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ABSTRACT. Let f : A→B and g : A→C be two commutative
ring homomorphisms and let J and J′ be two ideals of B and
C, respectively, such that f−1(J) = g−1(J′). The bi-amalgamation
of A with (B,C) along (J, J′) with respect to ( f , g) is the subring
of B×C given by

A ./ f ,g (J, J′) :=
{
( f (a) + j, g(a) + j′) | a ∈ A, ( j, j′) ∈ J× J′

}
.

In this paper, we investigate ring-theoretic properties of bi-
amalgamations and capitalizes on previous works carried on
various settings of pullbacks and amalgamations. In the
second and third sections, we provide examples of bi-
amalgamations and show how these constructions arise as
pullbacks. The fourth section investigates the transfer of some
basic ring theoretic properties to bi-amalgamations and the
fifth section is devoted to the prime ideal structure of these
constructions. All new results agree with recent studies in the
literature on D’Anna-Finocchiaro-Fontana’s amalgamations and
duplications.

1. Introduction. Throughout, all rings considered are commutative
with unity and all modules are unital. The following diagram of ring
homomorphisms

R

µ2
��

ι2 // T

µ1
��

A
ι1 // B

is called the pullback (or fiber product) of µ1 and ι1 if the homomor-
phism ι2×µ2 : R→ T×A, r 7→ (ι2(r),µ2(r)) induces an isomorphism of
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R onto the subring of T×A given by

µ1×B ι1 :=
{
(t,a) | µ1(t) = ι1(a)

}
.

If µ1 is surjective and ι1 is injective, the above diagram is called a
conductor square. In this setting, ι2 and µ2 are injective and surjective,
respectively, and Ker(µ1) � Ker(µ2). By abuse of notation, we view R
as a subring of T making Ker(µ1) = Ker(µ2) the largest common ideal
of R and T; it is called the conductor of T into R.

Amalgamated algebras are rings which arise as special pullbacks.
Their introduction in 2007 by D’Anna and Fontana [7, 8] was mo-
tivated by a construction of D. D. Anderson [1] related to a classical
construction due to Dorroh [9] on endowing a ring (without unity) with
a unity. The interest of these amalgamations resides, partly, in their
ability to cover several basic constructions in commutative algebra,
including classical pullbacks (e.g., D+M, A+XB[X], A+XB[[X]], etc.),
Nagata’s idealizations [13, 15] (also called trivial ring extensions which
have been widely studied in the literature), and Boisen-Sheldon’s CPI-
extensions [2]. The following paragraphs collect background and main
contributions on amalgamations.

Let A be a ring, I an ideal of A, andπ : A→ A
I the canonical surjection.

The amalgamated duplication of A along I, denoted by A ./ I, is the
special pullback of π and π; i.e., the subring of A×A given by

A ./ I := π×A
I
π =

{
(a,a + i) | a ∈ A, i ∈ I

}
.

If I2 = 0, then A ./ I coincides with Nagata’s idealization An I.

In 2007, the construction A ./ I was introduced and its basic proper-
ties were studied by D’Anna and Fontana in [7, 8]. In the first paper
[7], they discussed the main properties of the amalgamated duplica-
tion in relation with pullback constructions and special attention was
devoted to its ideal-theoretic properties as well as to the topological
structure of its prime spectrum. In the second paper [8], they restricted
their attention to the case where I is a multiplicative canonical ideal
of A, that is, I is regular and every regular fractional ideal J of R is
I-reflexive (i.e., J = (I : (I : J))). In particular, they examined contexts
where every regular fractional ideal of A ./ I is divisorial. Later in the
same year, the amalgamated duplication was investigated by D’Anna
in [4] with the aim of applying it to curve singularities (over algebraic
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closed fields) where he proved that the amalgamated duplication of
an algebroid curve along a regular canonical ideal yields a Gorenstein
algebroid curve [4, Theorem 14 and Corollary 17]. In 2008, Maimani
and Yassemi studied in [14] the diameter and girth of the zero-divisor
graph of an amalgamated duplication. In 2010, Shapiro [18] corrected
Proposition 3 in [4] and proved a pertinent result asserting that if A
is a one-dimensional reduced local Cohen-Macaulay ring and A ./ I
is Gorenstein, then I must be regular. In 2012, in [3], the authors
established necessary and sufficient conditions for an amalgamated
duplication of a ring along an ideal to inherit Prüfer conditions (which
extend the notion of Prüfer domain to commutative rings with zero
divisors). The new results yielded original and new families of exam-
ples issued from amalgamated duplications subject to various Prüfer
conditions.

In 2009 and 2010, D’Anna, Finocchiaro, and Fontana considered the
more general context of amalgamated algebra

A ./ f J :=
{
(a, f (a) + j) | a ∈ A, j ∈ J

}
for a given homomorphism of rings f : A→ B and ideal J of B. In
particular, they have studied these amalgamations in the frame of
pullbacks which allowed them to establish numerous (prime) ideal
and ring-theoretic basic properties for this new construction. In
[5], they provided necessary and sufficient conditions for A ./ f J to
inherit the notions of Noetherian ring, domain, and reduced ring and
characterized pullbacks that can be expressed as amalgamations. In [6],
they provided a complete description of the prime spectrum of A ./ f J
and gave bounds for its Krull dimension. In 2014, in [10], Finocchiaro
investigated necessary and sufficient conditions for an amalgamated
algebra to inherit Prüfer conditions.

Let α : A→ C, β : B→ C and f : A→ B be ring homomorphisms. In
the aforementioned papers [5, 6], the authors studied amalgamated
algebras within the frame of pullbacks α × β such that α = β ◦ f
[5, Propositions 4.2 and 4.4]. In this work, we are interested in
new constructions, called bi-amalgamated algebras (or bi-amalgamations),
which arise as pullbacks α×β such that the following diagram of ring
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homomorphisms

A

g
��

f // B

α
��

C
β // D

is commutative with α ◦πB(α× β) = α ◦ f (A), where πB denotes the
canonical projection of B×C over B. Namely, let f : A→B and g : A→C
be two ring homomorphisms and let J and J′ be two ideals of B and C,
respectively, such that f−1(J) = g−1(J′). The bi-amalgamation of A with
(B,C) along (J, J′) with respect to ( f , g) is the subring of B×C given by

A ./ f ,g (J, J′) :=
{
( f (a) + j, g(a) + j′) | a ∈ A, ( j, j′) ∈ J× J′

}
.

This paper investigates ring-theoretic properties of bi-amalgamations
and capitalizes on previous works carried on various settings of pull-
backs and amalgamations. In the second and third sections, we pro-
vide examples of bi-amalgamations and show how these constructions
arise as pullbacks. The fourth section investigates the transfer of some
basic ring theoretic properties to bi-amalgamations and the fifth sec-
tion is devoted to the prime ideal structure of these constructions.
All new results agree with recent studies in the literature on D’Anna-
Finocchiaro-Fontana’s amalgamations and duplications.

Throughout, for a ring R, Q(R) will denote the total ring of quotients
and Z(R) and Jac(R) will denote, respectively, the set of zero divisors
and Jacobson radical of R. Finally, Spec(R) shall denote the set of prime
ideals of R.

2. Examples of bi-amalgamations. Notice, first, that every amalga-
mated duplication is an amalgamated algebra and every amalgamated
algebra is a bi-amalgamated algebra, as seen below.

Example 2.1 (The amalgamated algebra). Let f : A → B be a ring
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homomorphism and J an ideal of B. Set I := f−1(J) and ι := idA. Thus,

A ./ι, f (I, J) =
{
(a + i, f (a) + j) | a ∈ A, (i, j) ∈ I× J

}
=

{
(a + i, f (a + i) + j− f (i)) | a ∈ A, (i, j) ∈ I× J

}
=

{
(a, f (a) + j) | a ∈ A, j ∈ J

}
= A ./ f J.

Further, the subring f (A) + J of B can be regarded as a bi-
amalgamation; precisely:

Remark 2.2. Let f : A→ B be a ring homomorphism and J and ideal
of B. Set I := f−1(J) and consider the canonical projection π : A→ A/I.
Then, one can easily check that

f (A) + J �
{
(ā, f (a) + j) | a ∈ A, j ∈ J

}
= A ./π, f (0, J).

In particular, Boisen-Sheldon’s CPI-extensions [2] can also be
viewed as bi-amalgamations.

Example 2.3 (The CPI-extension). Let A be a ring and let I be an ideal
of A. Then S := (A/I)\Z(A/I) and S := {s ∈A | s̄ ∈ S} are multiplicatively
closed subsets of A/I and A, respectively. Let ϕ : S−1A→ Q(A/I) =

(S)−1(A/I) and f : A→ S−1A be the canonical ring homomorphisms.
Then, the subring

C(A, I) := ϕ−1(A/I) = f (A) + S−1I

of S−1A is called the CPI-extension of A with respect to I (in the sense
of Boisen-Sheldon). Now, let π : A→ A/I be the canonical projection.
From Remark 2.2, we have

A ./π, f (0,S−1I) � f (A) + S−1I = C(A, I).

Other known families of rings stem from Remark 2.2; namely, those
issued from extensions of rings A ⊂ B (including classic pullbacks).
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Example 2.4 (The ring A + J). Let i : A ↪→ B be an embedding of rings,
J and ideal of B, I := A∩ J, and π : A→ A/I the canonical projection.
From Remark 2.2, the subring A+ J of B can arise as a bi-amalgamation
via

A + J � A ./π,i (0, J)

and, consequently, so do most classic pullback constructions such as
A + XB[X] (via A ⊂ B[X] and XB[X]), A + XB[[X]] (via A ⊂ B[[X]] and
XB[[X]]), and D + M (via D ⊂ T and M ideal of T with D∩M = 0).

In the next section, as an application of Proposition 3.3, we will see
that some glueings of prime ideals [17, 19, 20, 21] can be viewed as
bi-amalgamations. We close this section with an explicit (non-classic
pullback) example; namely, the ring R := Z[X] + (X2 + 1)Q[X] which
lies between Z[X] and Q[X].

Example 2.5. Let i : Z[X] ↪→ Q[X] be the natural embedding and
consider the ring homomorphismπ :Z[X]→Z[i], p(X) 7→ p(i). Clearly,

(X2 + 1)Q[X]∩Z[X] = (X2 + 1) and
Z[X]

(X2 + 1)
�Z[i] so that

R :=Z[X] + (X2 + 1)Q[X] �Z[X] ./π,i
(
0, (X2 + 1)Q[X]

)
.

3. Pullbacks and bi-amalgamations. Throughout, let f : A→ B and
g : A→ C be two ring homomorphisms and J, J′ two ideals of B and C,
respectively, such that I := f−1(J) = g−1(J′). Let A ./ f ,g (J, J′) denote the
bi-amalgamation of A with (B,C) along (J, J′) with respect to ( f , g).

This section sheds light on the correlation between pullback con-
structions and bi-amalgamations. We first show how every bi-
amalgamation can arise as a natural pullback.

Proposition 3.1. Consider the ring homomorphisms α : f (A) + J → A/I,
f (a)+ j 7→ ā and β : g(A)+ J′→A/I, g(a)+ j′ 7→ ā. Then, the bi-amalgamation
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is determined by the following pullback

A ./ f ,g (J, J′)

����

// // f (A) + J

α

��
g(A) + J′

β // A/I

that is
A ./ f ,g (J, J′) = α×A

I
β.

Proof. Note that the mappings α and β are well defined since I :=
f−1(J) = g−1(J′) and are ring homomorphisms. Further, the inclusion
A ./ f ,g (J, J′) ⊆ α×β is trivial. On the other hand,

α×A
I
β=

{
( f (a)+ j, g(b)+ j′) | a,b ∈A, ( j, j′) ∈ J× J′, α( f (a)+ j) = β(g(b)+ j′)

}
.

The condition α( f (a) + j) = β(g(b) + j′) means that f (b − a) ∈ J and
g(b−a)∈ J′. It follows that g(b)+ j′ = g(a)+( j′+g(b−a)) with j′+g(b−a)∈
J′. Therefore, α×β ⊆ A ./ f ,g (J, J′). �

Next, we see how bi-amalgamations can be represented as conduc-
tor squares.

Proposition 3.2. Consider the following ring homomorphisms

ι1 :
A
I

−→
f (A) + J

J
×

g(A) + J′

J′
ā 7−→

(
f (a), g(a)

)
µ2 : A ./ f ,g (J, J′) −→

A
I

( f (a) + j, g(a) + j′) 7−→ ā
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Then, the following diagram

A ./ f ,g (J, J′)

µ2

����

ι2 // ( f (A) + J)× (g(A) + J′)

µ1

����
A
I

ι1 // f (A) + J
J

×
g(A) + J′

J′

is a conductor square with conductor Ker(µ1) = J× J′, where ι2 is the natural
embedding and µ1 is the canonical surjection.

Proof. The mappings ι1 and µ2 are well defined since I = f−1(J) =

g−1(J′) and are ring homomorphisms. Next, set R := µ1 × ι1 and let
a ∈ A and ( j, j′) ∈ J× J′. Then

ι2×µ2
(
( f (a) + j, g(a) + j′)

)
=

(
( f (a) + j, g(a) + j′), ā

)
with

µ1

(
( f (a) + j, g(a) + j′)

)
=

(
f (a), g(a)

)
= ι1(ā).

Thus, ι2×µ2
(
A ./ f ,g (J, J′)

)
⊆R. Now, let

(
( f (a)+ j, g(a′)+ j′), b̄

)
∈R. Then(

f (a), g(a′)
)

=
(

f (b), g(b)
)
.

Hence, f (a− b) ∈ J and g(a′− b) ∈ J′. Whence,

ι2×µ2
(
( f (b) + f (a− b) + j, g(b) + g(a′− b) + j′)

)
=

(
( f (a) + j, g(a′) + j′), b̄

)
.

It follows that ι2 × µ2 induces an isomorphism of A ./ f ,g (J, J′) onto
R since ι2 × µ2 is injective. Consequently, the above diagram is a
pullback. Moreover, it is clear that ι1 is injective and that Ker(µ1) =
J× J′ = Ker(µ2). �

The next result characterizes pullback constructions that can arise
as bi-amalgamations.
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Proposition 3.3. Consider the following diagram

A

g
��

f // B

α
��

C
β // D

of ring homomorphisms and let π : B×C→ B be the canonical projection.
Then, the following conditions are equivalent:

(1) α ×D β = A ./ f ,g (J, J′), for some ideals J of B and J′ of C with
f−1(J) = g−1(J′);

(2) The above diagram is commutative with α◦π(α×D β) = α◦ f (A).

Proof. (1)⇒ (2) Let a ∈ A. By hypothesis, ( f (a), g(a)) ∈ α×D β so that
α ◦ f (a) = β ◦ g(a). Also, we have π(α×D β) = f (A) + J. Further, for
any j ∈ J, the fact ( j,0) ∈ A ./ f ,g (J, J′) yields α( j) = β(0) = 0. Therefore,
α◦π(α×D β) = α◦ f (A), as desired.

(2)⇒ (1) Let J := Ker(α) and J′ := Ker(β). By assumption, for each x ∈
f−1(J), β◦ g(x) = α◦ f (x) = 0. Then, g(x) ∈ J′ and hence f−1(J) ⊆ g−1(J′).
Likewise for the reverse inclusion. Hence f−1(J) = g−1(J′). Next, let
( f (a) + j, g(a) + j′) ∈ A ./ f ,g (J, J′). We have

α( f (a) + j) = α◦ f (a) = β◦ g(a) = β(g(a) + j′)

so that A ./ f ,g (J, J′) ⊆ α×D β. On the other hand, let (b,c) ∈ α×D β. By
assumption, there exists a ∈ A such that

α(b) = α◦π(b,c) = α( f (a)).

Then, b− f (a) ∈ J. Moreover, we have

β(c) = α(b) = α( f (a)) = β(g(a)).

Then, c− g(a) ∈ J′. It follows that

(b,c) = ( f (a) + b− f (a), g(a) + c− g(a) ∈ A ./ f ,g (J, J′).

Consequently, α×D β = A ./ f ,g (J, J′), completing the proof of the propo-
sition. �

In view of Example 2.1, Proposition 3.3 recovers the special case of
amalgamated algebras, as recorded in the next corollary.
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Corollary 3.4 ([5, Proposition 4.4]). Let α : A→D and β : B→D be two
ring homomorphisms. Then, α×D β = A ./ f J, for some ideal J of B if and
only if α = β◦ f . �

We close this section with a brief discussion on Traverso’s Glueings
of prime ideals [17, 19, 20] which are special pullbacks [21, Lemma 2].
So, they can also be viewed as special bi-amalgamations if they satisfy
Condition (2) of Proposition 3.3. Precisely, from [21, Lemma 1], let A
be a Noetherian ring and B an overring of A such that B is a finite
A-module. Let p ∈ Spec(A) and let p1, ...,pn be the prime ideals of B

lying over p. For each i,
Ap
pAp

is a subfield of
Bpi

piBpi
, and let b

t

i
denote the

class of the element b
t of Bpi modulo piBpi . The ring A′ obtained from

B by glueing over p is the subring of B (containing A) given by A′ :={
b ∈ B | ∃ ao

so
∈ Ap with b

1

i
= ao

so

i
∀i and, for a

s ∈ Ap, b
1

i
= a

s
i
⇔

b
1

j
= a

s
j
∀i, j

}
Now, consider the following diagram

A

µ

��

ι // B

Φ

��
Ap
pAp

Ψ // D :=
Bp1

p1Bp1
× · · ·×

Bpn
pnBpn

where ι is the natural embedding, µ(a) = a
1 ∀a ∈A, Φ(b) = ( b

1

1
, ..., b

1

n
) ∀b ∈

B, and Ψ( a
s ) = ( a

s
1
, ..., a

s
n
) ∀ a

s ∈ Ap. Let J := Ker(Φ) and J′ := Ker(Ψ) and
note that

p = ι−1(J) = µ−1(J′).

Corollary 3.5. Under the above notation, the following assertions are
equivalent:

(1) A′ = A ./ι,µ (J, J′);
(2) For any ( a

s ,b) ∈ Ap ×B : a− sb ∈
⋂

1≤i≤n pi ⇒ a− sao ∈ p, for some
ao ∈ A.
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Proof. By [21, Lemma 2], A′ can be identified with the pullback
Φ×D Ψ. Further, notice that Φ ◦ ι = Ψ ◦µ; i.e., the above diagram is

commutative. Let π : B×
Ap
pAp
→ B be the canonical projection and let

a ∈ A. Then

Ψ
( a
1

)
=

( a
1

1

, ...,
a
1

n)
= Φ(a) = Φ◦π

(
a,

a
1

)
.

Hence Φ(A) ⊆ Φ◦π(Φ×D Ψ). Therefore, by Proposition 3.3, (1) holds
if and only if Φ◦π(Φ×D Ψ) ⊆Φ(A) if and only if for any ( a

s ,b) ∈ Ap×B,
a
s

i
= b

1

i
∀i forces a

s
i
= ao

1

i
∀i, for some ao ∈ A if and only if (2) holds. �

For example, if A :=Z and p := 2Z, then for any finite Z-module B
(e.g., Z[i]) Condition (2) of Corollary 3.5 always holds since, for any
n ∈Z and s ∈Z\2Z, n− sn ∈ 2Z.

4. Basic algebraic properties of bi-amalgamations. Throughout
this section, let f : A→ B and g : A→ C be two ring homomorphisms
and J, J′ two ideals of B and C, respectively, such that Io := f−1(J) =

g−1(J′). Let

A ./ f ,g (J, J′) :=
{
( f (a) + j, g(a) + j′) | a ∈ A, ( j, j′) ∈ J× J′

}
be the bi-amalgamation of A with (B,C) along (J, J′) with respect to
( f , g).

This section studies basic algebraic properties of bi-amalgamations.
Precisely, we investigate necessary and sufficient conditions for a bi-
amalgamation to be a Noetherian ring, a domain, or a reduced ring.
We will show that the transfer of these notions is made via the special
rings f (A)+ J and g(A)+ J′ (which correspond to B and C, respectively,
in the case when f and g are surjective).

We start with basic ideal-theoretic properties of bi-amalgamations.
For this purpose, notice first that 0× J′, J× 0, and J× J′ are particular
ideals of A ./ f ,g (J, J′); and if I is an ideal of A, then the set

I ./ f ,g (J, J′) :=
{
( f (i) + j, g(i) + j′) | i ∈ I, ( j, j′) ∈ J× J′

}
is an ideal of A ./ f ,g (J, J′) containing J× J′.
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Proposition 4.1. Let I be an ideal of A. We have the following canonical
isomorphisms:

(1)
A ./ f ,g (J, J′)
I ./ f ,g (J, J′)

�
A

I + Io
.

(2)
A ./ f ,g (J, J′)

0× J′
� f (A) + J and

A ./ f ,g (J, J′)
J×0

� g(A) + J′.

(3)
A
Io
�

A ./ f ,g (J, J′)
J× J′

�
f (A) + J

J
�

g(A) + J′

J′
.

Proof. (1) Consider the mapping

ϕ : A →
A ./ f ,g (J, J′)
I ./ f ,g (J, J′)

a 7−→ ( f (a), g(a)).

Clearly, ϕ is a surjective ring homomorphism and one can check that
Ker(ϕ) = I + Io.

(2) If f (a) + j = 0 for some a ∈ A and j ∈ J, then g(a) + j′ ∈ J′ for any
j′ ∈ J′. So the kernel of the surjective canonical homomorphism A ./ f ,g

(J, J′)� f (A) + J coincides with 0× J′. Hence, the first isomorphism
holds and the second one follows similarly.

(3) The first isomorphism is a particular case of (1) for I = 0. Further,
if f (a) + j ∈ J for some a ∈ A and j ∈ J, then g(a) + j′ ∈ J′ for any j′ ∈ J′.
So the kernel of the canonical surjective homomorphism

A ./ f ,g (J, J′)�
f (A) + J

J

coincides with J× J′. �

The fact that bi-amalgamations can be represented as pullbacks is an
important tool that one can use to investigate the algebraic properties
of these constructions. The following results give examples of this use.

Proposition 4.2. Under the above notation, we have:

A ./ f ,g (J, J′) is Noetherian⇔ f (A) + J and g(A) + J′ are Noetherian.

In particular, if f and g are surjective, then A ./ f ,g (J, J′) is Noetherian if and
only if B and C are Noetherian.
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Proof. In view of Proposition 4.1(2), we only need to prove the
reverse implication. By Proposition 3.1, A ./ f ,g (J, J′) = α× A

Io
β deter-

mined by the ring homomorphisms α : f (A)+ J→A/Io, f (a)+ j 7→ ā and
β : g(A) + J′ → A/Io, g(a) + j′ 7→ ā. Sine f (A) + J is Noetherian, by [5,
Proposition 4.10], it suffices to show that Ker(β) = J′ is a Noetherian
module over A ./ f ,g (J, J′) with the module structure induced by the sur-
jective canonical homomorphism A ./ f ,g (J, J′)� g(A) + J′. But, under
this structure, A ./ f ,g (J, J′)-submodules of J′ correspond to subideals of
J′ in the Noetherian ring g(A) + J′. This leads to the conclusion. �

In view of Example 2.1, Proposition 4.2 recovers the special case of
amalgamated algebras, as recorded in the next corollary.

Corollary 4.3 ([5, Proposition 5.6]). Under the above notation, we have:

A ./ f J is Noetherian⇔ A and f (A) + J are Noetherian.

�

As an illustrative example for Proposition 4.2 (of an original Noe-
therian ring which arises as a bi-amalgamation) is provided in Exam-
ple 4.10.

Recall that the prime spectrum of a ring R is said to be Noetherian
if R satisfies the ascending chain condition on radical ideals (or,
equivalently, every prime ideal of R is the radical of a finitely generated
ideal) [16]. Let Spec(R) denote the prime spectrum of a ring R.

Proposition 4.4. Under the above notation, we have:

Spec
(
A ./ f ,g (J, J′)

)
is Noetherian⇔ Spec

(
f (A) + J

)
and Spec

(
g(A) + J′

)
are Noetherian.

Proof. A ./ f ,g (J, J′) = α× A
Io
β via the homomorphisms α : f (A) + J→

A/Io, f (a) + j 7→ ā and β : g(A) + J′ → A/Io, g(a) + j′ 7→ ā. So, by [11,
Corollary 1.6], the prime spectra of A ./ f ,g (J, J′) and A/Io are Noetherian
if and only if so are the prime spectra of f (A) + J and g(A) + J′. But, by
Proposition 4.1(3) if the prime spectrum of A ./ f ,g (J, J′) is Noetherian,
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then so is the spectrum of A/Io since this notion is stable under
homomorphic image. This leads to the conclusion. �

The next result characterizes bi-amalgamations without zero divi-
sors.

Proposition 4.5. Under the above notation, the following assertions are
equivalent:

(1) A ./ f ,g (J, J′) is a domain;
(2) “J = 0 and g(A)+ J′ is a domain” or “J′ = 0 and f (A)+ J is a domain.”

In particular, if f is surjective and J , 0, then A ./ f ,g (J, J′) is a domain if and
only if J = 0 and C is a domain.

Proof. Assume that A ./ f ,g (J, J′) is a domain. If J , 0 and J′ , 0,
then for nonzero elements j ∈ J and j′ ∈ J′ we have (0, j′)( j,0) = (0,0).
Therefore, one of J and J′must be null; in such case, A ./ f ,g (J, J′) collapse
(up to an isomorphism) to g(A) + J′ or f (A) + J by Proposition 4.1(2).
This leads to the conclusion. �

In view of Example 2.1, Proposition 4.5 recovers the special case of
amalgamated algebras, as recorded in the next corollary.

Corollary 4.6 ([5, Proposition 5.2]). Under the above notation, assume
J , 0. Then:

A ./ f J is a domain⇔ f−1(J) = 0 and f (A) + J is a domain.

�

The next result characterizes bi-amalgamations without nilpotent
elements.

Proposition 4.7. Under the above notation, consider the following condi-
tions:

(a) f (A) + J is reduced and J′∩Nil(C) = 0,
(b) g(A) + J′ is reduced and J∩Nil(B) = 0,
(c) A ./ f ,g (J, J′) is reduced,
(d) J∩Nil(B) = 0 and J′∩Nil(C) = 0.
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Then:

(1) (a) or (b)⇒ (c)⇒ (d).
(2) If Io is radical, then the four conditions are equivalent.
(3) If f is surjective and Ker( f ) ⊆ Ker(g), then:

A ./ f ,g (J, J′) is reduced⇔ B is reduced and J′∩Nil(C) = 0.

Proof. (1) Let ( f (a) + j, g(a) + j′) ∈ Nil
(
A ./ f ,g (J, J′)

)
. Then f (a) + j ∈

Nil( f (A) + J) = 0. Hence, a ∈ Io. Thus, g(a) + j′ ∈ J′ ∩Nil(C) = 0.
Consequently, Nil

(
A ./ f ,g (J, J′)

)
= 0. This proves (a)⇒ (c). Likewise

for (b)⇒ (c).

Let j ∈ Nil(B)∩ J. Therefore, there is a positive integer n such
that 0 = ( jn,0) = ( j,0)n in A ./ f ,g (J, J′). It follows that j = 0 and hence
Nil(B)∩ J = 0. Similarly, Nil(C)∩ J′ = 0. This proves (c)⇒ (d).

(2) Next, assume that Io is radical, J∩Nil(B) = 0, and J′∩Nil(C) = 0.
Let f (a) + j ∈Nil( f (A) + J). Then, there is a positive integer n such that
( f (a) + j)n = 0. Hence, f (a)n

∈ J and thus an
∈ Io; that is, a ∈ Io. So,

f (a) + j ∈ J∩Nil(B) = 0, as desired. This proves (d)⇒ (a). Likewise for
(d)⇒ (b).

(3) In view of (1), it suffices to observe that f (an) = 0, for some
positive integer, forces ( f (a), g(a))n = 0, yielding f (a) = 0. �

Remark 4.8. If f (A)+ J and g(A)+ J′ are both reduced, then A ./ f ,g (J, J′)
is reduced by Proposition 4.7. The converse is not true in general.
A counter-example (for the special case of amalgamated algebras) is
given in [5, Remark 5.5 (3)].

In view of Example 2.1, Proposition 4.7 recovers the special case of
amalgamated algebras, as recorded in the next corollary.

Corollary 4.9 ([5, Proposition 5.4]). Under the above notation, we have:

A ./ f J is reduced⇔ A is reduced and J∩Nil(B) = 0.

�
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As an illustrative example for Propositions 4.2 & 4.5 & 4.7, we
provide an original reduced Noetherian ring with zero divisors which
arises as a bi-amalgamation.

Example 4.10. Consider the surjective ring homomorphism f :Z[X]�
Z[
√

2], p(X) 7→ p(
√

2) and the principal ideal J := (
√

2) of Z[
√

2]. Let
p ∈Z[X] and write it as p = (X2

−2)q(X) + aX + b for some a,b ∈Z and
q ∈Z[X]. Then, one can verify that p(

√
2) ∈ J if and only if b ∈ 2Z. That

is,
Io := f−1(J) =

{
p ∈Z[X] | p(0) ∈ 2Z

}
.

Now, consider the ring homomorphism α :Z[
√

2]�
Z[X]

Io
, a+b

√
2 7→

ā. It follows, by Proposition 3.1 and Propositions 4.2 & 4.5 & 4.7, that

Z[X] ./ f , f (J, J) = α×Z[X]
Io
α =

{
(a + b

√

2,c + d
√

2) | a,b,c,d ∈Z, a− c ∈ 2Z
}

is a reduced Noetherian ring that is not a domain (since Z[
√

2] is a
Noetherian domain and J , 0).

5. The prime ideal structure of bi-amalgamations. Throughout this
section, let f : A→ B and g : A→ C be two ring homomorphisms and
J, J′ two ideals of B and C, respectively, such that Io := f−1(J) = g−1(J′).
Let

A ./ f ,g (J, J′) :=
{
( f (a) + j, g(a) + j′) | a ∈ A, ( j, j′) ∈ J× J′

}
be the bi-amalgamation of A with (B,C) along (J, J′) with respect to
( f , g).

This section examines the prime ideal structure of bi-amalgamations
and their localizations at prime ideals. We also establish necessary and
sufficient conditions for a bi-amalgamation to be local.

Next, we describe the prime ideals (and maximal ideals) of bi-
amalgamations. To this purpose, let’s adopt the following notation:

Y := Spec( f (A) + J)
Y′ := Spec(g(A) + J′)
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and, for L ∈ Y and L′ ∈ Y′, consider the prime ideals of A ./ f ,g (J, J′)
given by:

L̄ :=
(
L× (g(A) + J′)

)
∩

(
A ./ f ,g (J, J′)

)
=

{
( f (a) + j, g(a) + j′) | a ∈ A, ( j, j′) ∈ J× J′, f (a) + j ∈ L

}
,

L̄′ :=
(
( f (A) + J)×L′

)
∩

(
A ./ f ,g (J, J′)

)
=

{
( f (a) + j, g(a) + j′) | a ∈ A, ( j, j′) ∈ J× J′, g(a) + j′ ∈ L′

}
.

The next two lemmas are needed for the proof of Proposition 5.3.
Recall that if I is an ideal of A, then

I ./ f ,g (J, J′) :=
{
( f (i) + j, g(i) + j′) | i ∈ I, ( j, j′) ∈ J× J′

}
is an ideal of A ./ f ,g (J, J′). As an immediate consequence of Proposi-
tion 4.1(1), we have the following lemma.

Lemma 5.1. Let I be an ideal of A. Then, I ./ f ,g (J, J′) is a prime (resp.,
maximal) ideal of A ./ f ,g (J, J′) if and only if I + Io is a prime (resp., maximal)
ideal of A. �

An element of Y (resp., Y′) containing J (resp., J′) has a special form,
as shown by the next lemma.

Lemma 5.2. Let L ∈ Y (resp., Y′) containing J (resp., J′). Then:

L̄ = f−1(L) ./ f ,g (J, J′)
(
resp., = g−1(L) ./ f ,g (J, J′)

)
.

Proof. Let L ∈ Y containing J. Notice first that f−1(L) is a prime
ideal of A containing Io := f−1(J) so that f−1(L) ./ f ,g (J, J′) is a prime
ideal of A ./ f ,g (J, J′) by Lemma 5.1. Moreover, for any a ∈ A and j ∈ J,
one can easily see that f (a) + j ∈ L if and only if a ∈ f−1(L). Thus,
L = f−1(L) ./ f ,g (J, J′). Likewise for L ∈ Y′. �

Proposition 5.3. Under the above notation, let P be a prime ideal of
A ./ f ,g (J, J′). Then

(1) J× J′ ⊆ P if and only if there exists a unique p ⊇ Io in Spec(A) such
that P = p ./ f ,g (J, J′). In this case, there exist L ⊇ J in Y and L′ ⊇ J′

in Y′ such that P = L̄ = L̄′.
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(2) J × J′ * P if and only if there exists a unique L ∈ Y (or Y′) such
that J * L (or J′ * L) and P = L̄. In this case, (A ./ f ,g (J, J′))P �

( f (A) + J)L
(

or (A ./ f ,g (J, J′))P � (g(A) + J′)L
)
.

Consequently, we have

Spec
(
A ./ f ,g (J, J′)

)
=

{
L̄ | L ∈ Spec

(
f (A) + J

)
∪Spec

(
g(A) + J′

)}
.

Proof. (1) We only need to prove (⇒). Assume J× J′ ⊆P and consider
the ideal p of A given by

p :=
{
a ∈ A | ∃ ( j, j′) ∈ J× J′ such that ( f (a) + j, g(a) + j′) ∈ P

}
.

Clearly, the fact J× J′ ⊆ P forces Io ⊆ p. Moreover, we have P ⊆ p ./ f ,g

(J, J′). For the reverse inclusion, let a ∈ p. So there exists ( j1, j′1) ∈ J× J′

such that ( f (a) + j1, g(a) + j′1) ∈ P. Hence, for every ( j, j′) ∈ J × J′, we
obtain

( f (a) + j, g(a) + j′) = ( f (a) + j1, g(a) + j′1) + ( j− j1, j′− j′1) ∈ P

since J× J′ ⊆ P. It follows that

P = p ./ f ,g (J, J′).

By Lemma 5.1, p is a prime ideal of A. By Proposition 4.1(1), p must be
unique since it contains Io.

Next, let L := f (p)+ J. One can verify that L is a prime ideal of f (A)+ J
with p ⊆ f−1(L). Now, let a ∈ f−1(L). Then f (a) = f (x) + j for some x ∈ p
and j ∈ J. Hence (a−x) ∈ Io ⊆ p, whence a ∈ p. So,

f−1(L) = p.

It follows, via Lemma 5.2, that

L̄ = f−1(L) ./ f ,g (J, J′) = p ./ f ,g (J, J′) = P.

Note that for L′ := g(p) + J′, the same arguments lead to

P = L̄ = L̄′.

(2) We only need to prove (⇒). Assume J× J′ * P. By Proposition 3.2
and [12, Lemma 1.1.4(3)], there is a unique prime Q of ( f (A)+ J)×(g(A)+
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J′) such that

P = Q∩A ./ f ,g (J, J′) with
(
( f (A) + J)× (g(A) + J′)

)
Q

=
(
A ./ f ,g (J, J′)

)
P
.

Then either Q = L× (g(A) + J′) for some prime ideal L ∈ Y or Q =
( f (A) + J)×L′ for some prime ideal L′ ∈ Y′. That is,

P = L̄ or P = L̄′.

Accordingly, we’ll have

(A ./ f ,g (J, J′))P � ( f (A) + J)L or (A ./ f ,g (J, J′))P � (g(A) + J′)L′

completing the proof of the proposition. �

Next, as an application of Proposition 5.3, we establish necessary
and sufficient conditions for a bi-amalgamation to be local. Notice at
this point that, in the presence of the equality f−1(J) = g−1(J′), J , B if
and only if J′ , C.

Proposition 5.4. Under the above notation, we have

(1) A ./ f ,g (J, J′) is local if and only if J , B and both f (A) + J and
g(A) + J′ are local. Further, the maximal ideal of A ./ f ,g (J, J′) has
the form m ./ f ,g (J, J′), where m is the unique maximal ideal of A
containing Io.

(2) Suppose that A is local. Then:

A ./ f ,g (J, J′) is local ⇔ J× J′ ⊆ Jac(B×C).

Proof. (1) Notice first that if J = B, (hence J′ = C and) then A ./ f ,g

(J, J′) = B×C which is never local. Assume that A ./ f ,g (J, J′) is local.
Then J , B and, by Proposition 4.1(2), both f (A) + J and g(A) + J′ are
local. Moreover, Io , A. Therefore, there is m ⊇ Io maximal in A. By
Lemma 5.1, m ./ f ,g (J, J′) is the maximal ideal of A ./ f ,g (J, J′). Then, the
uniqueness of m is ensured by Proposition 4.1(1).

Next assume that J , B and f (A) + J & g(A) + J′ are local. Let M be
a maximal ideal of A ./ f ,g (J, J′). We claim that J× J′ ⊆M. Deny. Then,
by Proposition 5.3(2), there is a unique prime L, say, of f (A) + J such
that M = L̄ and J * L. Further, the uniqueness of L and maximality of
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M force L to be a (in fact, the) maximal ideal of f (A)+ J. It follows that
J ⊆ L (since J , B), the desired contradiction. Therefore,

J× J′ ⊆M.

So, by Proposition 5.3(1), there is a (unique) prime ideal m of A
containing Io such that

M =m ./ f ,g (J, J′).

By Lemma 5.1, m is maximal in A. By Proposition 4.1(3),
A
Io
�

f (A) + J
J

is local with maximal ideal
m

Io
. This forces M to be the unique maximal

ideal of A ./ f ,g (J, J′).

(2) (⇒) In this direction we don’t need the assumption “A is local.”
Assume that A ./ f ,g (J, J′) is local. By (1), necessarily, its maximal ideal
contains J× J′. Let ( j, j′) ∈ J× J′ and (b,c) ∈ B×C. Then, (b,c)( j, j′) ∈ J× J′.
Thus, (1,1)− (b,c)( j, j′) is invertible in A ./ f ,g (J, J′) (and so in B×C).
Hence, J× J′ ⊆ Jac(B×C).

(⇐) Assume that A is local and J× J′ ⊆ Jac(B×C). Let a be a unit
of A. We claim that ( f (a) + j, g(a) + j′) is a unit of A ./ f ,g (J, J′) for every
( j, j′) ∈ J× J′. Indeed, f (a) + j and g(a) + j′ are, respectively, units in B
and C since J× J′ ⊆ Jac(B×C). Thus, there exist u ∈ B and v ∈ C such
that ( f (a) + j)u = 1 and (g(a) + j′)v = 1. Hence,

( f (a) + j, g(a) + j′)( f (a−1)−u f (a−1) j, g(a−1)−vg(a−1) j′) = (1,1);

that is, ( f (a) + j, g(a) + j′) is a unit of A ./ f ,g (J, J′). Next, let ( f (a) +

j1, g(a) + j′1) be a nonunit element of A ./ f ,g (J, J′). So, a is a nonunit of
A. Moreover, for any ( f (b) + j2, g(b) + j′2) ∈ A ./ f ,g (J, J′), we have

(1,1)− ( f (b)+ j2, g(b)+ j′2)( f (a)+ j1, g(a)+ j′1) = ( f (1−ba)+ j3, g(1−ba)+ j′3)

for some j3 ∈ J and j′3 ∈ J′. Further, 1− ba is a unit of A since A is
local. Hence, (1,1)− ( f (b) + j2, g(b) + j′2)( f (a) + j1, g(a) + j′1) is a unit of
A ./ f ,g (J, J′). This proves that A ./ f ,g (J, J′) is local. �

In view of Example 2.1, Proposition 5.4 recovers the special case of
amalgamated algebras and amalgamated duplications, as recorded in
the next corollaries.
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Corollary 5.5. Under the above notation, the following assertions are
equivalent:

(1) A ./ f J is local;
(2) J , B and both A and f (A) + J are local;
(3) A is local and J ⊆ Jac(B).

�

Corollary 5.6 ([4, Corollary 6] & [7, Theorem 3.5(1.e)] & [8, Proposition
2.2]). Let A be a ring and I a proper ideal of A. Then, A ./ I is local if and
only if A is local. �

Next, we describe the localizations of A ./ f ,g (J, J′) at its prime ideals
which contain J× J′. Recall that, given a ring R, an ideal I of R, and
S a multiplicatively closed subset of R with S∩ I = ∅, then S + I is a
multiplicatively closed subset of R.

Proposition 5.7. Let p be a prime ideal of A containing Io and let P :=
p ./ f ,g (J, J′). Consider the multiplicative subsets S := f (A− p) + J of B and
S′ := g(A− p) + J′ of C. Let fp : Ap → BS and gp : Ap → CS′ be the ring
homomorphisms induced by f and g. Then:

f−1
p (JS) = g−1

p (J′S′ ) = (Io)p

and (
A ./ f ,g (J, J′)

)
P
� Ap ./

fp,gp (JS, J′S′ ).

Proof. It is easy to show that f−1
p (JS) = g−1

p (J′S′ ) = (Io)p. Moreover, by
Proposition 3.1, Ap ./ fp,gp (JS, J′S′ ) is the fiber product of α : fp(Ap) +
JS → Ap/(Io)p and β : gp(Ap) + J′S′ → Ap/(Io)p. On the other hand,
πB(A ./ f ,g (J, J′)−P) = S and πC(A ./ f ,g (J, J′)−P) = S′. Then, the fact
that (A ./ f ,g (J, J′))P is isomorphic to Ap ./ fp,gp (JS, J′S′ ) follows from [11,
Proposition 1.9]. �

Remark 5.8. If P is a prime ideal of A ./ f ,g (J, J′) which contains J× J′,
then by Proposition 5.3, there exists a (unique) prime ideal p (which
contains Io) such that P = p ./ f ,g (J, J′). Thus, by Proposition 3.2 and
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Proposition 5.7, one can obtain a conductor square of the form:

(A ./ f ,g (J, J′))P

µ2

����

ι2 // ( fp(Ap) + JS)× (gp(Ap) + J′S′ )

µ1

����
Ap

IoAp

ι1 //
Ap

IoAp
×

Ap

IoAp
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