a contradiction, that dim(R) � 2. Let P $ M be two prime ideals of
R such that M is maximal. Then, necessarily, PM = P . On the other
hand, P and M are linked and so, by Lemma 2.3(4), PM 6= P , which
is absurd, proving the claim. Next, let Q be any nonzero prime ideal of
R. We claim that Q is not idempotent. Deny and assume Q = Q2. Let
0 6= a 2 Q. Then, Q 6= aQ since 1 = a�1a 2 a�1Q. Hence Q and aQ are
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linked and whence
Q = (aQ2 :R aQ)

= (aQ :R aQ)
= R

which is a contradiction. It follows that R is a one-dimensional strongly
discrete Prüfer domain and thus an almost Dedekind domain. Con-
versely, assume that R is almost Dedekind and let I, J be two dis-
tinct nonzero ideals of R. Let x 2 (IJ :R J). Then, for each maxi-
mal ideal M of R, RM is a discrete valuation domain (DVR) and so
JRM (JRM )�1 = RM . Thus

xRM = xJRM (JRM )�1

✓ IJRM (JRM )�1

= IRM .

Hence x 2 IRM . It follows that x 2
T

M IRM = I. Thus I = (IJ :R J).
Similarly, J = (IJ :R I) and therefore I and J are linked, completing
the proof of the theorem. ⇤

Next, we examine linkage in (locally) Noetherian domains.

Proposition 3.4. In a (locally) Noetherian domain, any two nonzero
radical (and, a fortiori, prime) ideals are linked.

Proof. Let R be a locally Noetherian domain and let I, J be nonzero
radical ideals of R. Assume, for a contradiction, that there is x 2 (IJ :R
J) \ I. Then, there is a minimal prime ideal P of I such that x 62 P . We
claim that, for each n � 1, we have

JRP ✓ PnRP .

We prove this fact by induction on n. Indeed, xJ ✓ IJ ✓ I forces
xJRP ✓ IRP =

p
IRP = PRP and hence

JRP ✓ PRP .

Next, suppose that JRP ✓ PnRP . Then, xJRP ✓ IJRP ✓ Pn+1RP .
Moreover, x 62 PRP and Pn+1RP is PRP -primary. Therefore, we get

JRP ✓ Pn+1RP

proving the claim. Now, since RP is a Noetherian domain, via [23,
Theorem 77], we get

JRP ✓
\

n�1

PnRP = 0.

That is, J = 0, which is absurd. Consequently, (IJ :R J) = I and,
similar arguments yield (IJ :R I) = J , as desired. ⇤
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Remark 3.5. When I = J , the above result ensures that: in a (locally)
Noetherian domain R, we have (I2 :R I) = I, for any nonzero radical
ideal I of R.

Follows the second main result of this paper. For this purpose, we say
a ring R has the primary linkage property if any two distinct nonzero
primary ideals of R are linked.

Theorem 3.6. A Noetherian domain (resp., one-dimensional locally
Noetherian domain) has the primary linkage property if and only if it is
Dedekind (resp., almost Dedekind).

Proof. If R is a Dedekind (resp., an almost Dedekind) domain, then R
has the linkage property by Theorem 3.3. So, we only need to prove the
“only if” assertion for both statements.

Let R be a Noetherian domain subject to the primary linkage prop-
erty. We claim that dim(R) = 1. Indeed, suppose for a contradiction,
that dim(R) � 2 and let M be a prime ideal of R with ht(M) = 2. One
can easily check that RM (and, in fact, any localization of R) satisfies
the primary linkage property. So, without loss of generality, we assume
that R is local with maximal ideal M and ht(M) = dim(R) = 2. Let
0 $ P $ M be a chain in the prime spectrum of R and let a 2 M \ P .
Consider the two ideals of R given by

I := aR+ P and J := a2R+ P 2.

Clearly, a /2 J and hence J $ I. Now, if P1 is a minimal prime ideal
over J , then a 2 P1 and hence P $ P1 ✓ M , whence P1 = M . It follows
that

p
J =

p
I = M and therefore I and J are M -primary. Thus, I and

J are linked. So, since

aPI = a2P + aP 2 ✓ IJ

we have

aP ✓ (IJ :R I) = J.

Next, consider the P -primary ideal of R given by

Q := P 2RP \R

and let p 2 P . Then, ap 2 J and so ap = ra2 + d, for some r 2 R
and d 2 P 2. Therefore, a(p � ra) 2 P 2 ✓ Q with a 62 P and so
q := p � ra 2 Q. Hence ra 2 P and then r 2 P . It follows that
p = ar + q 2 aP +Q. Consequently, P ✓ aP +Q and thus

P = aP +Q.

Now, let

E := aR+Q
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and, in the Noetherian quotient ring R/Q, let A := P/Q and B :=
E/Q. Then, BA = A. By [23, Theorem 76], there is y 2 E such that
(1 + y)P ✓ Q. If P 6✓ Q, then 1 + y 2 P ⇢ M (since Q is P -primary),
which is absurd since y 2 E ✓ M . If P ✓ Q, then P = Q and so

PRP = QRP = P 2RP

which is absurd, too, since RP is a Noetherian domain and hence has no
nonzero idempotent prime ideals, proving the claim; i.e., dim(R) = 1.
Next, let N be a maximal ideal of R and suppose, for a contradiction,
that N is not invertible. Necessarily, we have

NN�1 = N and so N�1 = (N : N).

Moreover, since ht(N) = 1, N is a t-ideal and then N = Nt = Nv. This
yields

R $ N�1.

Let 0 6= a 2 N and let I := aN�1 and J := aR. Clearly, I and J are
N -primary since dim(R) = 1. So I and J are linked. Therefore, we
obtain

J = (IJ :R I)
= (a2N�1 :R aN�1)
= aN�1 \R
= I.

which is absurd. Consequently, N is invertible and thus R is a Dedekind
domain, completing the proof of the first statement.

Next, let R be a one-dimensional locally Noetherian domain subject to
the primary linkage property. Observe, at this point, that the (primary)
linkage property does not carry up, necessarily, to localizations in the
absence of Noetherianity. Let M be a maximal ideal of R and let IRM

and JRM be two distinct primary ideals of RM . Set

A := IRM \R and B := JRM \R.

Since RM is Noetherian, there exist two finitely generated ideals A1 ✓ A
and B1 ✓ B such that

A1RM = ARM = IRM and B1RM = BRM = JRM .

Moreover, A and B are distinct andM -primary as dim(RM ) = dim(R) =
1. Hence A and B are linked; that is,

A = (AB :R B) and B = (AB :R A).

So, the fact that A1 and B1 are finitely generated yields

(IJRM :RM JRM ) = (A1B1RM :RM B1RM )
= (A1B1 :R B1)RM
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and, likewise

(IJRM :RM IRM ) = (A1B1 :R A1)RM .

Next, let x 2 (IJRM :RM JRM ). Then, tx 2 (A1B1 :R B1), for some
t 2 R \ M , and so txB1 ✓ A1B1 ✓ AB. Now, let y 2 B. Then,
yr 2 B1, for some r 2 R\M , and so txyr 2 AB. But, AB is M -primary
since

p
AB =

p
A \

p
B = M . Hence, txy 2 AB, whence txB ✓ AB.

Therefore, tx 2 (AB :R B) = A and so x 2 ARM = IRM . It follows
that

(IJRM :RM JRM ) = IRM

and likewise

(IJRM :RM IRM ) = JRM .

That is, IRM and JRM are linked. Consequently, any two distinct pri-
mary ideals of RM are linked. By the first statement, RM is a Dedekind
domain and so R is an almost Dedekind domain, completing the proof
of the theorem. ⇤

The next result identifies the primary linkage property as a default
condition for a valuation domain to be Noetherian; i.e., a Discrete Val-
uation Ring (DVR, for short).

Proposition 3.7. A valuation domain has the primary linkage property
if and only if it is Noetherian (i.e., DVR).

Proof. A DVR has the (primary) linkage property by Theorem 3.6 or
Theorem 3.3. So, we only need to prove the “only if” assertion.

Let V be a valuation domain subject to the primary linkage prop-
erty. We claim that dim(V ) = 1. Indeed, suppose for a contradiction,
that dim(V ) 6= 1 and let 0 $ P $ Q be a chain of prime ideals of V .
Therefore, since PQ = (PVP )Q = PQVP = PVP = P , we obtain

Q = (PQ :V P )
= (P :V P )
= V

which is a contradiction. Hence, dim(V ) = 1. Finally, we claim that
the maximal ideal M of V is not idempotent. Otherwise, assume for a
contradiction that M = M2. Let 0 6= a 2 M and set

I := aM.
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Clearly, I is M -primary and I 6= M . So, by hypothesis, I and M are
linked. It follows that

I = (IM :V M)
= (aM2 :V M)
= (aM :V M)
= (aM : M) \ V
= aV \ V
= aV

which is absurd. Hence M is principal and therefore V is a DVR, com-
pleting the proof of the proposition. ⇤
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[9] F. Gaeta, Quelques progrés récents dans la classification des variétés algébriques
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