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Abstract. This paper deals with reductions of ideals in various settings of pullback
constructions. Precisely, we investigate reductions of several types of ideals in both
generic and classical pullbacks. We also characterize pullbacks where reductions
of a class of ideals extend to reductions of their respective extended ideals. All
results are illustrated with original examples.

1. Introduction

Throughout this paper, all rings are commutative with identity. Let R be a ring and
I an ideal of R. An ideal J ⊆ I is a reduction of I if JIn = In+1 for some positive integer
n. An ideal which has no reduction other than itself is called basic. The notion of
reduction was introduced by Northcott and Rees with the purpose to contribute
to the analytic theory of ideals in Noetherian local rings through reductions.

In [8, 9], Hays extended the study of reductions of ideals to more general contexts
of commutative rings; particularly, Prüfer domains and Noetherian rings (not
necessarily local). His two main results assert that “a domain is Prüfer if and
only if every finitely generated ideal is basic” [8, Theorem 6.1] and “in an integral
domain, every ideal is basic if and only if it is a one-dimensional Prüfer domain”
[9, Theorem 10]. Moreover, he showed that most results on reductions of ideals do
not extend beyond the class of Noetherian rings.

Very recently, a t-analogue of the notion of reduction has been thoroughly stud-
ied in various classes of integral domains, including pullback constructions; see
[13, 14, 15]. For ample details on reductions of ideals, we refer the reader to Huneke
and Swanson’s book “Integral closure of ideals, rings, and modules” [11].

Let T be a domain, M a maximal ideal of T, K its residue field, φ : T −→ K the
canonical surjection, D a proper subring of K with quotient field k. Let R be the
pullback issued from the following diagram of canonical homomorphisms:

R −→ D
(�) ↓ ↓

T
φ−→ K = T/M.

Date: March 1, 2019.
2010 Mathematics Subject Classification. 13A15, 13A18, 13F05, 13G05, 13F30.
Key words and phrases. Pullback, Reduction, Minimal reduction, Basic ideal, Prüfer domain.
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So, R := φ−1(D) $ T and M = (R : T) is the conductor of T in R and hence a common
ideal to both R and T. Along this paper, we shall refer to the diagram (�) as generic,
and we say R is a generic pullback issued from (T,M,D). In the special case where
T = V is a valuation domain, we refer to the diagram (�) as classical, and we say R
is a classical pullback issued from (V,M,D). For more details on the ideal structure
of pullbacks and their respective ring-theoretic properties, we refer the reader to
[1, 2, 3, 4, 5, 6, 7, 10, 12, 16].

This paper deals with reductions of ideals in various settings of pullback con-
structions. In Section 2, we investigate reductions of several types of ideals in both
generic and classical pullbacks. We also characterize pullbacks where reductions
of a class of ideals extend to reductions of their respective extended ideals. In
Section 3, all results are illustrated with original examples, where we explicitly
compute the reductions of given ideals.

2. Reductions of ideals

An ideal J ⊆ I is a reduction of I if JIn = In+1 for some positive integer n. An ideal
which has no proper reduction is called basic [8, 18]. This section investigates the
reductions of ideals in pullbacks.

Recall that, given a ring homomorphism R −→ S and ideals J ⊆ I in R, if J is a
reduction of I, then JS is a reduction of IS. The converse holds if the homomorphism
is faithfully flat [11, Lemma 8.1.3]. Also, in a Prüfer (and, a fortiori, valuation)
domain, J is a reduction of I if and only if JI = I2 [9, Proposition 1].

Throughout, we denote by RedR(I) (or, Red(I), when no confusion is likely) the
set of all reductions of I in R, and by PRedR(I) the set of all principal reductions
of I in R. In particular, PRedR(I) = ∅ means that I has no principal reduction in R.
Also, by A $ B, we mean A is strictly contained in B.

For the reader’s convenience, we recall a few basic facts about the structure of
ideals in a pullback R issued from (T,M,D). Namely, if I is an ideal of R with M $ I
(), then I = φ−1(A) for some nonzero ideal A of D; and if T is local, then every ideal
of R is comparable to M. Moreover, if T =V is a valuation domain and I $M, then
either I is an ideal of V or IV = aV is a principal ideal of V, for some 0 , a ∈M; and
in the latter case, if I is not an ideal of V, then I = aφ−1(W) for some D-submodule
W of K with D ⊆W $ K. For more details, see [3, 5].

The first result of this section investigates reductions of ideals in the general
setting of generic pullbacks, where three types of ideals are addressed; namely,
I =M, I %M, and I+M = R.

Theorem 2.1. Let R be a generic pullback issued from (T,M,D) and I an ideal of R.
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(1) If I =M, then:

RedR(M) = RedT(M)⇐⇒M is basic in R⇐⇒M =M2.

(2) If M $ I; i.e., I = φ−1(A), for some nonzero ideal A of D, then:

RedR(I) =
{
φ−1(B) | B ∈ RedD(A)

}
.

(3) If I+M = R, then:

RedR(I) =
{
J ⊆ I | JT ∈ RedT(IT) with J+M = R

}
=
{
H∩R | H ∈ RedT(IT)

}
.

Proof. (1) Suppose that RedR(M) = RedT(M) and let J be a reduction of M in R.
Then, J ∈ RedT(M) and hence Mn+1 ⊆ J for some positive integer n. So J is an
M-primary ideal of T. We claim that J =M. Deny and let m ∈M\ J and Jo :=mR+ J.
Then Jo is a reduction of M in R and so in T by hypothesis. In particular, Jo is an
ideal of T. Let α ∈ T \R. Then, mα = am+ b, for some a ∈ R and b ∈ J. Therefore,
m(α− a) ∈ J and so α− a ∈M. Hence, α ∈ R, which is absurd. Consequently, M is
basic in R. The converse is obvious since the inclusion RedT(M) ⊆ RedR(M) always
holds (as any ideal J ⊆M of T is also an ideal of R). For the second equivalence,
assume that M is basic in R. We claim that M is idempotent. Otherwise, assume
M2 $M and let

{
mi
}
i∈∆ be a basis for the nonzero vector space M/M2 over the field

T/M. Necessarily, we have
M =

∑
i∈∆

miT+M2.

Next, consider the following ideal of R

J :=
∑
i∈∆

miR+M2.

Clearly, JT =M and so JM =M2; i.e., J is a reduction of M in R. Therefore, J =M.
Let t ∈ T \R and let io ∈ ∆. Then, tmio ∈ J and hence

t mio =
∑

1≤i≤n

ri mi

in M/M2, for some integer n ≥ 1 and some elements r1, ...,rn of R. It follows that
t ∈ R, the desired contradiction. For the converse, it is already known that an
idempotent ideal is always basic [17, Lemma 2.1].

(2) Suppose that M $ I; that is,

I = φ−1(A)

for some nonzero ideal A of D. If JIn = In+1, for some positive integer n, then the
assumption M $ I forces

M ⊆ In+1 ⊆ J

and so
J = φ−1(B)
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for some nonzero ideal B of D. Now it is easy to check that BAn = An+1 if and only
if JIn = In+1, for any integer n ≥ 0, leading to the conclusion.

(3) Assume J is a reduction of I. Then, obviously JT is a reduction of IT and, as
In+1 ⊆ J for some positive integer n, any maximal ideal containing J contains also
I; that is, J+M = R. Conversely, assume JInT = In+1T, for some positive integer n,
and J+M = R. Then, we get

JInMn+1 = JInTMn+1

= In+1TMn+1

= In+1Mn+1.

Moreover, the assumption “J+M = R” forces J+Mn+1 = R. It follows that

In+1 = JIn+1+ In+1Mn+1

= JIn+1+ JInMn+1

⊆ JIn.

Therefore, J is a reduction of I, completing the proof of the first equality.
Next, let J be a reduction of I in R and let H := JT. Then, H is a reduction of IT

with J+M = R. Therefore, H+M = T. It follows that

H∩R = H∩ (J+M)
= J+ (H∩M)
= J+HM
= J+ JM
= J.

Conversely, let H be a reduction of IT and let J := H∩R. Clearly, IT+M = T and
hence H+M = T. Consequently, we get

J+M = (H∩R)+M
= (H+M)∩R
= R

with JT =H; that is, J is a reduction of I, completing the proof of the theorem. �

The next result investigates the special setting of classical pullbacks, where all
types of ideals are addressed; namely, I =M, M $ I, 0 , I $M with I not an ideal of
V, and I $M with I an ideal of V.

Theorem 2.2. Let R be a classical pullback issued from (V,M,D) and I an ideal of R.

(1) The two cases “I =M” and “M $ I” are similar to Theorem 2.1(1)&(2).
(2) If 0 , I $M and I is an ideal of V, then:

RedR(I) = RedV(I)⇐⇒ PRedR(I) = ∅⇐⇒ PRedV(I) = ∅.

(3) If I $M and I is not an ideal of V; i.e., I = aφ−1(W), for some 0 , a ∈M and
D-submodule W with D ⊆W $ K, then:

RedR(I) =
{
aφ−1(H) |H submodule of W with HWn =Wn+1 for some n ≥ 0

}
.
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Proof. (2) Suppose that 0 , I $M and I is an ideal of V. First, it is worthwhile
noting that I is not principal in R in this case (since R$V). Clearly, aR is a principal
reduction of I in R if and only if aV is a principal reduction of I in V. This proves
the second equivalence. Next, assume that PRedV(I) = ∅ and let J ∈ RedR(I). Then,
JV is a reduction of I in V and hence JV is not a principal ideal of V (by hypothesis).
It follows that J is necessarily an ideal of V and so J ∈ RedV(I). This proves that
RedR(I) = RedV(I). Conversely, assume the latter equality holds. If 0 , aR is a
principal reduction of I, then aR ∈ RedV(I), hence aR is an ideal of V. This is absurd
since R $ V. So, PRedR(I) = ∅, as desired.

(3) Suppose that I $M and I is not an ideal of V; that is,

I = aφ−1(W)

for some 0 , a ∈M and D-submodule W with D ⊆W $ K. Let J be a reduction of I
and let n be a positive integer such that JIn = In+1. Then

an JT = JInT = In+1T = an+1T.

We obtain

JT = aT = IT.

Next, let

H := φ
(
φ−1(W)∩ a−1J

)
⊆W.

Clearly, H is an additive subgroup of W and, since φ is a surjective ring homomor-
phism, H is stable under scalar multiplication by D. That is, H is a D-submodule
of W. Further, we claim that

J = aφ−1(H).

Indeed, let x ∈ J ⊆ I and let y ∈ φ−1(W) such that x = ay. Then, φ(xa−1) = φ(y) ∈W
and, as axa−1 = x ∈ J, φ(xa−1) ∈ H. Hence x ∈ aφ−1(H). Therefore, J ⊆ aφ−1(H).
The reverse inclusion is straight, proving the claim. Finally, it is easy to check that
JIn = In+1 if and only if HWn =Wn+1, for any integer n≥ 0, leading to the conclusion
and completing the proof of the theorem. �

Recall that a ring R is called a pseudo-valuation domain [10] if it is local and
shares its maximal ideal with a valuation overring V or, equivalently, if R is a
classical pullback issued from the following diagram

R = φ−1(k) −→ k
↓ ↓
V

φ−→ K := V/M

We say that R is a pseudo-valuation domain issued from (V,M,k).
The next result investigates the setting of classical pullbacks with the property

that “reductions of an ideal I (in R) extend to reductions of IV (in V), for all ideals I ⊆M.”
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It turns out that this property characterizes a special class of pseudo-valuation
domains.

Theorem 2.3. Let R be a classical pullback issued from (V,M,D). Then, the following
assertions are equivalent:

(1) For every ideal I ⊆M of R, RedR(I) =
{
J ⊆ I | JV ∈ RedV(IV)

}
;

(2) R is a pseudo-valuation domain issued from (V,M,k) (i.e., D = k), where K is an
algebraic extension of k and, for every k-vector subspace W of K containing k, Wn

is a field for some positive integer n.

The following lemma proves the implication (1)⇒ (2) for the general setting of
generic pullbacks.

Lemma 2.4. Let R be a generic pullback issued from (T,M,D) such that, for every ideal
I ⊆M, RedR(I) =

{
J ⊆ I | JT ∈ RedT(IT)

}
. Then, D = k, K is algebraic over k and, for

every k-vector subspace W of K containing k, Wn is a field for some integer n ≥ 0.

Proof. Notice that if J is a reduction of I in R, then obviously JT is a reduction of IT
in T. Next, let λ ∈ K \D and let

Wo :=D+λD.

Let I be the ideal of R given by I = aφ−1(Wo), for some 0 , a ∈M, and let J := aR =
aφ−1(D). Clearly,

JT = aT = IT.

By (1), J is a reduction of I in R; that is, JIn = In+1 for some integer n ≥ 0. It follows
that

DWn
o =Wn

o =Wn+1
o

and so there is a monic polynomial f ∈D[X] of degree n+1 such that f (λ)= 0. Thus,
λ ∈ D, where D denotes the integral closure of D in K. Consequently, K = D and
therefore D = k is a field. Next, let W be a k-subspace of K and consider the ideal
of R given by I := aφ−1(W), for some 0 , a ∈M, and let J := aR. Same arguments as
above lead to

kWn =Wn =Wn+1

for some positive integer n. So, we get

Wn =W2n = (Wn)2

proving that Wn is a ring. But, we have

k ⊆W ⊆Wn ⊆ K = k

which forces Wn to be a field, completing the proof of the lemma. �
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Proof of Theorem 2.3. (1) =⇒ (2) is handled by Lemma 2.4.
(2) =⇒ (1) Let I ⊆M be an ideal of R and let J ⊆ I be an ideal of R such that JV is

a reduction of IV in V; i.e., JIV = I2V. Therefore, we have

JI ⊆ I2 ⊆ I2V = JIV.

Hence, if either of I or J is an ideal of V, then JI = I2 and we are done. Next, assume
that neither of I and J is an ideal of V. Then, both JV and IV are principal in V and
hence the equality JIV = I2V yields

JV = IV = aV

for some 0 , a ∈M. It follows that

I = aφ−1(W) and J = aφ−1(H)

for some k-vector subspaces H,W of K containing k; and a fortiori H ⊆W, since φ is
surjective. By (2), there is a positive integer n such that Wn is a field. Then, we get

HWn =Wn =Wn+1

and so JIn = In+1. Thus, J is a reduction of I, completing the proof of the theorem. �

3. Examples

In this section, the theorems obtained in the previous section are backed with
original examples, where we explicitly compute the reductions of ideals. All our
examples arise as special pullbacks of the form R =D+M issued from T = K+M.

Follow an illustrative example for Theorem 2.1.

Example 3.1. Let Q and R be the fields of rational and real numbers, respectively,
and X,Y two indeterminates over R. Let

T := R[X,Y] =R+M, where M := (X,Y)T
R := Q+M.

Notice that T is a two-dimensional Noetherian domain and R is a two-dimensional
non-Noetherian domain by [4, Theorem 4]. Consider the ideal of R given by

I := (X−1,Y)R.

Clearly, M is a maximal ideal of T with

I+M = R.

Further, IT = (X− 1,Y)T is a two-generated height-two ideal in the Noetherian
domain T. Therefore, IT is of the principal class and hence a basic ideal of T by [8,
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Theorem 2.3]. This argument cannot apply to I since R is not Noetherian. However,
by Theorem 2.1(3), we have

RedR(I) =
{
H∩R |H ∈ RedT(IT)

}
=
{
IT∩R

}
=
{
I
}
.

That is, I is a basic ideal of R. �

The following example shows that Theorem 2.2(2) does not carry up, in general,
to generic pullbacks.

Example 3.2. Let X,Y be two indeterminates over Q and let

T1 := Q
(√

2,
√

3
)
[[X,Y]] =Q

(√
2,
√

3
)
+M, where M := (X,Y)T1

T := Q
(√

2
)
+M

R := Q+M.

Notice that T1, T, and R are two-dimensional local Noetherian domains sharing
the same maximal ideal M. Let 0 , a ∈M and consider the ideal of R given by

I := aM.

Clearly, M is not basic in T since J = (X,Y)T is a proper reduction of M in T; and
however M is basic in T1 by the principal class property [8, Theorem 2.3]. Further,
a−1 < T1 = (M : M) and so

I $M.

We claim that PRedR(I) = ∅. Suppose for contradiction that I has a principal re-
duction in R, say bR, for some 0 , b ∈ R. Then, a−1bT1 $M and bIn = In+1 for some
integer n ≥ 1. It follows that a−1bMn =Mn+1 and hence a−1bT1 is a proper reduction
of M in T1, the desired contradiction.

On the other hand, let J := (aX,aY)R. Since JT1 = aM = I and I is an ideal of T1,
JI = I2 and so J is a reduction of I in R. But one can easily check that J is not an
ideal of T and hence J < RedT(I). Thus, RedT(I) $ RedR(I), as desired. �

Follow an illustrative example for Theorem 2.2.

Example 3.3. LetZ denote the ring of integers and let X be an indeterminate over
Q. Let

V := Q
(√

2,
√

3
)
[[X]] =Q

(√
2,
√

3
)
+M, where M := XV

R := Z+M.

Consider the ideal of R given by

I := X(W+M), where W :=Q
(√

2
)
.
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Since W is a field, Wn =W for every positive integer n. So, by Theorem 2.2(3), we
obtain

RedR(I) =
{
X(H+M) |H Z-submodule of W with HW =W

}
.

For instance, X(nZ+M), for any integer n ≥ 1, and X(Q+M) are proper reductions
of I in R. �

Follow an illustrative example for both Theorem 2.2 and Theorem 2.3.

Example 3.4. Let X be an indeterminate over Q and let

V := Q
(√

2,
√

3
)
[[X]] =Q

(√
2,
√

3
)
+M, where M := XV

R := Q+M.

Consider the ideal of R given by

I := X
(
Q
(√

2
)
+M
)
.

Clearly, I $M and I is not an ideal of V. Moreover, since W := Q
(√

2
)

is a field,
Wn =W for every positive integer n. So, by Theorem 2.2(3), we obtain

RedR(I) =
{
X(H+M) |H Q-subspace of W with HW =W

}
.

Let J := X(H+M) ∈ RedR(I). If dimQH = 1, then H = aQ, for some 0 , a ∈W and
so J = aXR. If dimQH = 2, then H = W and so J = I. On the other hand, by
Theorem 2.2(3), we get

RedR(I) =
{
J ⊆ I | JV ∈ RedV(IV)

}
.

Now, IV =M is basic in V and, consequently, we have

RedR(I) =
{
J ⊆ I | JV =M

}
=
{
I
}
∪PRedR(I)

=
{
I
}
∪
{
aXR | 0 , a ∈Q

(√
2
)}
.

Thus, a combination of both theorems yields the non-trivial fact that the proper
subideals of I which extend to M in V are exactly the principal reductions of I; i.e.,
they have the form aXR, where 0 , a ranges over Q

(√
2
)
. �
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